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Abstract: Herein we present the methodology for obtaining glycosyltransferase inhibitors, analogues
of natural enzyme substrates of donor-type: UDP-glucose and UDP-galactose. The synthesis
concerned glycoconjugates, nucleoside analogues containing an acyclic ribose mimetic linked to a
uracil moiety in their structure. The biological activity of the synthesised compounds was determined
on the basis of their ability to inhibit the model enzyme action of β-1,4-galactosyltransferase from
bovine milk. The obtained results allowed to expand and supplement the existing library of synthetic
compounds that are able to regulate the biological activity of enzymes from the GT class.

Keywords: glycosyltransferases; glycosyltransferase inhibitors; glycoconjugates; acyclic uridine
derivatives; thioglycosides

1. Introduction

Glycosyltransferases (GTs), a superfamily of enzymes, are involved in synthesising the
carbohydrate moieties of glycoproteins, glycolipids, and glycosaminoglycans, which are involved in
many important biological functions. These glycoconjugates have various specific roles in cell growth
and cell–cell interactions [1], cell adhesion including fertilisation [2,3], modulation of growth factor
receptors [4], immune defence [5,6], inflammation [7], host–pathogen interactions [8–10], and both viral
and parasitic infections [9]. The structures of oligosaccharides are significantly changed during such
processes as cellular development, differentiation, and tumorigenesis [11–13], and in many disease
states [14,15]. Specific glycosyltransferases synthesize oligosaccharides by the sequential transfer of
the monosaccharide moiety of an activated sugar donor to an acceptor molecule. One of the most
extensively studied and characterised glycosyltransferase is β-1,4-galactosyltransferase I (β4GalT).
This enzyme transfers D-galactose moiety from a donor molecule to a hydroxyl group of a specific
acceptor molecule which can be an oligosaccharide, a protein or a lipid [16,17]. All of these enzymes
use uridine 5′-diphospho-α-D-galactose (UDP-Gal) as the donor, and many of these enzymes require
a metal ion cofactor, generally a Mn2+ ion, for activity [18,19]. The catalytic domain of the enzyme
has two flexible loops: a small loop and a long loop. The long flexible loop contains the primary
metal binding site at its terminal hinge region. Both flexible loops undergo a notable conformational
change from an open to a closed conformation upon binding of sugar–nucleotide and metal ion.
The enzyme active site is created by an ordered binding of sugar–nucleotide and metal ion, followed by
a conformational change that creates the acceptor-binding site. The reaction catalysed by GTs follows a
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kinetic mechanism in which the sugar nucleotide and metal ion bind to the enzyme active site first,
followed by the acceptor [16].

The enzyme activity can be regulated by sugar donor analogues in which a nonionic linker that
replaces the pyrophosphate moiety is capable of coordinating a metal ion present in the active site [7].
Small molecule compounds acting as selective glycosyltransferase inhibitors may provide potent drugs
by blocking or preventing the synthesis of complex glycoconjugates and pathologies they cause [20].

UDP-sugar analogues (sugar donor analogues) design is based on modifications of one of the three
building blocks of these molecules: the nucleoside part, the carbohydrate moiety, or the diphosphate
connection [21–25]. The pyrophosphate bridge of the sugar donor molecule binds to a bivalent metal
ion (Mn2+ or Mg2+) present in the active site of the enzyme therefore several analogues of UDP-sugar
substrates with modifications of the diphosphate moiety have been researched and described [26,27].
However, due to anionic character of such compounds, their ability to efficiently penetrate the cells
phospholipid bilayer is limited [12]. Numerous attempts to solve this problem have included synthesis
of neutral glycosyltransferase inhibitors modified by monosaccharide moieties [28,29], tartaric or
malonic acid derivatives [30], pyridine and/or triazole [31], amino acids [32,33], pyridine connected to
succinic acid via amide bond [34], or thiophosphoester as a surrogate of the pyrophosphate part of the
sugar donor [35,36].

Taking into account that the acceptor binding site is created by a conformational change after
ordered binding of the sugar nucleotide and metal ion in the active site of the enzyme, in our approach
to design inhibitors, we focus on the synthesis of the nucleoside part of the inhibitor strongly bonded
by a flexible loop and weakly bonded with a metal ion, so as the creation of the catalytic enzyme part
will be difficult.

Accepting this assumption, a series of UDP-Gal donor analogues was designed. The designed
inhibitors contain components of natural glycosyltransferase donors in their structure: monosaccharide
linked through a linker to the acyclic derivative of uridine (Figure 1).
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2. Results and Discussion

The enzyme β-(1,4)-galactosyltransferase (β4GalT) from bovine milk was selected as the subject
of the study, which in the acceptor reaction with the glycosyl donor of α-configuration (uridine
diphosphate galactose, UDP-Gal), carries the sugar molecule to form a β-(1,4)-glycosidic bond [20].
Based on literature studies, the following assumptions were made to design the inhibitor structures
shown in Figure 1: the sugar unit should contain an amino terminal aglycone that will allow the
amide linkage to acyclic nucleobase derivatives containing the terminal carboxyl group. Relevant
uracil as a nucleic base is a key element of the inhibitor because of its strong affinity for the active
enzyme site. The designed inhibitors are S-glycoside derivatives of such monosaccharides as D-glucose
and D-galactose, in which the glycosidic bond has an α-configuration as in natural GTs substrates.
S-Glycosides were selected because the S-glycosidic bond is well-tolerated by most biological systems
and is more stable in hydrolysis reactions catalysed by acids or glycosylhydrolases [37–39] compared
to O-glycosides. The design of a multistep synthesis of inhibitors is shown in Scheme 1.
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Scheme 1. The general idea of GT inhibitors synthesis.

The first step leading to obtaining the assumed glycoconjugate structures is the synthesis of the
1-thiosugar with the α-configuration, which is converted into the 1-thioglycoside by a reaction with
the corresponding nitropyridine derivative, followed by a reduction of the nitro group to the amino
group. The next stage is the synthesis of acyclic derivatives of uridine containing a carboxyl group in
the terminal position. The final glycoconjugates are obtained by condensing the intermediates to form
an amide bond and removing protecting groups.

While the synthesis of 1-β thiosugars is relatively simple to carry out and leads to the desired
compounds at a high yield, the synthesis of analogues of the α-configuration poses many difficulties.
However numerous reports for the α-glycosylthiol derivatives synthesis have appeared in the
literature [40]. Although most of the reaction conditions described suffer from several limitations,
including formation of mixture of isomers, multiple reaction and/or purification steps, long reaction
time, low yield, use of hazardous gases (e.g., H2S), use of expensive reagents (e.g., (TMS)2S), necessity
of use of appropriately functionalised substrates, etc. On the basis of literature studies, a method for
transformation of alcohols to thiols using the Lawesson’s reagent was selected [41]. According to the
procedure described by Bernardes et al., tetra-O-benzyl protected D-glucose or D-galactose was reacted
with a 1.2 molar equivalent of the Lawesson reagent in 1,4-dioxane under argon (Scheme 2, procedure
A). [42]. However, due to the low yields of the obtained 1-thioglucose 3 (46%) and 1-thiogalactose 4
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(26%), as well as a low stereoselectivity of the reaction and difficulties in the separation of anomers,
further attempts to obtain 1-thiosugars with α-configuration were made.Molecules 2018, 23, x 4 of 26 

 

 

Scheme 2. Synthesis of 1-thiosugars and the corresponding 1-thioglycosides. 

In this research the method using N-methyl thiolcarbamates for the synthesis of glycosyl thiols 

was applied (Scheme 2) [43]. Corresponding glycosylthiols are easy to obtain by alcoholysis and can 

be used for the preparation of heteroaryl 1-thioglycosides. Among the numerous methods of 

synthesising 1-thioglycosides described in the literature [40], for the synthesis of (5-nitro-2-pyridyl) 

1-thioglycosides, the procedure of aromatic substitution of nucleophilic halogen in negatively 

substituted aryl derivatives [44] was used. Treatment of the 2,3,4,6-tetra-O-benzyl-1-thio-D-gluco- or 

2,3,4,6-tetra-O-benzyl-1-thio-D-galactopyranose with 2-chloro-5-nitropyridine gives corresponding 

heteroaryl thioglycosides. The key step in the substitution of the chlorine atom in the 2-chloro-5-

nitropyridine molecule was carried out in the field of ultrasound. After purification by column 

chromatography on silica gel (5-nitro-2-pyridyl) 2,3,4,6-tetra-O-benzyl-1-thio-D-glucopyranoside 5 

(79% yield) or (5-nitro-2-pyridyl) 2,3,4,6-tetra-O-benzyl-1-thio-D-galactopyranoside 6 (77% yield) 

were obtained as mixtures, in which the α-anomer was the main product. 

Because a mixture of anomeric 1-thioglycosides was obtained as a result of the described method 

using N-methyl thiolcarbamates in the next attempt to synthesise α-thioglycosides the ring opening 

reaction of 1,6-anhydrosugar with thiol catalysed by Lewis acids was applied [45]. The reactions of 

2-mercapto-5-nitropyridine with per-O-benzyl-1,6-anhydroglucose 9 or per-O-benzyl-1,6-

anhydrogalactose 10 were carried out in the presence of BF3 Et2O under an inert gas atmosphere 

(Scheme 3, procedure I). The desired compounds were obtained in the form of optically pure α-

anomers, but with relatively low yields (36% for the D-glucose derivative 13 and 12% for the D-

galactose derivative 14). The undoubted advantage of this method is the creation of products with 

only the α configuration. Another variant of this method was the synthesis of α- thiosugar in the 

reaction of (TMS)2S with 1,6-anhydrosugar derivatives, in the presence of a Lewis acid, such as 

TMSOTf (Scheme 3, procedure G) [46,47]. The obtained thiosugars 11 and 12 in the reaction of 

aromatic nucleophilic substitution with 2-chloro-5-nitropyridine led to (5-nitro-2-pyridyl)1-

thiogluco- (13) or (5-nitro-2-pyridyl)1-thiogalactopyranoside (14) in good yields (Scheme 3, 

procedure H, Table 1). 

Scheme 2. Synthesis of 1-thiosugars and the corresponding 1-thioglycosides.

In this research the method using N-methyl thiolcarbamates for the synthesis of glycosyl
thiols was applied (Scheme 2) [43]. Corresponding glycosylthiols are easy to obtain by
alcoholysis and can be used for the preparation of heteroaryl 1-thioglycosides. Among the
numerous methods of synthesising 1-thioglycosides described in the literature [40], for the
synthesis of (5-nitro-2-pyridyl) 1-thioglycosides, the procedure of aromatic substitution of
nucleophilic halogen in negatively substituted aryl derivatives [44] was used. Treatment
of the 2,3,4,6-tetra-O-benzyl-1-thio-D-gluco- or 2,3,4,6-tetra-O-benzyl-1-thio-D-galactopyranose
with 2-chloro-5-nitropyridine gives corresponding heteroaryl thioglycosides. The key step in
the substitution of the chlorine atom in the 2-chloro-5-nitropyridine molecule was carried
out in the field of ultrasound. After purification by column chromatography on silica gel
(5-nitro-2-pyridyl) 2,3,4,6-tetra-O-benzyl-1-thio-D-glucopyranoside 5 (79% yield) or (5-nitro-2-pyridyl)
2,3,4,6-tetra-O-benzyl-1-thio-D-galactopyranoside 6 (77% yield) were obtained as mixtures, in which
the α-anomer was the main product.

Because a mixture of anomeric 1-thioglycosides was obtained as a result of the described
method using N-methyl thiolcarbamates in the next attempt to synthesise α-thioglycosides
the ring opening reaction of 1,6-anhydrosugar with thiol catalysed by Lewis acids was
applied [45]. The reactions of 2-mercapto-5-nitropyridine with per-O-benzyl-1,6-anhydroglucose
9 or per-O-benzyl-1,6-anhydrogalactose 10 were carried out in the presence of BF3 Et2O under an
inert gas atmosphere (Scheme 3, procedure I). The desired compounds were obtained in the form of
optically pure α-anomers, but with relatively low yields (36% for the D-glucose derivative 13 and 12%
for the D-galactose derivative 14). The undoubted advantage of this method is the creation of products
with only the α configuration. Another variant of this method was the synthesis of α- thiosugar in
the reaction of (TMS)2S with 1,6-anhydrosugar derivatives, in the presence of a Lewis acid, such as
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TMSOTf (Scheme 3, procedure G) [46,47]. The obtained thiosugars 11 and 12 in the reaction of aromatic
nucleophilic substitution with 2-chloro-5-nitropyridine led to (5-nitro-2-pyridyl)1-thiogluco- (13) or
(5-nitro-2-pyridyl)1-thiogalactopyranoside (14) in good yields (Scheme 3, procedure H, Table 1).Molecules 2018, 23, x 5 of 26 
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Table 1. Preparation of compounds 3–14.

