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Abstract

:

Astragaloside IV (ASI) has been reported to promote neural stem cells proliferation in vitro and CXCR2 expression on neutrophils. The present study was aimed to investigate the influence of ASI on adult neurogenesis in hippocampal dentate gyrus (DGs) of mouse and to discuss the possible underlying mechanisms. Total number of proliferative cells (BrdU+), pre-mature neurons (DCX+), early proliferative cells (BrdU+/DCX+), proliferative radial gila-like cells (BrdU+/GFAP+) and newly generated neurons (BrdU+/NeuN+) after ASI or vehicle administration for two weeks were counted, respectively. The results showed that BrdU+ cells and DCX+ cells were significantly increased in DGs of mice administered with ASI. The numbers of BrdU+/DCX+, BrdU+/GFAP+ cells and BrdU+/NeuN+ cells were also elevated in the ASI group. Correspondingly, ASI increased the protein expression of hippocampal DCX, GFAP and NeuN. Further study disclosed that ASI remarkably up-regulated the mRNA and protein expressions of CXCL1 as well as that of CXCR2 in the hippocampus. The promotive effect of ASI on DCX, GFAP and NeuN protein expression was abolished by SB225002, the inhibitor of CXCR2. Our results indicated that ASI modulated the homeostasis of the CXCL1/CXCR2 signaling pathway, which might be responsible for the increased neurogenesis within the hippocampal DGs of mice.
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1. Introduction


Adult hippocampal neurogenesis attracts specific attention as it is suggested to play an important role in higher cognitive function, most notably memory processes, and certain affective behaviors [1]. Lateral ventricles and hippocampal dentate gyrus (DG) are the well-known regions in the brain where the neural progenitor cells proliferate and differentiate into mature neurons throughout the lifetime of animals [2,3]. In the hippocampus, the mature neurons can consolidate surrounding structures and participate in many critical processes such as learning and memory [4]. Accumulative evidence shows that adult neurogenesis is essential for specific types of hippocampus-dependent learning [5,6,7].



Chemokines (chemotactic cytokines) compose a family of small protein ligands involved in leukocyte migration and communication [8]. Interestingly, chemokines and their receptors are expressed in all major types of cells in the central nervous system (CNS), and a growing body of evidence suggests that chemokines and their receptors also mediate the cellular communication in CNS [9]. For instance, CXCR2 has been shown to enhance the survival of hippocampal neurons [10,11], and is involved in patterning the spinal cord by controlling the position of oligodendrocyte precursors after stimulation by its ligand CXCL1 [12].



Astragaloside IV (ASI) is one of the major active saponins in Astragalus membranaceus (Fisch) Bge, a widely used herb in China for the treatment of cardiovascular, hepatic, and renal disorders [13]. Several studies demonstrated that ASI has a prominent antioxidant effect shown by inhibition of the generation of reactive oxygen species (ROS) [14], reduction of lipid peroxidation [15], and elevation of antioxidant enzymes [16]. It exerts neuroprotective effects against ischemic brain injury by anti-oxidation [17], anti-inflammation [18], anti-apoptosis [19] and blood–brain barrier protection [20]. In addition, our studies demonstrated that it can attenuate experimental autoimmune encephalomyelitis in mice by counteracting oxidative stress at multiple levels [21]. Recently, it was reported that ASI ameliorates the learning and memory deficit in rats after chronic cerebral hypoperfusion [22] and attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice [23]. Moreover, ASI promotes neural stem cells proliferation and differentiation [24]. An in vitro study showed that application of ASI apparently promotes CXCR2 expression on LPS-induced neutrophils [25]. However, whether ASI can benefit neurogenesis in vivo has not been demonstrated yet.



