Supplementary Information

Microbial Synthesis of Non-Natural Anthraquinone Glucosides Displaying Superior Antiproliferative Properties

Trang Thi Huyen Nguyen ^{1,†}, Ramesh Prasad Pandey ^{1,2,†}, Prakash Parajuli ¹, Jang Mi Han ¹, Hye Jin Jung ^{1,2}, Yong Il Park ³ and Jae Kyung Sohng ^{1,2,*}

- ¹ Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; nguyenhuyentrang0512@gmail.com (T.T.H.N.); ramesh.pandey25@gmail.com (R.P.P.); parajuli1985@gmail.com (P.P.); gkswkdal200@naver.com (J.M.H.); poka96@sunmoon.ac.kr (H.J.J.)
- ² Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea
- ³ Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea; yongil382@catholic.ac.kr
- * Correspondence: sohng@sunmoon.ac.kr; Tel: +82-(41)-530-2246; Fax: +82-(41)-530-8229
- + These authors contributed equally to this work.

Figure S1. Comparison of glucose concentration based on the recombinant strain in 48 h incubation. Maximum conversion of anthraquinone to respective anthraquinone glycosides were achieved while supplementing 4% additional glucose in the medium. A) Alizarin, B) Anthraflavic acid, C) 2-amino 3- hydroxyanthraquinone. S stands for substrate peak while P stands for product

Figure S2. ¹H NMR of alizarin

Figure S3. ¹³C NMR of alizarin

Figure S5. ¹³C NMR of alizarin-2-O- β -D-glucoside

Figure S6. HSQC correlation of alizarin 2-O- β -D-glucoside

Figure S7. HMBC correlation of alizarin $2-O-\beta$ -D-glucoside