Entry Substrate Product Procedure Yield [%] α:β

1 1 3 A 46 1:2
2 2 4 A 26 5:1
3 1b 5 E’ 79 4:1
4 2b 6 E’ 77 1.4:1
5 9 13 I 36 only α

6 10 14 I 12 only α

7 9 11 G 98 only α

8 10 12 G 94 only α

9 11 13 H 87 only α

10 12 14 H 81 only α

In the final step of the sugar derivatives synthesis the nitro group in aglycon of 1-thioglycosides
was reduced to the amino group. After the comparison of conventional reduction procedures of
(5-nitro-2-pyridyl) 1-thioglycosides, the method that uses iron dust and acetic acid in the THF-methanol
10:1 v/v solvent mixture, carried out in the field of ultrasound, proved to be the most effective [48,49].
The crude products of the nitro group reduction in α-thioglycosides 5, 6, 13, and 14, as well as in their
acetylated analogues 15 and 16 with β-configuration at the anomeric centre were purified by column
chromatography to give (5-amino-2-pyridyl) 1-thioglycosides 17–22 in good yields (Scheme 1).

In the next step of these studies, a synthesis of carboxylic group-containing uridine acyclic
derivatives, intermediates in the construction of final glycoconjugates was carried out. The structure
and corresponding procedures for the synthesis of acyclic uridine derivatives are shown in Scheme 4.



Molecules 2018, 23, 2017 6 of 27
Molecules 2018, 23, x 6 of 26 

 

 

Scheme 4. Synthesis of acyclic uridine derivatives. 

The acyclic derivative of uracil, 3-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) propanoic acid 24 

(Scheme 4) was obtained from 3-(2,4-dioxo-3,4-ethyl dihydropyrimidine-1(2H)-yl) propionate 23 by 

hydrolysis with 5M HCl at an elevated temperature [50]. Next, [(2,4-2-[(2,4-dioxo-3,4-

dihydropyrimidin-1-(2H)-yl) methoxy]acetic acid 27 and 2-[(2,4-dioxo-3,4)-dihydropyrimidine-1-

(2H)-yl) methoxy]propanoic acid 28 were obtained. The substrates for their preparation, 1-[(2-

hydroxyethoxy)methyl]pyrimidine-2,4 (1H,3H)-dione 25 and 1-[(2-

hydroxypropoxy)methyl]pyrimidine-2,4(1H,3H)-dione 26, were synthesised according procedure 

found in the literature using 1,3-dioxolane or 1,3-dioxane [51]. For the oxidation of compounds 25 

and 26, the TEMPO/BAIB oxidation system has been implemented to obtain the desired products 

[52,53]. This oxidation system proved to be able to give the corresponding carboxylic derivatives 27 

and 28 in good yields. The next obtained compound was 2-hydroxyethyl 3-(2,4-dioxo-3,4-

dihydropyrimidin-1(2H)-yl)propanoate 29 [54], which was subjected to the oxidation of the terminal 

hydroxy group by a reaction with the TEMPO/BAIB system in a MeCN:H2O solvent mixture in 

analogy to the procedure for the preparation of compounds 27 and 28. In this case, ([3-(2,4-dioxo-3,4-

dihydropyrimidin-1(2H)-yl)propanoyl] oxyacetic acid 30 was obtained in a moderate yield. 

The last synthesised intermediate for the synthesis of acyclic uridine derivatives containing the 

carboxyl group was dimethyl 2-[(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl]succinate 31 [55]. 

For selective hydrolysis of one of the ester groups, 31 was subjected to the action of a hydrolytic 

enzyme. Ester-protecting groups can be removed with proteases or esterases; however, lipases are 

most often used for this purpose. Methods of enzymatic protection and deprotection of organic 

compounds are very attractive due to the regio- and stereoselectivity [56]. Attempts of selective 

deprotection were carried out with the use of lipase immobilised on a fixed bed of Novozyme®  435. 

The reaction was carried out for 48 h at room temperature using water as the solvent. After isolation 

1) bis(trimethylsilyl)acetamide, 

KI, TMSCl, MeCN, r.t.

2) MeOH, NaHCO3

25: n=1 (53%)
26: n=2 (56%)

N
H

NH

O

O

+
TEMPO, BAIB

MeCN:H2O 1:1
N

NH

O

O

O

O

O

HO

N

NH

O

O

O
HO

O

EtONa

EtOH, reflux

23 (69%)

N

NH

O

ON
H

NH

O

O
O

O

+

O

O

1) 5 M HCl, reflux

2) 4 M NaOH N

NH

O

O

HO

O

24 (92%)

n

n 27: n=1 (78%)
28: n=2 (82%)

n

Et3N

MeCN, 60oC
N
H

NH

O

O

+

O
HO

O

O

N

NH

O

OO

HO O

N

NH

O

OO

HO

O29 (43%) 30 (30%)

TEMPO, BAIB

MeCN:H2O 1:1

NaH

MeOH, 60oC
N
H

NH

O

O

+ Lipase 

H2O

31 (49%)

OCH3

N

NH

O

O

O
O

H3CO

32 (80%)

OCH3

N

NH

O

O

O
O

HOOCH3O
O

H3CO

Scheme 4. Synthesis of acyclic uridine derivatives.

The acyclic derivative of uracil, 3-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) propanoic
acid 24 (Scheme 4) was obtained from 3-(2,4-dioxo-3,4-ethyl dihydropyrimidine-1(2H)-yl)
propionate 23 by hydrolysis with 5M HCl at an elevated temperature [50].
Next, [(2,4-2-[(2,4-dioxo-3,4-dihydropyrimidin-1-(2H)-yl) methoxy]acetic acid 27 and
2-[(2,4-dioxo-3,4)-dihydropyrimidine-1-(2H)-yl) methoxy]propanoic acid 28 were obtained.
The substrates for their preparation, 1-[(2-hydroxyethoxy)methyl]pyrimidine-2,4 (1H,3H)-dione 25
and 1-[(2-hydroxypropoxy)methyl]pyrimidine-2,4(1H,3H)-dione 26, were synthesised according
procedure found in the literature using 1,3-dioxolane or 1,3-dioxane [51]. For the oxidation of
compounds 25 and 26, the TEMPO/BAIB oxidation system has been implemented to obtain the
desired products [52,53]. This oxidation system proved to be able to give the corresponding
carboxylic derivatives 27 and 28 in good yields. The next obtained compound was 2-hydroxyethyl
3-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)propanoate 29 [54], which was subjected to the oxidation
of the terminal hydroxy group by a reaction with the TEMPO/BAIB system in a MeCN:H2O
solvent mixture in analogy to the procedure for the preparation of compounds 27 and 28. In this
case, ([3-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)propanoyl] oxyacetic acid 30 was obtained in a
moderate yield.

The last synthesised intermediate for the synthesis of acyclic uridine derivatives containing
the carboxyl group was dimethyl 2-[(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl]succinate
31 [55]. For selective hydrolysis of one of the ester groups, 31 was subjected to the action
of a hydrolytic enzyme. Ester-protecting groups can be removed with proteases or esterases;
however, lipases are most often used for this purpose. Methods of enzymatic protection and
deprotection of organic compounds are very attractive due to the regio- and stereoselectivity [56].
Attempts of selective deprotection were carried out with the use of lipase immobilised on a
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fixed bed of Novozyme® 435. The reaction was carried out for 48 h at room temperature
using water as the solvent. After isolation and purification of the crude product on silica gel,
pure 3-[(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl]-4-oxobutanoic acid 32 was obtained in
good yield.

Having all the substrates needed for conjugation, the synthesis of glycoconjugates, the potential
donor type inhibitors of the GTs, was performed. A condensation reaction of (5-amino-2-pyridyl)
1-thioglycosides with acyclic uracil derivatives was applied to form an amide bond. Among the many
known methods of chemical formation of the amide bond, it was decided to use the method described
by Kamiński et al. [57] involving the creation of the so-called superactive esters. This method uses
a condensing agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM),
which is obtained in the reaction between 2-chloro-4,6-disubstituted-1,3,5-triazines (CDMT) and
N-methylmorpholine (NMM). This reagent can be generated directly in the reaction mixture. In the
procedure used for the preparation of glycoconjugates, CDMT and NMM were added to the amine
and the acyclic uracil derivative solution in THF. Microwave irradiation allowed for the reduction
of the reaction time to a maximum of 4 hours (Scheme 5, Table 2). In order to compare the effect of
the opposite configuration at the anomeric centre of the sugar on the final activity of glycoconjugates
the synthesis of two glycoconjugates using (5-amino-2-pyridyl) 1-thio-β-D-glycosides 21 and 22 and
acyclic uridine derivative 28 was also performed. As a result of the carried out reactions, the desired
glycoconjugates 33–54 were obtained in moderate and good yields (Table 2).
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Table 2. Yields of glycoconjugates 33–54.

Entry Thioglycoside Uridine Derivative Product Reaction Time [h] Yield [%]

1 17 24 33 2 37
2 18 24 34 2 67
3 17 27 35 2 39
4 18 27 36 2 70
5 17 28 37 3 49
6 18 28 38 2 60
7 17 30 39 2 39
8 18 30 40 2 48
9 17 32 41 3 31
10 18 32 42 2 56
11 19 24 43 4 32
12 20 24 44 3 25
13 19 27 45 3 37
14 20 27 46 3 23
15 19 28 47 3 43
16 20 28 48 3 41
17 19 30 49 2 49
18 20 30 50 3 47
19 19 32 51 3 30
20 20 32 52 3 23
21 21 28 53 1.5 70
22 22 28 54 1.5 65

In the glycoconjugates synthesis stages discussed so far, the protection of hydroxyl groups was
necessary to ensure high regio- and stereoselectivity of individual steps of the synthesis. However,
the obtained glycoconjugates, protected with acetyl or benzyl groups, are poorly soluble in
water; therefore, deprotection was necessary before applying glycoconjugates for biological studies.
The removal of the acetyl groups in glycoconjugates 53 and 54 was carried out according to
Zemplen’s classic reaction conditions by transesterification in methanol with the addition of sodium
methoxide [58] allowing the obtainment of glycoconjugates 64 and 65, respectively. In turn, the benzyl
group, commonly used in sugar chemistry, is stable in a wide range of reaction conditions and is
relatively easy to be removed by catalytic hydrogenation [59,60]. However, due to the presence
of a sulphur atom, which is the poison of the catalysts used in the removal reactions of benzyl
groups [61–63], the deprotection of the obtained glycoconjugates should be carried out using Lewis
acids [64]. For this purpose, anhydrous FeCl3 was applied for the deprotection of compounds 33–52 [65].
The reactions were carried out in an inert gas atmosphere. The crude products were purified on silica
gel to obtain products 55–63 in moderate and good yields (Scheme 5). Spectroscopic data for a new
compounds can be found in Supplementary Materials.

All of the obtained glycoconjugates 33–65 have been tested for their ability to inhibit
β-1,4-galactosyltransferase (β4GalT) from bovine milk. The method was developed to perform a
preliminary screening for large group of potential inhibitors and is based on the observation of the
formation of the product in a reaction catalysed by β4GalT where a D-galactose unit from UDP-Gal
molecule is transferred to (6-esculetinyl) β-D-glucopyranoside (esculine) acting as an acceptor molecule.
Results are then compared to reactions carried out under the same conditions with the addition
of synthesised glycoconjugates. Changes in concentrations of the substrate and the product are
determined using RP-HPLC [66].

To determine the inhibition of the enzymatic reaction compounds were screened at 0.8 mM
concentrations. To check whether the buffer used in the assay has an effect on the obtained results,
several enzymatic reactions with the deprotected glycoconjugates 55–65 were repeated using Hepes
buffer and citrate buffer in the pH 5.4. The results of enzymatic reactions were comparable in both cases.
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However, none of the protected glycoconjugates demonstrated the ability to inhibit β4GalT.
Surprisingly, it was found that the deprotected glycoconjugates 55–63, in which the configuration
at the anomeric centre of the sugar unit was the same as in the natural enzyme substrate UDP-Gal,
were also not able to inhibit the tested bovine milk β-1,4-galactosyltransferase.