In the present study, the effect of ASI on neurogenesis in the DGs of mice was investigated by bromodeoxyuridine (BrdU) assay. Serial brain sections from mice were then double stained with antibodies against BrdU+ doublecortin (DCX, a pre-mature neuron marker), BrdU+ glial fibrillary acidic protein (GFAP, an astroglial marker) or BrdU+ neuronal nuclei (NeuN, a neuronal marker). Meanwhile, hippocampal expressions of genes related with neurogenesis were analyzed with the PCR array method and confirmed by real-time PCR. The results showed that ASI actively participated in hippocampal neurogenesis, which was closely associated with enhanced CXCL1/CXCR2 signaling transduction. The study deepened our understanding of the role of ASI in the dynamic and complex process of neurogenesis that is connected to the normal brain function.




2. Results


2.1. ASI Increased the Total Number of Proliferative Cells (BrdU+), Pre-Mature Neurons (DCX+) and Early Proliferative Cells (BrdU+/DCX+)


For neurogenesis analysis, BrdU-immunopositive cells and DCX-immunopositive cells were counted firstly. The DGs of ASI group mice contained more BrdU-immunopositive cells (Control vs. ASI, respectively, n = 4 per group, p < 0.05) (Figure 1A,D,G,J) and DCX-immunopositive cells (Control vs. ASI, respectively, n = 4 per group, p < 0.05) (Figure 1B,E,H,K) compared to that of their controls. Moreover, double immunopositive (BrdU+/DCX+) cells showed a difference between two groups (Control vs. ASI, respectively, n = 4 per group, p < 0.05) (Figure 1C,F,I,L). Moreover, the total amount of DCX protein was elevated in the hippocampus of ASI group mice (n = 8 per group) (Figure 1M,N). These results indicated that ASI increased proliferative cells, pre-mature neurons and early proliferative cells.




2.2. ASI Increased the Total Number of Proliferative Radial Glia-Like Cells (BrdU+/GFAP+) and Newly Generated Neurons (BrdU+/NeuN+)


To examine the effect of ASI on proliferative radial glia-like cells and newly generated neurons in DGs, BrdU+/GFAP+ and BrdU+/NeuN+ immunopositive cells were counted, respectively. Confocal microscopic results showed that GFAP+ and NeuN+ cells were abundant in the granular cell layer of the DGs in both groups (Figure 2B,E,H and Figure 3B,E,H). Meanwhile, the numbers of BrdU+ cells with GFAP (Control vs. ASI group, respectively, n = 4 per group, p < 0.05) (Figure 2C,F,I,J) and NeuN (Control vs. ASI group, respectively, n = 4 per group, p < 0.05) (Figure 3C,F,I,J) expression were significantly increased in the ASI group mice. Consistently, the total amount of GFAP and NeuN proteins were also elevated remarkably in the hippocampus in ASI group mice (n = 8 per group, p < 0.05) (Figure 2K,L and Figure 3K,L). These results indicated that ASI increased proliferative gila-like cells and newly generated neurons in the subgranular zone (SGZ).



In summary, all above results suggested that ASI increased adult neurogenesis at multiple levels in DGs (Figure 4).




2.3. ASI Enhanced CXCL1/CXCR2 Signaling Pathway


The pathways involved in neurogenesis in mouse hippocampus by ASI were investigated in a pilot study including 84 neurogenesis-related genes (Figure 5 and Table 1). The preliminary data showed that mRNA of eight genes were differently expressed after ASI treatment judged by p-value (Figure 5A–C). However, further quantitative PCR did not perfectly corroborate the significant fold-change of these genes (Figure 5D) as only CXCL1 displayed a 3.4-fold elevation. In addition, ASI promoted the protein expression of CXCL1 in mouse serum and hippocampus (Figure 6A,B). Since CXCL1 signals through its receptor CXCR2, the mRNA and protein expressions of the receptor were examined. Not surprisingly, hippocampal CXCR2 mRNA and protein expressions were markedly up-regulated by ASI compared to the control (Figure 6C–E). These results suggested the modulation of ASI on CXCL1/CXCR2 signaling pathway.