Glycoconjugate 64, which is a β-analogue of the inactive glycoconjugate 59, demonstrated the
ability for β4GalT I inhibition with the IC50 value of 0.71 mM, however this value is not low enough
for the glycoconjugate to be a potent inhibitor. As an effective inhibitor, a compound showing an IC50

value less than 30 µM would be considered.
It is significant that D-glucose derivative shows the ability to inhibit the enzyme activity, while

the corresponding glycoconjugate 65, derivative of D-galactose, is inactive. The presented results
indicate that the connection of (5-amino-2-pyridyl) 1-thio-β-D-glucoside with an acyclic uridine
derivative 28 via an amide bond allows for the synthesis of the UDP-sugar analogues that can act
as glycosyltransferase inhibitors. Because of the relatively low activity of the obtained inhibitor we
focused our research on the synthesis of large set of glycoconjugates and not on the mechanism of their
action against β4GalT. It cannot be excluded that compound 64 competes with the rest of the glucose
used in the acceptor. However, to determine the mechanism of their action further studies are needed.

The next step of the research will be a synthesis of a wide range of glycoconjugates of acyclic
derivatives of uridine and 1-thioglycosides with β-configuration at the anomeric center. This will
allow us to study the influence of the structure of acyclic uridine derivatives on the inhibitory activity
of glycoconjugates and design a new class of inhibitors. In case of outstanding results indicating a
high inhibitory activity, the IC50 value determined using the above assay, will be verified by using the
procedure described by J.P. Praly and coworkers [26].

3. Materials and Methods

3.1. General Information

NMR spectra were recorded on Agilent Technologies spectrometer at a frequency of 400 MHz
using NMR solvents were purchased from ACROS Organics (Geel, Belgium). Coupling constants
(J) are in hertz (Hz). Chemical shifts (δ) are expressed in ppm downfield from TMS as an internal
standard when CDCl3, DMSO-d6, or CD3OD were used as a solvents or DSS as an internal standard
when D2O was used as a solvent. 1H-NMR and 13C-NMR signals of some compounds were assigned
with the aid of COSY, HMQC, and HMBC. Microwave irradiation reactions were carried out with
Discover BenchMate (CEM Microwave Technology Ltd., Buckingham, United Kingdom). Optical
rotations were measured on a JASCO P-2000 polarimeter (JASCO International Co. Ltd., Tokyo, Japan)
using a sodium lamp (589.3 nm) at a room temperature. High-resolution mass spectra were obtained
using WATERS LCT Premier XE system (high resolution mass spectrometer with TOF analyser).
Melting point measurements were performed on OptiMelt (MPA 100) (Stanford Research Systems,
Sunnywale, CA, USA). Thin layer chromatography (TLC) reaction controls were performed using
fluorescent silica gel 60 F254 (Merck Millipore, Burlington, MA, USA). TLC plates were visualised
under UV illumination at 254 nm or charring after spraying with 10% sulphuric acid in ethanol.
Crude products were purified using column chromatography performed on Silica Gel 60 (70–230
mesh, Fluka, Bucharest, Romania) developed with CHCl3/MeOH, hexane/EtOAc, or toluene/EtOAc
solvent systems. The chromatographic separations (RP-HPLC) were performed using JASCO LC 2000
apparatus equipped with a fluorescence detector on a reverse phase column (Nucleosil 100 C18, 5 µm,
25 × 0.4 cm; mobile phase: H2O/MeCN 90:10, flow rate 0.8 mL/min.). Fluorescence for substrate and
product was read at 385 nm excitation/540 nm emission. IC50 value for compound 64 was calculated
using the computer program CalcuSyn.

2,3,4,6-Tetra-O-benzyl-D-glucopyranose (1), 2,3,4,6-tetra-O-benzyl-D-galactopyranose (2),
1,6-anhydro-D-glucopyranose (7) and 1,6-anhydro-D-galactopyranose (8) were purchased from
Carbosynth Limited. 2,3,4,6-Tetra-O-benzyl-1-O-[N-methyl thionocarbamoyl]-D-glucopyranose
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(1a), 2,3,4,6-tetra-O-benzyl-1-O-[N-methyl thionocarbamoyl]-D-galactopyranose
(2a), 2,3,4,6-tetra-O-benzyl-1-thio-[N-methyl thiolcarbamoyl]-D-glucopyranose (1b),
2,3,4,6-tetra-O-benzyl-1-thio-[N-methyl thiolcarbamoyl]-D-galactopyranose (2b),
2,3,4,6-tetra-O-benzyl-1-thio-D-glucopyranose (3), 2,3,4,6-tetra-O-benzyl-1-thio-D-galactopyranose
(4), (5-nitro-2-pyridyl) 2,3,4,6-tetra-O-benzyl-1-thio-D-glucopyranoside (5), (5-nitro-2-pyridyl)
2,3,4,6-tetra-O-benzyl-1-thio-D-galactopyranoside (6) [43], 2,3,4-tri-O-benzyl-
1,6-anhydro-β-D-glucopyranose (9), 2,3,4-tri-O-benzyl-1,6-anhydro-β-D-galactopyranose (10) [67],
2,3,4-tri-O-benzyl-1-thio-α-D-glucopyranoside (11), 2,3,4-tri-O-benzyl-1-thio-α-D-galactopyranoside
(12) [47], (5-nitro-2-pyridyl) 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside (15),
(5-nitro-2-pyridyl) 2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (16) [68],
(5-amino-2-pyridyl) 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside (21), (5-amino-2-pyridyl)
2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (22) [34], 3-(2,4-dioxo-3,4-ethyl
dihydropyrimidine-1(2H)-yl) propionate (23), 3-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)
propanoic acid (24) [50], 1-[(2-hydroxyethoxy)methyl]pyrimidine-2,4(1H,3H)-dione
(25), 1-[(2-hydroxypropoxy)methyl]pyrimidine-2,4(1H,3H)-dione (26) [51],
2-hydroxyethyl 3-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)propanoate (29) [54], and
2-[(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl]succinate (31) [55] were prepared
according to the respective published procedures. 1,6-Anhydro-β-D-glucopyranose (7) and
1,6-anhydro-β-D-galactopyranose (8) were purchased as ready-made compounds. All used chemicals
were purchased from Aldrich, Fluka, and ACROS Organics and were used without purification.
Bovine milk β-1,4-galactosyltransferase I was purchased from Sigma-Aldrich. Immobilised lipase
Novozym® 435 was provided by Novozymes A/S, Bagsvaerd, Denmark.

3.2. Chemistry

3.2.1. Synthesis of (5-nitro-2-pyridyl) 2,3,4-tri-O-benzyl-1-thio-α-D-glycopyranosides 13 and 14

Procedure A. To a solution of 7 or 8 (100 mg, 0.23 mmol) in dry CH2Cl2 (5 mL)
2-mercapto-5-nitropyridine (119 mg, 0.76 mmol) and BF3.Et2O (30 µL, 0.23 mmol) were added. The
resulting mixture was heated under reflux for 32–40 h. The reaction progress was monitored on TLC
plate in toluene:AcOEt (4:1 v/v) solvent system. After completion, the reaction mixture was filtered
through a celite pad, filtrate was diluted with CH2Cl2 (10 mL) and washed with saturated NaHCO3

(10 mL) and brine (10 mL), dried with anhydr. MgSO4, filtered, and concentrated under vacuum. The
crude products 13 or 14 were purified by column chromatography.

Procedure B. To a solution of 9 or 10 (466 mg, 1 mmol) in dry acetone (10 mL)
2-chloro-5-nitropyridine (174 mg, 1.1 mmol) and anhydrous K2CO3 (552 mg, 4 mmol) were added.
The resulting mixture was stirred at room temperature. The reaction progress was monitored on TLC
plate in toluene:AcOEt (4:1 v/v) solvent system. The resulting suspension was stirred for 2 h at room
temperature. K2CO3 was filtered off and the filtrate was evaporated. The crude products 13 or 14 were
purified by column chromatography (toluene:AcOEt; gradient 12:1 to 4:1 v/v).

(5-Nitro-2-pyridyl) 2,3,4-tri-O-benzyl-1-thio-α-D-glucopyranoside (13): white solid. Procedure A: (49 mg,
36%). Procedure B: (512 mg, 87%): m.p. of 113–115 ◦C; [α]25

D 77.9 (c 1.0, CHCl3). 1H-NMR (400 MHz,
CDCl3): δ 3.64 (dd, 1H, J = 8.9 Hz, J = 9.8 Hz, H-4), 3.69–3.74 (m, 2H, H-6a, H-6b), 3.81 (dd~t, 1H,
J < 1 Hz, J = 9.2 Hz, H-3), 3.90 (ddd~dt, 1H, J = 3.2 Hz, J = 9.9 Hz, H-5), 3.96 (dd, 1H, J = 5.4 Hz,
J = 9.6 Hz, H-2), 4.69, 4.72 (qAB, 2H, J = 11.4 Hz, CH2Ph), 4.66, 4.89 (qAB, 2H, J = 11.0 Hz, CH2Ph),
4.83, 4.99 (qAB, 2H, J = 10.9 Hz, CH2Ph), 6.67 (d, 1H, J = 5.4 Hz, H-1), 7.25–7.39 (m, 16H, H-Ph, H-3pyr),
8.27 (dd, 1H, J = 2.7 Hz, J = 8.8 Hz, H-4pyr), 9.25 (d, 1H, J = 2.6 Hz, H-6pyr). 13C-NMR (100 MHz, CDCl3):
δ 61.91 (C-6), 72.93, 75.21, 75.71 (CH2Ph), 74.10 (C-5); 76.59 (C-4), 78.99 (C-2), 82.75 (C-3), 83.16 (C-1),
122.79 (C-3pyr), 127.75, 127.95, 127.99, 128.01, 128.03, 128.07, 128.39, 128.43, 128.47, 128.52 (C-Ph), 130.97
(C-4pyr), 137.26, 137.89, 138.38 (C-Ph), 141.70 (C-5pyr), 145.03 (C-6pyr), 165.31 (C-2pyr). HRMS (ESI)
(m/z): [M + Na]+ calcd for C32H32N2NaO7S, 611.1828; found, 611.1804.
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(5-Nitro-2-pyridyl) 2,3,4-tri-O-benzyl-1-thio-α-D-galactopyranoside (14): white solid. Procedure A: (16 mg,
12%). Procedure B: (476 mg, 81%): m.p. of 93–94 ◦C; [α]25

D 43.6 (c 1.0, CHCl3). 1H-NMR (400 MHz,
CDCl3): δ 3.53 (ddd, 1H, J = 5.2 Hz, J = 9.2 Hz, J = 11.6 Hz, H-6a), 3.77 (dd, 1H, J = 2.9 Hz, J = 9.0 Hz,
H-3), 3.84 (m, 1H, H-6b), 3.96 (dd, 1H, J < 1 Hz, J = 2.5 Hz, H-4), 4.03 (ddd, 1H, J = 2.0 Hz, J = 5.2 Hz,
J = 7.1 Hz, H-5), 4.38 (dd, 1H, J = 4.9 Hz, J = 9.0 Hz, H-2), 4.72 (s, 2H, CH2Ph); 4.76, 4.84 (qAB, 2H,
J = 11.8 Hz, CH2Ph), 4.64, 4.91 (qAB, 2H, J = 11.6 Hz, CH2Ph), 6.61 (d, 1H, J = 4.9 Hz, H-1), 7.25–7.38 (m,
16H, H-Ph, H-3pyr), 8.25 (dd, 1H, J = 2.7 Hz, J = 8.8 Hz, H-4pyr), 9.23 (dd, 1H, J = 0.7 Hz, J = 2.7 Hz,
H-6pyr). 13C-NMR (100 MHz, CDCl3): δ 61.26 (C-6); 73.07, 73.99, 74.08 (CH2Ph), 73.70 (C-5), 74.16 (C-4);
76.11 (C-2), 78.86 (C-3), 82.67 (C-1), 122.50 (C-3pyr), 127.64, 127.80, 127.90, 127.93, 128.04, 128.32, 128.39,
128.48, 128.51 (C-Ph), 130.91 (C-4pyr), 137.54, 137.94, 138.21 (C-Ph), 141.57 (C-5pyr), 145.05 (C-6pyr),
165.96 (C-2pyr). HRMS (ESI) (m/z): [M + Na]+ calcd for C32H32N2NaO7S, 611.1828; found, 611.1840.

3.2.2. Synthesis of (5-amino-2-pyridyl) O-benzyl-1-thio-α-D-glycosides 17–20

General procedure: Corresponding (5-nitro-2-pyridyl) 1-thioglycoside 5, 6, 13, or 14 (2.83 mmol)
was dissolved in THF (56 mL). Then AcOH (1.13 mL, 20.0 mmol) and powdered iron (3.17 g,
56.60 mmol) were added. The resulting suspension was sonicated for 1 h in 50◦C and MeOH (28 mL)
was added. After complete consumption of the substrate (1.5 h–2 h) the solids were filtered off and
the filtrate was evaporated. The residue was dissolved in toluene (100 mL), washed with water
(3 × 100 mL) and brine (1 × 50 mL). The organic layer was dried over MgSO4.

(5-Amino-2-pyridyl) 2,3,4,6-tetra-O-benzyl-1-thio-α-D-glucopyranoside (17): The residue was purified by
column chromatography with toluene:EtOAc solvents system (16:1 to 6:1 (v/v)) to give an orange
syrup (1.596 g, 87%): [α]20

D 20.2 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 3.64 (bs, 2H, NH2),
3.57 (dd, 1H, J = 1.8 Hz, J = 10.8 Hz, H-6a), 3.66 (dd~t, 1H, J = 9.4 Hz, H-4), 3.73 (dd, 1H, J = 3.9 Hz,
J = 10.8 Hz, H-6b), 3.86 (dd~t, 1H, J = 9.2 Hz, H-3), 3.94 (dd, 1H, J = 5.3 Hz, J = 9.6 Hz, H-2), 4.23 (dd,
1H, J = 1.9 Hz, J = 3.7 Hz, J = 9.9 Hz, H-5), 4.37, 4.53 (qAB, 2H, J = 12.1 Hz, CH2Ph), 4.63, 4.83 (qAB, 2H,
J = 11.6 Hz, CH2Ph), 4.49, 4.84 (qAB, 2H, J = 11.0 Hz, CH2Ph), 4.78, 4.99 (qAB, 2H, J = 10.9 Hz, CH2Ph),
6.28 (d, 1H, J = 5.3 Hz, H-1), 6.80 (dd, 1H, J = 2.9 Hz, J = 8.4 Hz, H-4pyr), 7.12–7.39 (m, 21H, H-Ph,
H-3pyr), 8.01 (d, 1H, J = 2.9 Hz, H-6pyr). 13C-NMR (100 MHz, CDCl3): δ 68.66 (C-6), 71.89 (C-5), 72.01,
73.27, 75.02, 75.65 (CH2Ph), 77.41 (C-4); 79.36 (C-2), 82.80 (C-3), 84.92 (C-1), 122.85 (C-3pyr), 126.39
(C-4pyr), 127.51, 127.52, 127.60, 127.79, 127.82, 127.99, 128.09, 128.25, 128.32 (C-Ph), 137.62 (C-6pyr),
137.80, 138.06, 138.33, 138.76 (C-Ph), 140.78 (C-5pyr), 144.03 (C-2pyr). HRMS (ESI) (m/z): [M + Na]+

calcd for C39H40N2NaO5S, 671.2556; found, 671.2515.

(5-Amino-2-pyridyl) 2,3,4,6-tetra-O-benzyl-1-thio-α-D-galactopyranoside (18): The residue was purified
by column chromatography with toluene:EtOAc solvents system (16:1 to 6:1 [v/v]) to give an orange
syrup (1.431 g, 78%): [α]26

D 79.1 (c 0.8, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 3.55 (bs, 2H, NH2);
3.46 (dd, 1H, J = 6.1 Hz, J = 9.6 Hz, H-6a), 3.55 (dd, 1H, J = 6.7 Hz, J = 9.6 Hz, H-6b), 3.82 (dd, 1H,
J = 2.9 Hz, J = 9.9 Hz, H-3), 3.98 (dd, 1H, J = 1.1 Hz, J = 2.8 Hz, H-4), 4.29–4.42 (m, 4H, H-2, H-5,
CH2Ph), 4.66, 4.83 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.72, 4.86 (qAB, 2H, J = 11.9 Hz, CH2Ph), 4.57, 4.95
(qAB, 2H, J = 11.6 Hz, CH2Ph), 6.25 (d, 1H, J = 5.4 Hz, H-1), 6.73 (dd, 1H, J = 2.9 Hz, J = 8.4 Hz, H-4pyr),
7.12–7.40 (m, 21H, H-Ph, H-3pyr), 7.97 (dd, 1H, J = 0.5 Hz, J = 2.9 Hz, H-6pyr). 13C-NMR (100 MHz,
CDCl3): δ 68.76 (C-6); 70.86 (C-5), 72.21, 73.16, 73.37, 74.74 (CH2Ph), 75.15 (C-4), 76.22 (C-2), 79.57 (C-3),
85.53 (C-1), 122.81 (C-3pyr), 126.55 (C-4pyr), 127.43, 127.46, 127.47, 127.49, 127.66, 127.88, 128.04, 128.16,
128.20, 128.25, 128.30 (C-Ph), 137.53 (C-6pyr), 138.14, 138.17, 138.68, 138.74 (C-Ph), 140.73 (C-5pyr),
144.27 (C-2pyr). HRMS (ESI) (m/z): [M + Na]+ calcd for C39H40N2NaO5S, 671.2556; found, 671.2498.

(5-Amino-2-pyridyl) 2,3,4-tri-O-benzyl-1-thio-α-D-glucopyranoside (19): The residue was purified by
column chromatography with toluene:EtOAc solvents system (1:1 to 1:4 [v/v]) to give an orange
syrup (1.042 g, 66%): [α]26

D 176.0 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 3.54 (m, 1H, H-4),
3.65 (dd, 1H, J = 4.9 Hz, J = 11.8 Hz, H-6a), 3.72 (bs, 2H, NH2), 3.75 (d, J = 2.4 Hz, 1H, H-6b), 3.84–3.93 (m,
2H, H-2, H-3), 4.17 (ddd, 1H, J = 2.7 Hz, J = 4.8 Hz, J = 9.9 Hz, H-5), 4.64, 4.82 (qAB, 2H, J = 11.6 Hz,
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CH2Ph), 4.63, 4.87 (qAB, 2H, J = 11.0 Hz, CH2Ph), 4.80, 4.98 (qAB, 2H, J = 10.9 Hz, CH2Ph), 6.23 (d,
1H, J = 4.7 Hz, H-1), 6.89 (dd, 1H, J = 2.9 Hz, J = 8.4 Hz, H-4pyr), 7.16 (d, 1H, J = 7.2 Hz, H-3pyr);
7.25–7.40 (m, 15H, H-Ph), 8.02 (d, 1H, J = 2.9 Hz, H-6pyr). 13C-NMR (100 MHz, CDCl3): δ 61.95 (C-6),
72.58 (C-5), 72.16, 75.03, 75.63 (CH2Ph), 77.32 (C-4), 79.49 (C-2), 82.68 (C-3), 84.51 (C-1), 122.86 (C-4pyr),
126.74 (C-3pyr), 127.57, 127.76, 127.78, 127.81, 127.97, 127.98, 128.09, 128.34, 128.36, 128.43 (C-Ph), 137.69,
138.13, 138.67 (C-Ph), 137.69 (C-6pyr), 141.39 (C-5pyr), 143.49 (C-2pyr). HRMS (ESI) (m/z): [M + Na]+

calcd for C32H34N2NaO5S, 581.2086; found, 581.2094.

(5-Amino-2-pyridyl) 2,3,4-tri-O-benzyl-1-thio-α-D-galactopyranoside (20): The residue was purified by
column chromatography with toluene:EtOAc solvents system (4:1 to 1:4 [v/v]) to give an orange syrup
(1.216 g, 77%): [α]26

D 124.2 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 3.48 (dd, 1H, J = 4.1 Hz,
J = 11.6 Hz, H-6a), 3.65 (bs, 2H, NH2), 3.84 (dd, 1H, J = 3.0 Hz, J = 8.8 Hz, H-3), 3.89 (dd, 1H, J = 8.0 Hz,
J = 11.5 Hz, H-6b), 3.92 (dd~t, J = 2.5 Hz, H-4), 4.26–4.35 (m, 2H, H-2, H-5), 4.61, 4.80 (qAB, 2H,
J = 11.7 Hz, CH2Ph), 4.72, 4.82 (qAB, 2H, J = 11.9 Hz, CH2Ph), 4.67, 4.87 (qAB, 2H, J = 11.7 Hz, CH2Ph),
6.11 (d, 1H, J = 4.8 Hz, H-1), 6.87 (dd, 1H, J = 2.6 Hz, J = 8.4 Hz, H-4pyr), 7.17 (d, 1H, J = 8.4 Hz, H-3pyr),
7.26–7.41 (m, 15H, H-Ph), 7.98 (d, 1H, J = 2.6 Hz, H-6pyr). 13C-NMR (100 MHz, CDCl3): δ 61.76 (C-6),
72.52, 73.65, 73.97 (CH2Ph), 72.88 (C-5), 74.85 (C-4), 76.83 (C-2), 78.75 (C-3), 83.85 (C-1), 122.82 (C-3pyr),
126.97 (C-4pyr), 127.61, 127.64, 127.67, 127.82, 127.97, 128.21, 128.30, 128.39 (C-Ph), 137.67 (C-5pyr),
138.02, 138.19, 138.54 (C-Ph), 141.10 (C-6pyr), 143.73 (C-2pyr). HRMS (ESI) (m/z): [M + Na]+ calcd for
C32H34N2NaO5S, 581.2086; found, 581.2095.

3.2.3. Synthesis of Acyclic Uridine Derivatives

General procedure for the synthesis of 2-[(2,4-dioxo-3,4-dihydropyrimydine-1(2H)-yl) methoxy]
acetic acid (27), 2-[(2,4-dioxo-3,4-dihydropyrimydine-1(2H)-yl)methoxy]propanoic acid (28),
and ([3-(2,4-dioxo-3,4-dihydropyrimydin-1(2H)-ylo)propanoil]oxy)acetic acid (30). Corresponding
substrate 25, 26, or 29 (1.70 mmol) was dissolved in MeCN:H2O solvent system (1:1 (v/v)) (20 mL).
TEMPO (106 mg, 0.34 mmol) and BAIB (747 mg, 3.77 mmol) were added. The resulting mixture was
stirred for 120 h at room temperature. After complete consumption of the substrate solution was
evaporated. To the residue Et2O (5 mL) was added, stirred for 5 min and the supernatant was decanted.
The operation was repeated three times. The crude product was crystallised from ethanol.

2-[(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)methoxy]acetic acid (27) white solid (284 mg, 78%): m.p.
179–180 ◦C. 1H-NMR (400 MHz, DMSO): δ 4.14 (s, 2H, CH2COO), 5.14 (s, 2H, CH2N), 5.60 (dd,
1H, J = 7.9 Hz, J = 2.1 Hz, H-5ur); 7.71 (d, 1H, J = 7.9 Hz, H-6ur), 11.30 (bs, 1H, NH), 12.73 (bs, 1H,
OH). 13C-NMR (100 MHz, DMSO): δ 66.11 (CH2O), 76.53 (CH2N), 101.68 (C-5ur), 145.00 (C-6ur),
151.22 (C-2ur), 163.15 (C-4ur), 171.06 (COO). HRMS (ESI) (m/z): [M − H]+ calcd for C7H9N2O5,
201.0511; found, 201.0512.

2-[(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)methoxy]propanoic acid (28) white solid (279 mg, 82%): m.p.
164–166 ◦C. 1H-NMR (400 MHz, DMSO): δ 2.45 (t, 2H, J = 6.2 Hz, CH2COO), 3.68 (t, 2H, J = 6.2 Hz,
CH2O), 5.06 (s, 2H, CH2N), 5.60 (d, 1H, J = 7.9 Hz, H-5ur), 7.68 (d, 1H, J = 7.9 Hz, H-6ur), 11.31 (bs, 1H,
NH). 13C-NMR (100 MHz, DMSO): δ 34.46 (CH2COO), 64.53 (CH2O), 76.22 (CH2N), 101.54 (C-5ur),
144.86 (C-6ur), 151.05 (C-2ur), 163.54 (C-4ur), 172.26 (COO). HRMS (ESI) (m/z): [M − H]+ calcd for
C8H11N2O5, 215.0668; found, 215.0667.