2.4. ASI Promoted Neurogenesis through CXCL1/CXCR2 Signaling Pathway


To determine whether the effect of ASI was mediated through CXCL1/CXCR2, we utilized SB225002, an inhibitor of CXCR2. Similar to previous results, ASI treatment resulted in the significant increase of hippocampal DCX, GFAP and NeuN protein expression (Figure 7A–F). However, SB225002 reversed the promotive effects of ASI on DCX and GFAP (Figure 7A–D), and partly reversed the promotive effects of ASI on NeuN (Figure 7E,F), suggesting that ASI enhanced neurogenesis through CXCL1/CXCR2 signaling pathway.





3. Discussion


In the present study, the effects of ASI on the hippocampal neurogenesis of mice were examined. Our data showed that ASI increased adult neurogenesis in the DGs, which was mediated by regulating the signaling transduction through the CXCL1/CXCR2 system.



Adult hippocampal neurogenesis is a complex process, in which new excitatory granule cells are generated in the DGs, particularly in the subgranular zone (SGZ). Hippocampal neurogenesis originates from a population of neuronal precursor cells in the SGZ [26]. They give rise to intermediate progenitor cells with glial or neuronal phenotype [1]. In our experiments, BrdU+ cells and DCX+ cells were significantly increased in the ASI group of mice. Meanwhile, the numbers of BrdU+/DCX+ cells, BrdU+/GFAP+ cells and BrdU+/NeuN+ cells were also increased by ASI treatment, suggesting a promotive effect of the compound on adult neurogenesis at multiple levels (Figure 4). Although the radial glia-like cells (also called type 1 hippocampal progenitors) express the astrocyte marker GFAP, these cells are morphologically and functionally different from mature astrocytes. The expression of GFAP protein in the hippocampus could not distinguish between them.



Several lines of evidence indicate that CXCL1/CXCR2 signaling plays an important role in neurogenesis. For instance, CXCL1 stimulation enhances the proliferative response of the rat’s immature spinal cord oligodendrocyte precursors to platelet derived growth factor [27,28] as well as elevates the number of dopaminergic neurons in rat ventral midbrain precursor and neurosphere cultures [29]. Normally functioning CXCR2 seems to protect neurons from injury. In brain trauma, neuronal CXCR2 downregulation is suggested to render neurons more vulnerable to injury [30]. While CXCR2 ligands macrophage inflammatory protein 2 (MIP-2), CXCL1 and CXCL8 are indicated to protect hippocampal neurons against beta-amyloid (1–42) induced death [31]. It has been reported that CXCR2 antagonist SB225002 significantly attenuated microglial activation and blood brain barrier (BBB) damage, increased myelination, and reduced astrogliosis in the white matter [32]. As a result, we considered that SB225002 could pass through the BBB. Our experiments showed that ASI boosted hippocampal CXCL1 and CXCR2 expression at both mRNA and protein levels. In the presence of CXCR2 inhibitor, the effect of ASI on the protein expression of DCX, GFAP and NeuN could be abrogated more or less. Therefore, the enhanced CXCL1/CXCR2 signaling transduction at least partly led to the promotive effects of ASI on adult neurogenesis in the hippocampal DGs of mice.



One limitation of the present study is that we did not evaluate the characteristics of all types of newborn cells to conclusively ascertain the early markers for neuronal lineage. Moreover, it remains to be determined about how the actions of ASI regulated the adult neurogenesis through CXCL1/CXCR2 signaling transduction. There was another neurogenesis related gene Neurog 1 showed a significant change in expression between the treated and control (Figure 5D) groups, but due to its minimal change, we would like invest it in the future.



Our results indicated that ASI modulated the homeostasis of the CXCL1/CXCR2 system, which might be responsible for the increased neurogenesis in the hippocampal DGs of mice. Neurogenesis of the adult brain is a very interesting phenomenon. Many studies over the last 20 years have aimed to decipher the role of the phenomenon in the brain [33]. With so many functions ascribed to the adult brain neurogenesis, ASI may have a beneficial effect on the recovery of brain dysfunction.