([3-(2,4-Dioxo-3,4-dihydropyrimydin-1(2H)-ylo)propanoil]oxy)acetic acid (30) white solid (123 mg, 30%):
m.p. 176–178 ◦C. 1H-NMR (400 MHz, DMSO): δ 2.78 (t, 2H, J = 6.8 Hz, CH2CO), 3.90 (t, 2H, J = 6.8 Hz,
CH2CO), 4.57 (s, 2H, OCH2CO), 5.51 (dd, 1H, J = 2.0 Hz, J = 7.6 Hz, H-5ur), 7.63 (d, 1H, J = 7.6 Hz,
H-6ur), 11.24 (s, 1H, NH). 13C-NMR (100 MHz, DMSO): δ 32.23 (CH2), 43.89 (CH2N), 60.78 (CH2O),
100.63 (C-5ur), 146.04 (C-6ur), 150.81 (C-2ur), 163.69 (C-4ur), 168.86, 170.35 (COO). HRMS (ESI) (m/z):
[M − H]− calcd for C9H9N2O6, 241.0461; found, 241.0479.
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Synthesis of 3-[(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl]-methoxy-4-oxobutanoic acid (32)

Dimethyl 2-[(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl]succinate (31) (135 mg, 0.50 mmol)
was dissolved in distilled water (5 mL). Immobilised lipase (Novozym® 435) was added. The resulting
suspension was stirred for 48 h at room temperature. After complete consumption of the substrate
the solids were filtered off and the filtrate was evaporated. The residue was dissolved in MeOH
(5 mL), the silica gel was added, solvent was evaporated and purified by column chromatography with
CHCl3:MeOH solvent system (5:1 to 2:1 [v/v]). Product 32 was obtained as white crystals (93 mg, 80%):
m.p. >130 ◦C with decomposition; 1H-NMR (400 MHz, DMSO): δ 2.30 (dd, 1H, J = 5.2 Hz, J = 16.6 Hz,
CHHCOO), 2.40 (dd, 1H, J = 8.6 Hz, J = 16.6 Hz, CHHCOO), 3.03 (m, 1H, CH), 3.53 (s, 3H, CH3),
3.81 (dd, 1H, J = 6.1 Hz, J = 13.7 Hz, CHHN), 3.88 (dd, 1H, J = 8.2 Hz, J = 13.7 Hz, CHHN), 5.53 (d,
1H, J = 7.9 Hz, H-5ur), 7.56 (d, 1H, J = 7.9 Hz, H-6ur), 11.24 (bs, 1H, NH). 13C-NMR (100 MHz, DMSO):
δ 36.97 (CH2COO), 41.71 (CH), 49.12 (CH2N), 51.25 (CH3), 100.49 (C-5ur), 146.05 (C-6ur), 150.87 (C-2ur),
163.65 (C-4ur), 172.32, 173.85 (COOH, COOCH3). HRMS (ESI) (m/z): [M − H]− calcd for C10H11N2O6,
255.0617; found, 255.0622.

3.2.4. Synthesis of Glycoconjugates 33–54

General procedure. The corresponding amine derivative 17–22 (0.25 mmol) and acyclic uracil
derivative 24, 27, 28, 30, or 32 (0.40 mmol) were dissolved in dry THF (6 mL) and MeOH (1 mL).
The CDMT (70 mg, 0.40 mmol) and N-methylmorpholine (55 mg, 0.55 mmol) were added. The resulting
mixture was microwaved in a reactor set at 50 ◦C for 1.5–4 h. The progress of the reaction was monitored
on TLC plate in toluene:AcOEt (1:1) solvent system. After completion, the reaction mixtures were
concentrated, dissolved in CH2Cl2 (50 mL), washed with water (20 mL), saturated NaHCO3 (20 mL),
and with brine (20 mL). The organic layer was dried over MgSO4, the adsorbent was filtered off and
the filtrate was concentrated to give crude products 33–54 which were purified directly by column
chromatography with an appropriate solvent system as indicated.

Glycoconjugate (33) Starting from amine derivative 17 and uracil derivative 24, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 do 25:1 (v/v)) to give thick syrup (75 mg,
37%): [α]25

D 134.5 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.78 (m, 2H, CH2CO), 3.57 (dd, 1H,
J = 1.7 Hz, J = 10.7 Hz, H-6a), 3.67 (dd, 1H, J = 8.8 Hz, J = 10.0 Hz, H-4), 3.72 (dd, 1H, J = 3.8 Hz,
J = 10.9 Hz, H-6b), 3.81 (dd~t, 1H, J = 9.2 Hz, H-3), 3.92–4.01 (m, 3H, H-2, CH2N), 4.13 (ddd, 1H,
J = 2.0 Hz, J = 3.5 Hz, J = 10.1 Hz, H-5), 4.35, 4.51 (qAB, 2H, J = 12.1 Hz, CH2Ph), 4.60, 4.78 (qAB, 2H,
J = 11.3 Hz, CH2Ph), 4.48, 4.83 (qAB, 2H, J = 11.0 Hz, CH2Ph), 4.78, 4.97 (qAB, 2H, J = 10.9 Hz, CH2Ph),
5.42 (d, 1H, J = 7.9 Hz, H-5ur), 6.47 (d, 1H, J = 5.4 Hz, H-1), 7.12–7.34 (m, 22H, H-Ph, H-6ur, H-3pyr),
7.95 (dd, 1H, J = 2.5 Hz, J = 8.7 Hz, H-4pyr), 8.54 (d, 1H, J = 2.5 Hz, H-6pyr), 9.14 (s, 1H, NH), 10.68 (bs,
1H, NH). 13C-NMR (100 MHz, CDCl3): δ 35.48 (CH2CO), 46.10 (CH2N), 68.53 (C-6), 72.38 (C-5), 72.17,
73.21, 75.07, 75.64 (CH2Ph), 77.18 (C-4); 79.10 (C-2), 82.83 (C-3), 83.96 (C-1), 101.67 (C-5ur), 124.14
(C-3pyr), 127.60, 127.67, 127.77, 128.80, 127.82, 127.96, 127.98, 128.29, 128.33, 128.34 (C-Ph, C-4pyr),
132.70 (C-5pyr), 137.59, 137.82, 138.14, 138.59 (C-Ph), 141.47 (C-6pyr), 146.42 (C-6ur), 151.19 (C-2pyr),
151.43 (C-2ur), 164.88 (C-4ur), 169.06 (NHCO). HRMS (ESI) (m/z): [M + Na]+ calcd for C46H46N4NaO8S,
837.2934; found, 837.3016.

Glycoconjugate (34) Starting from amine derivative 18 and uracil derivative 24, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (136 mg, 67%):
[α]23

D 70.3 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.71 (m, 2H, CH2CO), 3.47 (dd, 1H, J = 6.1 Hz,
J = 9.5 Hz, H-6a), 3.54 (dd, 1H, J = 6.7 Hz, J = 9.6 Hz, H-6b), 3.75 (dd, 1H, J = 2.8 Hz, J = 9.9 Hz, H-3),
3.89 (m, 2H, CH2N), 3.96 (m, 1H, H-4), 4.28 (m, 1H, H-5), 4.29, 4.34 (qAB, 2H, J = 11.7 Hz, CH2Ph),
4.40 (dd, 1H, J = 5.4 Hz, J = 9.9 Hz, H-2), 4.64, 4.75 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.72, 4.84 (qAB, 2H,
J = 11.9 Hz, CH2Ph), 4.55, 4.93 (qAB, 2H, J = 11.4 Hz, CH2Ph), 5.34 (d, 1H, J = 7.9 Hz, H-5ur), 6.44 (d,
1H, J = 5.4 Hz, H-1), 7.12–7.39 (m, 22H, H-Ph, H-6ur, H-3pyr), 7.92 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr),
8.50 (d, 1H, J = 2.6 Hz, H-6pyr), 9.10 (s, 1H, NH), 10.75 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ
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46.04 (CH2N), 35.44 (CH2CO), 68.64 (C-6), 71.38 (C-5), 72.34, 73.16, 73.31, 74.79 (CH2Ph), 74.88 (C-4),
75.87 (C-2); 79.66 (C-3); 84.67 (C-1), 101.63 (C-5ur), 124.11 (C-3pyr), 127.47, 127.54, 127.57, 127.64, 127.80,
128.09, 128.19, 128.22, 128.29, 128.31 (C-Ph, C-4pyr), 132.61 (C-5pyr), 137.85, 137.97, 138.50, 138.57 (C-Ph),
141.43 (C-6pyr), 143.46 (C-6ur), 151.42 (C-2pyr), 151.56 (C-2ur), 164.89 (C-4ur), 169.03 (NHCO). HRMS
(ESI) (m/z): [M + Na]+ calcd for C46H46N4NaO8S, 837.2934; found, 837.2966.

Glycoconjugate (35) Starting from amine derivative 17 and uracil derivative 27, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (81 mg,
39%): [α]24

D 122.0 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 3.57 (dd, 1H, J = 1.9 Hz, J = 10.8 Hz,
H-6a), 3.65–3.75 (m, 2H, H-6b, H-4), 3.82 (dd~t, 1H, J = 9.2 Hz, H-3), 3.97 (dd, 1H, J = 5.4 Hz, J = 9.6 Hz,
H-2), 4.13 (ddd, 1H, J = 1.9 Hz, J = 3.5 Hz, J = 10.1 Hz, H-5), 4.21 (s, 2H, CH2N), 4.37, 4.52 (qAB,
2H, J = 12.0 Hz, CH2Ph), 4.64, 4.77 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.49, 4.83 (qAB, 2H, J = 10.8 Hz,
CH2Ph), 4.79, 4.98 (qAB, 2H, J = 10.9 Hz, CH2Ph), 5.77 (d, 1H, J = 7.9 Hz, H-5ur), 6.51 (d, 1H, J = 5.4 Hz,
H-1), 7.13–7.34 (m, 22H, H-Ph, H-6ur, H-3pyr), 8.05 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.62 (d, 1H,
J = 2.6 Hz, H-6pyr), 8.85 (s, 1H, NH), 9.30 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ 68.02 (CH2N),
68.51 (C-6), 72.43 (C-5), 72.25, 73.27, 75.07, 75.65 (CH2Ph), 77.18 (C-4), 78.02 (CH2O), 79.13 (C-2), 82.87
(C-3), 83.91 (C-1), 103.61 (C-5ur), 124.21 (C-3pyr), 127.57, 127.61, 127.66, 128.78, 127.83, 127.84, 127.97,
128.03, 128.16, 128.29, 128.33, 128.35 (C-Ph, C-4pyr), 131.78 (C-5pyr), 137.61, 137.85, 138.19, 138.62 (C-Ph),
141.33 (C-6pyr), 143.41 (C-6ur), 151.18 (C-2pyr), 151.84 (C-2ur), 162.94 (C-4ur), 166.86 (NHCO). HRMS
(ESI) (m/z): [M + Na]+ calcd for C46H46N4NaO9S, 853.2883; found, 853.2696.

Glycoconjugate (36) Starting from amine derivative 18 and uracil derivative 27, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (145 mg,
70%): [α]25

D 96.5 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3) δ 3.46 (dd, 1H, J = 6.0 Hz, J = 9.6 Hz, H-6a),
3.55 (dd, 1H, J = 6.8 Hz, J = 9.6 Hz, H-6b), 3.77 (dd, 1H, J = 2.8 Hz, J = 10.0 Hz, H-3), 3.98 (dd, 1H,
J = 1.0 Hz, J = 2.8 Hz, H-4), 4.18 (s, 2H, CH2N); 4.29 (dd~t, 1H, J = 6.7 Hz, H-5), 4.30, 4.36 (qAB, 2H,
J = 11.7 Hz, CH2Ph), 4.42 (dd, 1H, J = 5.4 Hz, J = 10.0 Hz, H-2), 4.67, 4.78 (qAB, 2H, J = 11.6 Hz, CH2Ph);
4.73, 4.86 (qAB, 2H, J = 11.9 Hz, CH2Ph), 4.56, 4.95 (qAB, 2H, J = 11.4 Hz, CH2Ph), 5.11 (s, 2H, CH2O),
5.75 (d, 1H, J = 7.9 Hz, H-5ur), 6.48 (d, 1H, J = 5.4 Hz, H-1), 7.15–7.38 (m, 22H, H-Ph, H-6ur, H-3pyr),
8.02 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.58 (d, 1H, J = 2.6 Hz, H-6pyr), 8.82 (s, 1H, NH), 9.40 (bs,
1H, NH). 13C-NMR (100 MHz, CDCl3) δ 68.00 (CH2N), 68.59 (C-6), 71.40 (C-5), 72.43, 73.22, 73.34, 74.83
(CH2Ph), 74.94 (C-4), 75.91 (C-2), 78.00 (CH2O), 79.70 (C-3), 84.59 (C-1), 103.54 (C-5ur), 124.18 (C-3pyr),
127.49, 127.55, 127.57, 127.60, 127.72, 127.85, 128.10, 128.20, 128.24, 128.30, 128.33 (C-Ph, C-4pyr), 131.69
(C-5pyr), 137.88, 138.00, 138.54, 138.60 (C-Ph), 141.24 (C-6pyr), 143.46 (C-6ur), 151.14 (C-2pyr), 152.26
(C-2ur); 163.07 (C-4ur), 166.86 (NHCO). HRMS (ESI) (m/z): [M + Na]+ calcd for C46H46N4NaO9S,
853.2883; found, 853.2769.

Glycoconjugate (37) Starting from amine derivative 17 and uracil derivative 28, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (103 mg, 49%):
[α]24

D 133.4 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.66 (t, 2H, J = 5.7 Hz, CH2CO), 3.56 (dd, 1H,
J = 1.8 Hz, J = 10.8 Hz, H-6a), 3.64–3.75 (m, 2H, H-6b, H-4), 3.82 (dd~t, 1H, J = 9.2 Hz, H-3), 3.88 (t,
2H, J = 5.8 Hz, CH2O), 3.95 (dd, 1H, J = 5.4 Hz, J = 9.5 Hz, H-2), 4.14 (ddd, 1H, J = 1.9 Hz, J = 3.5 Hz,
J = 10.0 Hz, H-5), 4.35, 4.51 (qAB, 2H, J = 12.0 Hz, CH2Ph), 4.61, 4.75 (qAB, 2H, J = 11.5 Hz, CH2Ph),
4.48, 4.83 (qAB, 2H, J = 10.8 Hz, CH2Ph), 4.78, 4.97 (qAB, 2H, J = 10.8 Hz, CH2Ph), 5.13 (s, 2H, CH2N),
5.77 (d, 1H, J = 7.9 Hz, H-5ur), 6.45 (d, 1H, J = 5.4 Hz, H-1), 7.11–7.34 (m, 22H, H-Ph, H-6ur, H-3pyr),
8.04 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.47 (d, 1H, J = 2.6 Hz, H-6pyr), 8.85 (s, 1H, NH), 9.54 (bs, 1H,
NH). 13C-NMR (100 MHz, CDCl3): δ 37.29 (CH2CO), 65.30 (CH2O), 68.50 (C-6), 72.32 (C-5), 72.20, 73.27,
75.07, 75.65 (CH2Ph), 77.18 (C-4); 77.23 (CH2N), 79.13 (C-2), 82.82 (C-3), 84.04 (C-1), 103.25 (C-5ur),
124.36 (C-3pyr), 127.58, 127.62, 127.67, 128.78, 127.83, 127.86, 127.97, 128.00, 128.20, 128.29, 128.33, 128.35
(C-Ph, C-4pyr), 132.80 (C-5pyr), 137.59, 137.79, 138.17, 138.60 (C-Ph), 141.07 (C-6pyr), 143.53 (C-6ur),
151.07 (C-2pyr), 151.33 (C-2ur), 163.33 (C-4ur), 166.29 (NHCO). HRMS (ESI) (m/z) [M + Na]+ calc for
C47H48N4NaO9S, 867.3040; found, 867.3086.
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Glycoconjugate (38) Starting from amine derivative 18 and uracil derivative 28, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (126 mg,
60%): [α]23

D 134.8 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.64 (t, 2H, J = 5.7 Hz, CH2CO), 3.45 (dd,
1H, J = 6.0 Hz, J = 9.5 Hz, H-6a), 3.54 (dd, 1H, J = 6.9 Hz, J = 9.5 Hz, H-6b), 3.77 (dd, 1H, J = 2.8 Hz,
J = 10.0 Hz, H-3), 3.88 (t, 2H, J = 5.7 Hz, CH2O), 3.97 (dd, 1H, J = 0.9 Hz, J = 2.7 Hz, H-4), 4.26–4.31
(m, 2H, H-5, CHHPh), 4.35 (d, 1H, J = 11.8 Hz, CHHPh), 4.41 (dd, 1H, J = 5.4 Hz, J = 10.0 Hz, H-2),
4.65, 4.76 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.72, 4.84 (qAB, 2H, J = 11.8 Hz, CH2Ph), 4.55, 4.94 (qAB,
2H, J = 11.4 Hz, CH2Ph), 5.09 (s, 2H, CH2N), 5.68 (d, 1H, J = 7.9 Hz, H-5ur), 6.43 (d, 1H, J = 5.4 Hz,
H-1), 7.14–7.38 (m, 22H, H-Ph, H-6ur, H-3pyr), 8.01 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.58 (d, 1H,
J = 2.6 Hz, H-6pyr), 8.82 (s, 1H, NH), 9.44 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ 37.30 (CH2CO),
65.28 (CH2O), 68.59 (C-6), 71.30 (C-5), 72.38, 73.22, 73.35, 74.83 (CH2Ph), 74.93 (C-4), 75.91 (C-2), 77.20
(CH2N), 79.67 (C-3), 84.74 (C-1), 103.20 (C-5ur), 124.39 (C-3pyr), 127.49, 127.55, 127.56, 127.61, 127.73,
127.83, 128.10, 128.20, 128.24, 128.30, 128.32 (C-Ph, C-4pyr), 132.70 (C-5pyr), 137.87, 137.99, 138.55, 138.60
(C-Ph), 141.00 (C-6pyr), 143.49 (C-6ur), 152.25 (C-2ur), 151.48 (C-2pyr), 163.28 (C-4ur), 169.25 (NHCO).
HRMS (ESI) (m/z): [M + Na]+ calcd for C47H48N4NaO9S, 867.3040; found, 867.3057.

Glycoconjugate (39) Starting from amine derivative 17 and uracil derivative 30, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (85 mg,
39%): [α]23

D 3.1 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.90 (dd~t, 2H, J = 5.8 Hz, J = 0.7 Hz,
CH2CO), 3.57 (dd, 1H, J = 1.9 Hz, J = 10.8 Hz, H-6a), 3.68 (dd, 1H, J = 9.1 Hz, J = 9.9 Hz, H-4), 3.73 (dd,
1H, J = 3.9 Hz, J = 10.9 Hz, H-6b), 3.82 (dd~t, 1H, J = 9.2 Hz, H-3), 3.96 (dd, 1H, J = 5.4 Hz, J = 9.5
Hz, H-2), 4.06 (dd~t, 2H, J = 6.0 Hz, CH2N), 4.13 (ddd, 1H, J = 1.9 Hz, J = 3.7 Hz, J = 10.1 Hz, H-5),
4.37, 4.52 (qAB, 2H, J = 11.9 Hz, CH2Ph), 4.64, 4.77 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.48, 4.84 (qAB,
2H, J = 10.5 Hz, CH2Ph), 4.79, 4.98 (qAB, 2H, J = 10.9 Hz, CH2Ph), 4.74 (s, 2H, CH2O), 5.69 (d, 1H,
J = 7.9 Hz, H-5ur), 6.50 (d, 1H, J = 5.4 Hz, H-1), 7.11–7.35 (m, 22H, H-Ph, H-6ur, H-3pyr), 8.02 (dd,
1H, J = 2.5 Hz, J = 8.7 Hz, H-4pyr), 8.48 (s, 1H, NH), 8.57 (d, 1H, J = 2.5 Hz, H-6pyr), 9.07 (bs, 1H,
NH). 13C-NMR (100 MHz, CDCl3): δ 33.56 (CH2CO), 45.09 (CH2N), 63.60 (CH2O), 68.55 (C-6), 72.40
(C-5), 72.28, 73.29, 75.10, 75.68 (CH2Ph), 77.20 (C-4), 79.13 (C-2), 82.87 (C-3), 83.88 (C-1), 102.68 (C-5ur),
124.18 (C-3pyr), 127.60, 127.63, 127.69, 127.81, 127.85, 127.86, 128.04, 128.31, 128.35, 128.38, 128.69 (C-Ph,
C-4pyr), 131.62 (C-5pyr), 137.61, 137.83, 138.18, 138.62 (C-Ph), 141.62 (C-6pyr), 144.90 (C-6ur), 151.03
(C-2pyr), 152.13 (C-2ur), 163.20 (C-4ur), 165.28 (NHCO), 169.83 (COO). HRMS (ESI) (m/z): [M + Na]+

calcd for C48H48N4NaO10S, 895.2989; found, 895.2917.

Glycoconjugate (40) Starting from amine derivative 18 and uracil derivative 30, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (105 mg,
48%): [α]25

D 103.2 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.82 (dd~t, 2H, J = 5.8 Hz, CH2CO),
3.47 (dd, 1H, J = 6.2 Hz, J = 9.6 Hz, H-6a), 3.53 (dd, 1H, J = 6.6 Hz, J = 9.6 Hz, H-6b), 3.76 (dd, 1H, J
= 2.9 Hz, J = 10.0 Hz, H-3), 3.91–4.01 (m, 3H, H-4, CH2N), 4.28 (dd~t, 1H, J = 6.7 Hz, H-5), 4.30, 4.36
(qAB, 2H, J = 11.8 Hz, CH2Ph), 4.41 (dd, 1H, J = 5.4 Hz, J = 10.0 Hz, H-2), 4.66, 4.77 (qAB, 2H, J =
11.6 Hz, CH2Ph), 4.73, 4.85 (qAB, 2H, J = 11.8 Hz, CH2Ph), 4.55, 4.94 (qAB, 2H, J = 11.4 Hz, CH2Ph),
4.69 (s, 2H, CH2O), 5.61 (d, 1H, J = 7.9 Hz, H-5ur), 6.46 (d, 1H, J = 5.4 Hz, H-1), 7.14–7.37 (m, 22H,
H-Ph, H-6ur, H-3pyr), 7.96 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.53 (d, 1H, J = 2.6 Hz, H-6pyr),
8.76 (s, 1H, NH), 9.81 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3) δ 33.28 (CH2CO), 45.06 (CH2N),
63.47 (CH2O), 68.66 (C-6), 71.39 (C-5), 72.40, 73.22, 73.34, 74.83 (CH2Ph), 74.92 (C-4), 75.86 (C-2), 79.67
(C-3), 84.56 (C-1), 102.33 (C-5ur), 124.09 (C-3pyr), 127.48, 127.50, 127.57, 127.63, 127.73, 127.82, 128.12,
128.21, 128.24, 128.30, 128.32 (C-Ph, C-4pyr), 131.78 (C-5pyr), 137.76, 137.97, 138.49, 138.57 (C-Ph), 141.50
(C-6pyr), 145.26 (C-6ur), 151.16 (C-2pyr), 152.18 (C-2ur), 163.85 (C-4ur), 165.49 (NHCO), 170.09 (COO).
HRMS (ESI) (m/z): [M + Na]+ calcd for C48H48N4NaO10S, 895.2989; found, 895.2966.

Glycoconjugate (41) Starting from amine derivative 17 and uracil derivative 32, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (69 mg, 31%):
[α]27

D 123.5 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.77–2.92 (m, 2H, CH2CO), 3.31–3.40 (m, 1H,
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CH), 3.56 (dd, 1H, J = 1.7 Hz, J = 10.8 Hz, H-6a), 3.64–3.79 (m, 5H, H-6b, H-4, CH3), 3.82 (dd~t, 1H, J =
9.2 Hz, J = 0.8 Hz, H-3), 3.95 (dd, 1H, J = 5.4 Hz, J = 9.6 Hz, H-2), 3.98–4.08 (m, 1H, CHHN), 4.10- 4.19
(m, 2H, H-5, CHHN), 4.36 4.51 (qAB, 2H, J = 12.0 Hz, CH2Ph), 4.62, 4.76 (qAB, 2H, J = 11.6 Hz, CH2Ph),
4.50, 4.83 (qAB, 2H, J = 11.4 Hz, CH2Ph), 4.78, 4.98 (qAB, 2H, J = 10.9 Hz, CH2Ph), 5.70 (d, 1H, J = 7.9
Hz, H-5ur), 6.47 (d, 1H, J = 5.4 Hz, H-1), 7.12–7.33 (m, 22H, H-Ph, H-6ur, H-3pyr), 7.99 (dd, 1H, J = 2.8
Hz, J = 8.7 Hz, H-4pyr), 8.49 (d, 1H, J = 2.5 Hz, H-6pyr), 8.81 (s, 1H, NH), 9.96 (bs, 1H, NH). 13C-NMR
(100 MHz, CDCl3): δ 35.90 (CH2COO), 41.11 (CH), 49.47 (CH2N), 52.62 (CH3), 68.50 (C-6), 72.32 (C-5),
72.18, 73.27, 75.06, 75.65 (CH2Ph), 77.18 (C-4), 79.12 (C-2), 82.84 (C-3), 83.99 (C-1), 102.67 (C-5ur), 124.27
(C-3pyr), 127.57, 127.61, 127.65, 127.77, 127.82, 127.86, 127.97, 128.02, 128.12, 128.28, 128.32, 128.35 (C-Ph,
C-4pyr), 132.73 (C-5pyr), 137.60, 137.80, 138.18, 138.62 (C-Ph), 141.13 (C-6pyr), 145.51 (C-6ur), 151.09
(C-2pyr), 152.16 (C-2ur), 163.67 (C-4ur), 168.92 (NHCO), 172.62 (COOCH3). HRMS (ESI) (m/z): [M +
Na]+ calcd for C49H50N4NaO10S, 909.3145; found, 909.3187.