4. Materials and Methods


4.1. Animal and Drug Administration


Male C57BL/6 mice (18–22 g, 6 weeks old) were provided by the Laboratory Animal Center of Shanghai University of Traditional Chinese Medicine (SHUTCM, Shanghai, China). The mice were housed under a 12 h light/12 h dark cycle at room temperature (25 ± 1 °C) and fed with food and water ad libitum. All experiments on animals were performed according to the protocol approved by Animal Care and Use Committee of SHUTCM and all animals received humane care (Ethical approval no. SZY201607003). Half of the mice were injected intraperitoneally (i.p.) with ASI (25 mg/kg, 40% 1,2-Propanediol + 1% Polyethylene glycol + 5% Ethanol in phosphate buffer saline solution, i.p.) for two weeks, while the other half of mice served as the control and were administered with solvent. Among the animals, eight mice (four in control group and four in ASI group) used for IHC analysis were additionally treated with 5-bromo-2′-deoxyuridine (BrdU, Sigma Aldrich, St. Lpuis, MO, USA, cat#B5002,) to label endogenous proliferating cells. The BrdU treated mice were injected intraperitoneally with BrdU (50 mg/kg) once every two days for two weeks, and were sacrificed 18 h following the last BrdU injection. To evaluate the influence of CXCR2 inhibitor on the promotive effect of ASI, a potent and selective antagonist of CXCR2 (SB225002, Selleck, Houston, TX, USA) was used (4 mg/kg) together with ASI for two weeks. At last, the mice after drug treatment were sacrificed and their hippocampi were dissected, snap frozen in liquid nitrogen and stored at −80 °C until analysis.




4.2. Immunohistochemistry


For the histological analysis, animals were anesthetized with 2% pentobarbital sodium and perfused transcardially with 0.1 M phosphate buffer (PBS, pH 7.4) followed by 4% paraformaldehyde. The brains were dissected and fixed in the same fixative overnight. Brain tissues were dehydrated by infiltration with 10% and 30% sucrose, respectively, for 24 h at 4 °C. Then, they were serially sectioned into 20 µm coronal slices containing the dentate gyrus of hippocampus from Bregma −1.00 to −2.92 mm according to the mouse brain atlas [34]. For each mouse, there were ninety-six slices, sixteen of which, with an interval of 120 µm, were chosen for immunohistochemistry analysis. The final total positive cell numbers in each mouse were calculated as six-fold the sum of that in the sixteen slices.



To examine the cell proliferation and differentiation, double immunofluorescence staining for BrdU and DCX/GFAP/NeuN was performed. The free-floating sections were washed with PBS, immersed in 10% donkey serum and 0.3% Triton X-100 in 0.1 M PBS for 1 h, and incubated with rabbit anti-DCX antibody (1:400; v/v, Santa Cruz Biotechnology, Santa Cruz, CA, USA, cat#4604)/mouse anti-GFAP antibody (1:400; Santa Cruz Biotechnology, cat#3670)/rabbit anti-NeuN antibody (1:400; Santa Cruz Biotechnology, cat#12943) at 4 °C overnight. The sections were then incubated with Alexa-labeled donkey anti-rabbit or anti-mouse antibody at room temperature for 1 h. For BrdU immunostaining, the sections were incubated in 2N HCl for 30 min at 37 °C to denature DNA, and neutralized in 0.1 M borate buffer (pH 8.4) for 10 min. After being washed with PBS, the sections were incubated with 0.1% trypsin for 5 min at 37 °C followed by 10% donkey serum and 0.3% Triton X-100 in 0.1 M PBS. Thereafter, the sections were incubated with rat anti-BrdU antibody (1:150; Bio-Rad, Hercules, CA, USA, cat#OBT0030G) at 4 °C overnight, then washed with PBS and incubated with Alexa-labeled donkey anti-rat antibody at room temperature for 1 h. Finally, all sections were washed and mounted on slides using gold anti-fade reagent with DAPI (Life Technologies, Gaithersburg, MD, USA, cat#P36935). The fluorescent pictures were taken with the confocal microscope system (FV10i Fluo view, Olympus, Japan).




4.3. RT2 Profiler PCR Array Analysis


Mouse Neurogenesis RT2 Profiler PCR arrays were carried out on 384-well plates containing primers for 84 pathway/disease/function genes related with neurogenesis, 5 house keeping genes, 1 genomic DNA contamination control, 3 reverse transcription quality controls and 3 PCR reaction quality controls. Total RNA was extracted from hippocampus using RNasy® Mini Kit (Qiagen, Duesseldorf, Germany, cat#74104) and reverse transcribed into cDNA using RT2 First Strand kit (Qiagen, cat#330401). cDNA was mixed with RT2 SYBR Green/ROX PCR MasterMix (Qiagen, cat#330521). The mixture was subsequently added into each well of the 384-well plates (Qiagen, cat#PAMM-404Z) and quantitative PCR was performed. Data was analyzed using 2^(−CT) method.




4.4. Real-Time PCR


To confirm the immunohistochemistry and PCR arrays’ results, total RNAs from the hippocampi of mice were extracted using Trizol according to the manufacturer’s instructions (Life Technologies, Gaithersburg, MD, USA). The RNAs were then reversely transcribed into cDNA with Revert Aid First Strand cDNA Synthesis kit (Fermentas, Burlington, ON, Canada). The synthesized cDNA was used as templates for quantitative real-time PCR with Universal SYBR Green/ROX qPCR Master Mix (Roche, Basel, Switzerland). Primers used are listed in Table 2.




4.5. Western Blotting Analysis


To examine the effect of ASI on the expression of proteins, samples from hippocampi were homogenized, sonicated, and subjected to Western blotting analysis. Twenty micrograms of proteins from each sample were separated on 10–15% SDS-PAGE. After being transferred onto PVDF membranes, the proteins were incubated with respective primary antibodies against DCX (1:1000, v/v), GFAP (1:1000, v/v), NeuN (1:1000, v/v), CXCR2 (1:1000; v/v, Abcam cat#14935) horseradish peroxidase-conjugated secondary antibodies sequentially as described previously [21]. The protein bands were visualized by an ECL-prime kit and quantified with ImageJ 1.46r software (NIH, Bethesda, MD, USA).




4.6. ELISA Analysis


To detect the effect of ASI on CXCL1, concentrations of mouse chemokine in serum and hippocampi were measured using a CXCL1-specific ELISA kit (Boster Biological Technology, Wuhan, China), following the manufacturer’s instructions.




4.7. Statistical Analysis


All data are presented as mean ± SD. The difference of measurement data was evaluated by unpaired t-test and one-way ANOVA with Tukey multiple comparison test; the difference of count data was evaluated by Kruskal–Wallis test. SPSS 18.0 (SPSS Inc., Chicago, IL, USA) was used for analysis. The value of p < 0.05 was regarded as statistically significant.