Glycoconjugate (42): Starting from amine derivative 18 and uracil derivative 32, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 [v/v]) to give thick syrup (125 mg,
56%): [α]25

D 99.0 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 3.29–3.38 (m, 1H, CH), 3.46 (dd, 1H, J =
6.0 Hz, J = 9.6 Hz, H-6a), 3.55 (dd, 1H, J = 6.9 Hz, J = 9.6 Hz, H-6b), 3.72 (s, 3H, CH3), 3.77 (dd, 1H, J =
2.8 Hz, J = 10.0 Hz, H-3), 3.98 (dd, 1H, J = 1.1 Hz, J = 2.7 Hz, H-4), 4.04 (m, 1H, CHHN), 4.14 (m, 1H,
CHHN), 4.28 (m, 1H, H-5), 4.29, 4.35 (qAB, 2H, J = 11.7 Hz, CH2Ph), 4.42 (dd, 1H, J = 5.4 Hz, J = 10.0 Hz,
H-2), 4.66, 4.77 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.72, 4.85 (qAB, 2H, J = 11.8 Hz, CH2Ph), 4.56, 4.94 (qAB,
2H, J = 11.4 Hz, CH2Ph), 5.70 (d, 1H, J = 7.9 Hz, H-5ur), 6.44 (d, 1H, J = 5.4 Hz, H-1), 7.12–7.39 (m, 22H,
H-Ph, H-6ur, H-3pyr), 7.96 (dd, 1H, J = 2.8 Hz, J = 8.7 Hz, H-4pyr), 8.45 (d, 1H, J = 2.8 Hz, H-6pyr), 8.53 (s,
1H, NH), 9.57 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ 35.96 (CH2COO), 41.09 (CH), 49.49 (CH2N),
52.64 (CH3), 68.60 (C-6), 71.31 (C-5), 72.41, 73.22, 73.37, 74.82 (CH2Ph), 74.93 (C-4), 75.94 (C-2), 79.68
(C-3), 84.67 (C-1), 102.66 (C-5ur), 124.26 (C-3pyr), 127.50, 127.54, 127.57, 127.60, 127.73, 128.87, 128.10,
128.15, 128.20, 128.25, 128.30, 128.33 (C-Ph, C-4pyr), 132.45 (C-5pyr), 137.90, 138.00, 138.56, 138.63 (C-Ph),
141.08 (C-6pyr), 145.39 (C-6ur), 151.73 (C-2pyr), 151.96 (C-2ur), 163.46 (C-4ur), 168.75 (NHCO), 172.58
(COOCH3). HRMS (ESI) (m/z): [M + Na]+ calcd for C49H50N4NaO10S, 909.3145; found, 909.3117.

Glycoconjugate (43) Starting from amine derivative 19 and uracil derivative 24, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (58 mg, 32%):
[α]27

D −23.1 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.65–2.85 (m, 2H, CH2CO), 3.57 (dd~t, 1H,
J = 9.2 Hz, H-4), 3.69 (m, 2H, H-6a, H-6b), 3.81 (dd~t, 1H, J = 9.0 Hz, H-3), 3.89 (dd, 1H, J = 5.3 Hz,
J = 9.4 Hz, H-2), 3.95–4.07 (m, 3H, CH2N, H-5), 4.61, 4.73 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.63, 4.86
(qAB, 2H, J = 10.9 Hz, CH2Ph), 4.79, 4.96 (qAB, 2H, J = 11.0 Hz, CH2Ph), 5.45 (d, 1H, J = 7.7 Hz, H-5ur),
6.44 (d, 1H, J = 5.2 Hz, H-1), 7.18–7.34 (m, 17H, H-Ph, H-6ur, H-3pyr), 8.00 (dd, 1H, J = 2.4 Hz, J = 8.6
Hz, H-4pyr), 8.52 (d, 1H, J = 2.4 Hz, H-6pyr), 9.42 (s, 1H, NH), 11.03 (bs, 1H, NH). 13C-NMR (100 MHz,
CDCl3): δ 35.65 (CH2CO), 46.29 (CH2N), 61.47 (C-6), 73.35 (C-5), 72.27, 75.08, 75.56 (CH2Ph), 77.05
(C-4), 79.12 (C-2), 82.64 (C-3), 83.48 (C-1), 101.62 (C-5ur), 124.50 (C-3pyr), 127.60, 127.80, 127.83, 127.91,
127.98, 128.01, 128.34, 128.36, 128.44, 128.53 (C-Ph, C-4pyr), 132.68 (C-5pyr), 137.55, 138.06, 138.56 (C-Ph),
141.63 (C-6pyr), 146.56 (C-6ur), 150.99 (C-2pyr), 151.45 (C-2ur), 165.31 (C-4ur), 169.58 (NHCO). HRMS
(ESI) (m/z): [M + Na]+ calcd for C39H40N4NaO8S, 747.2465; found, 747.2447.

Glycoconjugate (44) Starting from amine derivative 20 and uracil derivative 24, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (45 mg, 25%):
[α]27

D 48.0 (c 0.5, CHCl3). 1H-NMR (400 MHz, CDCl3) δ 2.64–2.78 (m, 2H, CH2CO), 3.50 (dd, 1H, J
= 4.0 Hz, J = 11.5 Hz, H-6a), 3.78 (dd, 1H, J = 2.8 Hz, J = 8.6 Hz, H-3), 3.84–3.96 (m, 4H, H-4, H-6b,
CH2N), 4.18 (m, 1H, H-5), 4.26 (dd, 1H, J = 4.5 Hz, J = 8.4 Hz, H-2), 4.63, 4.73 (qAB, 2H, J = 11.6 Hz,
CH2Ph), 4.70, 4.79 (qAB, 2H, J = 11.8 Hz, CH2Ph), 4.57, 4.83 (qAB, 2H, J = 11.6 Hz, CH2Ph), 5.41 (d, 1H,
J = 7.8 Hz, H-5ur), 6.27 (d, 1H, J = 4.5 Hz, H-1), 7.22–7.37 (m, 16H, H-Ph, H-6ur), 7.19 (d, 1H, J = 8.7
Hz, H-3pyr), 7.94 (dd, 1H, J = 2.3 Hz, J = 8.7 Hz, H-4pyr), 8.46 (d, 1H, J = 2.3 Hz, H-6pyr), 9.25 (s, 1H,
NH), 10.60 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3) δ 35.41 (CH2CO), 46.96 (CH2N), 61.23 (C-6),
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73.55 (C-5); 72.62, 73.61, 74.03 (CH2Ph), 74.60 (C-4), 76.54 (C-2), 78.53 (C-3), 82.61 (C-1), 101.71 (C-5ur),
124.57 (C-3pyr), 127.61, 127.64, 127.76, 127.83, 127.96, 128.20, 128.28, 128.33, 128.38, 128.39 (C-Ph, C-4pyr),
132.948 (C-5pyr), 137.81, 138.13, 138.41 (C-Ph), 141.41 (C-6pyr), 146.30 (C-6ur), 151.10 (C-2pyr), 151.45
(C-2ur), 164. 80 (C-4ur), 169.31 (NHCO). HRMS (ESI) (m/z): [M + Na]+ calcd for C39H40N4NaO8S,
747.2465; found, 747.2487.

Glycoconjugate (45) Starting from amine derivative 19 and uracil derivative 27, purified by column
chromatography in CHCl3: MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (68 mg,
37%): [α]27

D 133.0 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 3.56 (dd, 1H, J = 8.7 Hz, J = 9.8 Hz,
H-4), 3.67 (dd, 1H, J = 4.6 Hz, J = 12.0 Hz, H-6a), 3.73 (dd, 1H, J = 2.5 Hz, J = 12 Hz, H-6b), 3.85 (dd~t,
1H, J = 9.0 Hz, H-3), 3.92 (dd, 1H, J = 5.3 Hz, J = 9.4 Hz, H-2), 4.05 (ddd, 1H, J = 2.6 Hz, J = 4.5 Hz,
J = 9.8 Hz, H-5), 4.22 (s, 2H, CH2N), 4.63, 4.77 (qAB, 2H, J = 11.4 Hz, CH2Ph), 4.64, 4.87 (qAB, 2H, J
= 11.4 Hz, CH2Ph), 4.80, 4.98 (qAB, 2H, J = 10.9 Hz, CH2Ph), 5.17 (s, 2H, CH2O), 5.79 (d, 1H, J = 7.9
Hz, H-5ur), 6.48 (d, 1H, J = 5.3 Hz, H-1), 7.24–7.34 (m, 17H, H-Ph, H-6ur, H-3pyr), 8.05 (dd, 1H, J = 2.6
Hz, J = 8.6 Hz, H-4pyr), 8.65 (d, 1H, J = 2.6 Hz, H-6pyr), 8.86 (s, 1H, NH), 9.08 (bs, 1H, NH). 13C-NMR
(100 MHz, CDCl3): δ 61.76 (C-6), 68.03 (CH2N), 73.21 (C-5), 72.34, 75.07, 75.62 (CH2Ph), 77.07 (C-4),
78.16 (CH2O), 79.25 (C-2), 82.69 (C-3), 83.48 (C-1), 103.71 (C-5ur), 124.60 (C-3pyr), 127.62, 127.85, 127.96,
128.02, 128.05, 128.17, 128.36, 128.40, 128.45 (C-Ph, C-4pyr), 131.89 (C-5pyr), 137.56, 138.06, 138.58 (C-Ph),
141.42 (C-6pyr), 143.30 (C-6ur), 151.14 (C-2pyr), 151.51 (C-2ur), 162.70 (C-4ur), 166.89 (NHCO). HRMS
(ESI) (m/z): [M + Na] + calcd for C39H40N4NaO9S, 763.2414; found, 763.2427.

Glycoconjugate (46) Starting from amine derivative 20 and uracil derivative 27, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (43 mg, 23%):
[α]27

D 51.6 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 3.52 (dd, 1H, J = 3.9 Hz, J = 11.7 Hz, H-6a),
3.79 (dd, 1H, J = 2.8 Hz, J = 8.6 Hz, H-3), 3.89–4.00 (m, 2H, H-4, H-6b), 4.14 (s, 2H, CH2N), 4.20 (m,
1H, H-5), 4.28 (dd, 1H, J = 4.6 Hz, J = 8.4 Hz, H-2), 4.64, 4.74 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.70, 4.79
(qAB, 2H, J = 11.8 Hz, CH2Ph), 4.58, 4.83 (qAB, 2H, J = 11.5 Hz, CH2Ph), 5.05 (s, 2H, CH2O), 5.66 (d,
1H, J = 7.9 Hz, H-5ur), 6.29 (d, 1H, J = 4.5 Hz, H-1), 7.17–7.41 (m, 17H, H-Ph, H-6ur, H-3pyr), 8.05 (dd,
1H, J = 2.4 Hz, J = 8.7 Hz, H-4pyr), 8.53 (d, 1H, J = 2.4 Hz, H-6pyr), 9.14 (s, 1H, NH), 10.02 (bs, 1H, NH).
13C-NMR (100 MHz, CDCl3): δ 68.04 (CH2N), 61.23 (C-6), 73.52 (C-5), 72.62, 73.64, 74.05 (CH2Ph), 74.67
(C-4), 76.53 (C-2), 78.07 (CH2O), 78.53 (C-3), 82.67 (C-1), 103.33 (C-5ur), 124.63 (C-3pyr), 127.59, 127.64,
127.75, 127.84, 127.94, 128.19, 128.28, 128.32, 128.38 (C-Ph, C-4pyr), 132.23 (C-5pyr), 137.79, 138.08, 138.38
(C-Ph), 141.31 (C-6pyr), 143.71 (C-6ur), 151.44 (C-2pyr), 151.54 (C-2ur), 163.49 (C-4ur), 167.54 (NHCO).
HRMS (ESI) (m/z): [M + Na] + calcd for C39H40N4NaO9S, 763.2414; found, 763.2471.