5. Conclusions


We have demonstrated that that ASI promoted adult neurogenesis in hippocampal dentate gyrus of mouse, which was mediated by regulating the signaling transduction through the CXCL1/CXCR2 system. Further studies of the effect of ASI on neurogenesis-related brain function or behavior are needed in order to replicate our observations and to extend the evidence on the effect of therapy on CXCL1/CXCR2 system. Therefore, ASI may be a potential therapeutic drug for the recovery of brain dysfunction.
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Figure 1. ASI (25 mg/kg) increased the total number of proliferative cells (BrdU+), pre-mature neurons (DCX+) and early proliferative cells (BrdU+/DCX+). (A–I) Confocal images of BrdU (red) and DCX (green) immunostaining: (A–C) control group; (D–F) ASI group; and (G–I) enlarged images of the cells from ASI group. (A–F) Scale bar = 100 μm. (G–I) Scale bar = 2 μm. (J–L) Quantification of BrdU+, DCX+ and BrdU+/DCX+ immunopositive cells in two groups (n = 4/group). (M) Western blotting analysis of DCX in hippocampus. (N) Gray intensity analysis of DCX in hippocampus (n = 8/group). * p < 0.05. The data are presented as mean ± SD. 
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Figure 2. ASI (25 mg/kg) increased the total number of proliferative radial glia-like cells (BrdU+/GFAP+). (A–I) Confocal images of BrdU (red) and GFAP (green) immunostaining: (A–C) Control group; (D–F) ASI group; and (G–I) enlarged images of the cells from ASI group. (A–F) Scale bar = 100 μm. (G–I) Scale bar = 2 μm. (J) Quantification of BrdU+/GFAP+ double immunopositive cells in two groups (n = 4/group). (K) Western blotting analysis of GFAP in hippocampus. (L) Gray intensity analysis of GFAP in hippocampus (n = 8/group). * p < 0.05. The data are presented as mean ± SD. 
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Figure 3. ASI (25 mg/kg) increased the total number of newly generated neurons (BrdU+/NeuN+). (A–I) Confocal images of BrdU (red) and NeuN (green) immunostaining: (A–C) Control group; (D–F) ASI group; and (G–I) enlarged images of the cells from ASI group. (A–F) Scale bar = 100 μm. (G–I) Scale bar = 2 μm. (J) Quantification of BrdU+/NeuN+ double immunopositive cells in two groups (n = 4/group). (K) Western blotting analysis of NeuN in hippocampus. (L) Gray intensity analysis of NeuN in hippocampus (n = 8/group). * p < 0.05. The data are presented as mean ± SD. 
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Figure 4. The schematic illustration of the promotive effect of ASI (25 mg/kg) on adult neurogenesis in DGs. 
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Figure 5. The effect of ASI (25 mg/kg) on eighty-four neurogenesis related genes. (A) The heat map provides a graphical representation of fold change between two groups overlaid onto PCRarray plate layout; (B) The scatter plot compares the normalized expression of every gene on the array between two groups by plotting one against another to quickly visualize gene expression changes. The central line indicated unchanged gene expression; (C) The volcano plot displays statistical significance versus fold-change on the y- and x-axes, respectively, enabling identification of genes with significant changes; (D) Verification of mRNA expression levels in mouse hippocampus; n = 6/group. * p < 0.05; ** p < 0.01. The data are presented as mean ± SD. 
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Figure 6. ASI (25 mg/kg) promoted neurogenesis through CXCL1/CXCR2 signaling pathway. (A,B) ASI promoted protein expression of CXCL1 in mouse serum and hippocampus (n = 10/group); (C) ASI enhanced CXCR2 mRNA expression level in mouse hippocampus (n = 6/group); (D) Western blotting analysis of CXCR2 in hippocampus; (E) Gray intensity analysis of CXCR2 in the hippocampus of mice (n = 8/group). * p < 0.05; *** p < 0.001. The data are presented as mean ± SD. 
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Figure 7. CXCR2 inhibitor abrogated the effects of ASI (25 mg/kg) on proliferative cells of adult neurogenesis and newly generated neurons. (A,C,E) CXCR2 inhibitor abolished the effect of ASI on DCX, GFAP and NeuN in the hippocampus of mice. (B,D,F) Gray intensity analysis of DCX, GFAP and NeuN in the hippocampus of mice (n = 5/group). * p < 0.05. The data are presented as mean ± SD. 
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Table 1. The effect of ASI on mRNA expressions of eighty-four neurogenesis related genes.
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	Description
	Symbol
	Fold Change
	p-Value





	Acetylcholinesterase
	Ache
	0.857
	0.408505



	Adenosine A1 receptor
	Adora1
	1.016
	0.958737



	Adenosine A2a receptor
	Adora2a
	1.2858
	0.364259



	Anaplastic lymphoma kinase
	Alk
	0.9632
	0.831172



	Amyloid beta (A4) precursor protein-binding, family B, member 1
	Apbb1
	1.0156
	0.930706



	Apolipoprotein E
	Apoe
	1.0062
	0.874886



	Amyloid beta (A4) precursor protein
	App
	0.9095
	0.20132



	Artemin
	Artn
	1.0458
	0.845847



	Achaete-scute complex homolog 1 (Drosophila)
	Ascl1
	0.808
	0.038118



	B-cell leukemia/lymphoma 2
	Bcl2
	1.0486
	0.632784



	Brain derived neurotrophic factor
	Bdnf
	0.9419
	0.678017



	Bone morphogenetic protein 2
	Bmp2
	0.734
	0.277842



	Bone morphogenetic protein 4
	Bmp4
	1.0426
	0.725701



	Bone morphogenetic protein 8b
	Bmp8b
	0.7345
	0.127788



	Cyclin-dependent kinase 5, regulatory subunit 1 (p35)
	Cdk5r1
	0.9182
	0.33772



	CDK5 regulatory subunit associated protein 2
	Cdk5rap2
	0.7886
	0.173978



	Cholinergic receptor, muscarinic 2, cardiac
	Chrm2
	0.8612
	0.481537



	CAMP responsive element binding protein 1
	Creb1
	1.0151
	0.998111



	Chemokine (C-X-C motif) ligand 1
	Cxcl1
	2.5899
	0.081082



	Doublecortin
	Dcx
	0.8235
	0.012748



	Discs, large homolog 4 (Drosophila)
	Dlg4
	0.9898
	0.847781



	Delta-like 1 (Drosophila)
	Dll1
	0.9084
	0.501594



	Dopamine receptor D2
	Drd2
	1.1828
	0.723812



	Dishevelled 3, dsh homolog (Drosophila)
	Dvl3
	1.0458
	0.480882



	Ephrin B1
	Efnb1
	0.9166
	0.35916



	Epidermal growth factor
	Egf
	0.9504
	0.69603



	E1A binding protein p300
	Ep300
	0.8368
	0.062456



	V-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian)
	Erbb2
	0.8359
	0.236367



	Fibroblast growth factor 2
	Fgf2
	0.8105
	0.055528



	Filamin, alpha
	Flna
	0.8888
	0.349493



	Glial cell line derived neurotrophic factor
	Gdnf
	0.7991
	0.271871



	Glucose phosphate isomerase 1
	Gpi1
	0.946
	0.668135



	Glutamate receptor, ionotropic, NMDA1 (zeta 1)
	Grin1
	0.7829
	0.040383



	Histone deacetylase 4
	Hdac4
	1.0155
	0.813732



	Hairy and enhancer of split 1 (Drosophila)
	Hes1
	0.725
	0.173203



	Hairy/enhancer-of-split related with YRPW motif 1
	Hey1
	1.1153
	0.21879



	Hairy/enhancer-of-split related with YRPW motif 2
	Hey2
	0.8526
	0.251846



	Hairy/enhancer-of-split related with YRPW motif-like
	Heyl
	0.8945
	0.635531



	Interleukin 3
	Il3
	0.88
	0.582914



	Midkine
	Mdk
	0.8764
	0.145008



	Myocyte enhancer factor 2C
	Mef2c
	0.8003
	0.101506



	Myeloid/lymphoid or mixed-lineage leukemia 1
	Kmt2a
	1.0275
	0.997062



	Microtubule-associated protein 2
	Map2
	0.8362
	0.276201



	Necdin
	Ndn
	1.0382
	0.718334



	Norrie disease (pseudoglioma) (human)
	Ndp
	0.9318
	0.657985



	Neurogenic differentiation 1
	Neurod1
	0.8694
	0.344025



	Neurogenin 1
	Neurog1
	0.62
	0.018182



	Neurogenin 2
	Neurog2
	1.2238
	0.468483



	Neurofibromatosis 1
	Nf1
	0.8321
	0.06433



	Noggin
	Nog
	0.875
	0.288031



	Notch gene homolog 1 (Drosophila)
	Notch1
	1.0654
	0.599656



	Notch gene homolog 2 (Drosophila)
	Notch2
	0.9508
	0.77945



	Nuclear receptor subfamily 2, group E, member 3
	Nr2e3
	1.0185
	0.936243



	Neuron-glia-CAM-related cell adhesion molecule
	Nrcam
	0.9158
	0.460346



	Neuregulin 1
	Nrg1
	0.9564
	0.765114



	Neuropilin 1
	Nrp1
	0.835
	0.406853



	Neuropilin 2
	Nrp2
	0.9089
	0.406554



	Neurotrophin 3
	Ntf3
	0.831
	0.299471



	Netrin 1
	Ntn1
	0.9076
	0.44445



	Odd Oz/ten-m homolog 1 (Drosophila)
	Tenm1
	0.9365
	0.665725



	Oligodendrocyte transcription factor 2
	Olig2
	1.0327
	0.853541



	Platelet-activating factor acetylhydrolase, isoform 1b, subunit 1
	Pafah1b1
	0.8419
	0.110867



	Par-3 (partitioning defective 3) homolog (C. elegans)
	Pard3
	0.976
	0.878636



	Paired box gene 3
	Pax3
	1.0185
	0.936243



	Paired box gene 5
	Pax5
	0.6895
	0.195764



	Paired box gene 6
	Pax6
	0.7163
	0.002868



	POU domain, class 3, transcription factor 3
	Pou3f3
	0.8996
	0.542927



	POU domain, class 4, transcription factor 1
	Pou4f1
	0.7709
	0.167186



	Pleiotrophin
	Ptn
	0.7296
	0.009374



	RAS-related C3 botulinum substrate 1
	Rac1
	0.9743
	0.778785



	Roundabout homolog 1 (Drosophila)
	Robo1
	0.8688
	0.092542



	Reticulon 4
	Rtn4
	1.0437
	0.826015



	S100 calcium binding protein A6 (calcyclin)
	S100a6
	0.9265
	0.466286



	S100 protein, beta polypeptide, neural
	S100b
	0.9084
	0.453236



	Sonic hedgehog
	Shh
	0.8914
	0.445715



	Slit homolog 2 (Drosophila)
	Slit2
	1.0868
	0.636415



	Superoxide dismutase 1, soluble
	Sod1
	0.9206
	0.228334



	SRY-box containing gene 2
	Sox2
	0.8523
	0.274519



	SRY-box containing gene 3
	Sox3
	0.8288
	0.392865



	Signal transducer and activator of transcription 3
	Stat3
	0.9089
	0.366775



	Transforming growth factor, beta 1
	Tgfb1
	0.9192
	0.351884



	Tyrosine hydroxylase
	Th
	1.2009
	0.452233



	Tenascin R
	Tnr
	0.8102
	0.04399



	Vascular endothelial growth factor A
	Vegfa
	1.107
	0.320206







The red number means p < 0.05.
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Table 2. Sequences of primers for quantitative PCR.
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	Gene
	Forward Primer
	Reverse Primer





	Ascl1
	GTCACAAGTCAGCGGCCAAGCA
	TTCTTGTTGGCCGCGCCGTT



	CXCL1
	GCCAATGAGCTGCGCTGTCAGT
	AAGGCAAGCCTCGCGACCATTC



	CXCR2
	ATGCTGTCCCATGCCACTCAGAGA
	CCATTTACTTTAGATGCAGCCCAGACA



	Dcx
	CATCTAGAAATATGAGAGGGTCACGGATG
	TCTTCCAGTTCATCCATGCTTCCAAT



	Neurog1
	CCTCTCCGGGGCATCGAATGTT
	TGAGCTTGGTGTCGTCGGGGAA



	GAPDH
	ATGTGTCCGTCGTGGATCTGA
	ATGCCTGCTTCACCACCTTCT



	Grin1
	CAAGCCCAACGCCATACAGATGG
	AGCAACGTCTCCAGGCGCTTCT



	Pax6
	CCAGGGCAATCGGAGGGAGTAA
	CGCCCATCTGTTGCTTTTCGCTA



	Ptn
	GCAACGTAGAAAATTTGCAGCTGCCTTC
	TCTCTGAGTCTTCATGGTCTGTTTGCAC



	Tnr
	AGGTGACTACAGAAAGGGCTCAGAGACA
	GCTCAGCAGTTCCTGCAGTACCTGG
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