Glycoconjugate (47) Starting from amine derivative 19 and uracil derivative 28, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (81 mg, 43%):
[α]27

D 126.6 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.62 (t, 2H, J = 5.3 Hz, CH2CO), 3.49 (dd,
1H, J = 8.7 Hz, J = 9.4 Hz, H-4), 3.64 (dd, 1H, J = 5.3 Hz, J = 12.0 Hz, H-6a), 3.73 (dd, 1H, J = 2.1 Hz, J
= 12 Hz, H-6b), 3.80–3.94 (m, 4H, H-2, H-3, CH2O), 4.08 (ddd, 1H, J = 2.3 Hz, J = 4.9 Hz, J = 9.5 Hz,
H-5), 4.59, 4.74 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.60, 4.85 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.78, 4.95
(qAB, 2H, J = 11.0 Hz, CH2Ph), 5.07 (s, 2H, CH2N), 5.65 (d, 1H, J = 7.9 Hz, H-5ur), 6.39 (d, 1H, J = 5.2
Hz, H-1), 7.17–7.36 (m, 17H, H-Ph, H-6ur, H-3pyr), 8.00 (dd, 1H, J = 2.3 Hz, J = 8.7 Hz, H-4pyr), 8.49
(d, 1H, J = 2.3 Hz, H-6pyr), 8.86 (s, 1H, NH), 9.96 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ 37.29
(CH2CO), 61.68 (C-6), 65.34 (CH2O), 73.23 (C-5), 72.23, 75.01, 75.57 (CH2Ph), 77.00 (C-4), 77.22 (CH2N),
79.24 (C-2), 82.54 (C-3), 83.63 (C-1), 103.04 (C-5ur), 124.96 (C-3pyr), 127.61, 127.81, 127.83, 127.93, 127.97,
128.33, 128.37, 128.42 (C-Ph, C-4pyr), 131.82 (C-5pyr), 137.54, 138.00, 138.50 (C-Ph), 141.15 (C-6pyr),
143.80 (C-6ur), 150.56 (C-2pyr), 151.42 (C-2ur), 163.78 (C-4ur), 169.68 (NHCO). HRMS (ESI) (m/z): [M +
Na] + calcd for C40H42N4NaO9S, 777.2570; found, 777.2588.

Glycoconjugate (48) Starting from amine derivative 20 and uracil derivative 28, purified by column
chromatography in CHCl3: MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (77 mg,
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41%): [α]27
D 84.2 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.57 (t, 2H, J = 5.2 Hz, CH2CO), 3.51

(dd, 1H, J = 3.8 Hz, J = 11.6 Hz, H-6a), 3.75–3.85 (m, 3H, H-3, CH2O), 3.86–3.97 (m, 2H, H-6b, H-4),
4.20 (m, 1H, H-5), 4.29 (dd, 1H, J = 4.7 Hz, J = 8.7 Hz, H-2), 4.64, 4.74 (qAB, 2H, J = 11.6 Hz, CH2Ph),
4.70, 4.79 (qAB, 2H, J = 12.0 Hz, CH2Ph), 4.57, 4.84 (qAB, 2H, J = 11.6 Hz, CH2Ph), 5.02 (s, 2H, CH2N),
5.59 (d, 1H, J = 7.9 Hz, H-5ur), 6.29 (d, 1H, J = 4.6 Hz, H-1), 7.19–7.36 (m, 17H, H-Ph, H-6ur, H-3pyr),
7.99 (dd, 1H, J = 2.4 Hz, J = 8.7 Hz, H-4pyr), 8.42 (d, 1H, J = 2.4 Hz, H-6pyr), 9.03 (s, 1H, NH), 10.09 (bs,
1H, NH). 13C-NMR (100 MHz, CDCl3): δ 37.23 (CH2CO), 55.28 (CH2O), 61.35 (C-6), 73.55 (C-5), 72.53,
73.46, 74.14 (CH2Ph), 74.76 (C-4), 76.43 (C-2), 77.17 (CH2N), 78.70 (C-3), 83.00 (C-1), 102.89 (C-5ur),
124.84 (C-3pyr), 127.55, 127.60, 127.71, 127.80, 127.90, 128.19, 128.29, 128.34, 128.36 (C-Ph, C-4pyr), 132.20
(C-5pyr), 137.81, 138.11, 138.39 (C-Ph); 141.04 (C-6pyr), 143.85 (C-6ur), 150.70 (C-2pyr), 151.38 (C-2ur),
163.89 (C-4ur), 169.80 (NHCO). HRMS (ESI) (m/z): [M + Na]+ calcd for C40H42N4NaO9S, 777.2570;
found, 777.2578.

Glycoconjugate (49) Starting from amine derivative 19 and uracil derivative 30, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (96 mg, 49%):
[α]27

D 127.4 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.62 (dd~t, 2H, J = 5.3 Hz, CH2CO), 3.48
(dd, 1H, J = 8.6 Hz, J = 9.8 Hz, H-4), 3.59 (dd, 1H, J = 5.5 Hz, J = 12.0 Hz, H-6a), 3.73 (dd, 1H, J = 2.1
Hz, J = 11.9 Hz, H-6b), 3.80–3.94 (m, 4H, H-2, H-3, CH2N), 4.08 (ddd, 1H, J = 2.3 Hz, J = 4.9 Hz, J =
9.5 Hz, H-5), 4.59, 4.74 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.60, 4.85 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.78,
4.96 (qAB, 2H, J = 11.0 Hz, CH2Ph), 5.07 (s, 2H, CH2O), 5.67 (d, 1H, J = 8.0 Hz, H-5ur), 6.51 (d, 1H, J
= 5.4 Hz, H-1), 7.17–7.36 (m, 17H, H-Ph, H-6ur, H-3pyr), 7.93 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr),
8.43 (d, 1H, J = 2.3 Hz, H-6pyr), 8.33 (s, 1H, NH), 10.06 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3):
δ 37.29 (CH2CO), 45.16 (CH2N), 61.60 (C-6), 65.34 (CH2O), 73.04 (C-5), 72.14, 74.95, 75.54 (CH2Ph),
77.20 (C-4), 79.23 (C-2), 82.51 (C-3), 83.66 (C-1), 102.88 (C-5ur), 124.90 (C-3pyr), 127.77, 127.89, 127.83,
127.91, 127.94, 128.28, 128.33, 128.37 (C-Ph, C-4pyr), 132.13 (C-5pyr), 137.52, 137.98, 138.49 (C-Ph), 141.71
(C-6pyr), 144.08 (C-6ur), 150.71 (C-2pyr), 151.06 (C-2ur), 163.48 (C-4ur), 168.10 (COO), 172.40 (NHCO).
HRMS (ESI) (m/z): [M + Na]+ calcd for C41H42N4NaO10S, 805.2519; found, 805.2631.

Glycoconjugate (50) Starting from amine derivative 20 and uracil derivative 30, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (92 mg, 47%):
[α]27

D 87.5 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.83 (m, 2H, CH2CO), 3.45 (dd, 1H, J = 3.7 Hz,
J = 11.9 Hz, H-6a), 3.84–4.05 (m, 5H, H-3, H-4, H-6b, CH2N), 4.16 (m, 1H, H-5), 4.27 (dd, 1H, J = 4.5 Hz,
J = 8.4 Hz, H-2), 4.65, 4.75 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.70, 4.79 (qAB, 2H, J = 11.9 Hz, CH2Ph),
4.57, 4.83 (qAB, 2H, J = 11.6 Hz, CH2Ph), 4.66 (s, 2H, CH2O), 5.66 (d, 1H, J = 7.8 Hz, H-5ur), 6.24 (d, 1H,
J = 4.4 Hz, H-1), 7.20–7.36 (m, 17H, H-Ph, H-6ur, H-3pyr), 7.95 (dd, 1H, J = 2.7 Hz, J = 8.7 Hz, H-4pyr),
8.40 (d, 1H, J = 2.6 Hz, H-6pyr), 8.75 (s, 1H, NH), 10.16 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3):
δ 33.26 (CH2CO), 45.56 (CH2N), 61.46 (C-6), 63.45 (CH2O), 73.35 (C-5), 72.62, 73.55, 74.00 (CH2Ph),
74.57 (C-4), 76.63 (C-2), 78.40 (C-3), 82.99 (C-1), 103.19 (C-5ur), 125.11 (C-3pyr), 127.63, 127.82, 127.93,
128.18, 128.34, 128.37, 128.40, 128.32 (C-Ph, C-4pyr), 132.17 (C-5pyr), 137.81, 138.11, 138.41 (C-Ph), 141.36
(C-6pyr), 143.77 (C-6ur), 150.81 (C-2pyr), 151.30 (C-2ur), 162.97 (C-4ur), 168.09 (NHCO), 171.33 (COO).
HRMS (ESI) (m/z): [M + Na]+ calcd for C41H42N4NaO10S, 805.2519; found, 805.2601.

Glycoconjugate (51) Starting from amine derivative 19 and uracil derivative 32, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (60 mg, 30%):
[α]19

D 120.8 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.78 (dd, 1H, J = 6.5 Hz, J = 16.4 Hz, CH2CO),
2.85 (dd, 1H, J = 6.3 Hz, J = 16.3 Hz, CH2CO), 3.34 (m, 1H, CH), 3.57 (dd~t, 1H, J = 9.2 Hz, H-4), 3.65
(dd, 1H, J = 5.0 Hz, J = 12.0 Hz, H-6a), 3.68–3.76 (m, 4H, H-6b, CH3), 3.81 (dd~t, 1H, J = 8.8 Hz, H-3),
3.90 (dd, 1H, J = 5.2 Hz, J = 9.4 Hz, H-2), 4.02–4.13 (m, 3H, CH2N, H-5), 4.61, 4.75 (qAB, 2H, J = 11.8
Hz, CH2Ph), 4.61, 4.86 (qAB, 2H, J = 10.8 Hz, CH2Ph), 4.79, 4.96 (qAB, 2H, J = 10.9 Hz, CH2Ph), 5.67
(d, 1H, J = 7.9 Hz, H-5ur), 6.40 (d, 1H, J = 5.2 Hz, H-1), 7.19–7.34 (m, 17H, H-Ph, H-6ur, H-3pyr), 7.98
(dd, 1H, J = 2.5 Hz, J = 8.6 Hz, H-4pyr), 8.49 (d, 1H, J = 2.5 Hz, H-6pyr); 9.06 (d, 1H, NH), 10.11 (bs,
1H, NH). 13C-NMR (100 MHz, CDCl3): δ 35.80 (CH2COO), 40.97 (CH), 49.25 (CH2N), 52.63 (CH3),
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61.71 (C-6), 73.21 (C-5), 72.25, 75.03, 75.59 (CH2Ph), 77.15 (C-4), 79.23 (C-2), 82.58 (C-3), 83.62 (C-1),
102.57 (C-5ur), 124.90 (C-3pyr), 127.61, 127.82, 127.84, 127.94, 127.98, 128.00, 128.34, 128.37, 128.43 (C-Ph,
C-4pyr), 133.00 (C-5pyr), 137.53, 138.02, 138.53 (C-Ph), 141.15 (C-6pyr), 145.53 (C-6ur), 150.58 (C-2pyr),
152.02 (C-2ur), 163.90 (C-4ur), 169.09 (NHCO), 172.75 (COOCH3). HRMS (ESI) (m/z): [M + Na]+ calcd
for C42H44N4NaO10S, 819.2676; found, 819.2681.

Glycoconjugate (52) Starting from amine derivative 20 and uracil derivative 32, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 20:1 (v/v)) to give thick syrup (46 mg, 23%):
[α]27

D 72.4 (c 1.0, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.77 (dd, 1H, J = 6.5 Hz, J = 16.4 Hz, CH2CO),
2.84 (dd, J = 6.0 Hz, J = 16.2 Hz, CH2CO), 3.21 (m, 1H, CH), 3.50 (dd, 1H, J = 4.2 Hz, J = 11.7 Hz, H-6a),
3.70 (s, 3H, CH3), 3.80 (dd, 1H, J = 2.9 Hz, J = 8.6 Hz, H-3), 3.88–3.97 (m, 2H, H-6b, H-4), 4.02–4.07 (m,
2H, CH2N), 4.20 (m, 1H, H-5), 4.27 (dd, 1H, J = 4.5 Hz, J = 8.6 Hz, H-2), 4.64, 4.74 (qAB, 2H, J = 11.5 Hz,
CH2Ph), 4.71, 4.80 (qAB, 2H, J = 11.8 Hz, CH2Ph), 4.58, 4.84 (qAB, 2H, J = 11.6 Hz, CH2Ph), 5.64 (d, 1H,
J = 7.9 Hz, H-5ur), 6.28 (d, 1H, J = 4.4 Hz, H-1), 7.21 (d, 1H, J = 8.7 Hz, H-3pyr), 7.24–7.36 (m, 16H, H-Ph,
H-6ur), 7.99 (dd, 1H, J = 2.5 Hz, J = 8.7 Hz, H-4pyr), 8.46 (d, 1H, J = 2.5 Hz, H-6pyr), 9.02 (s, 1H, NH),
9.88 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ 35.85 (CH2COO), 40.97 (CH), 49.24 (CH2N), 52.59
(CH3), 61.28 (C-6), 73.54 (C-5), 72.63, 73.59, 74.01 (CH2Ph), 74.64 (C-4), 76.59 (C-2), 78.49 (C-3), 82.64
(C-1), 102.57 (C-5ur), 124.68 (C-3pyr), 127.63, 127.66, 127.76, 127.85, 127.97, 128.21, 128.33, 128.40 (C-Ph,
C-4pyr), 132.98 (C-5pyr), 137.82, 138.12, 138.42 (C-Ph), 141.06 (C-6pyr), 145.46 (C-6ur), 150.99 (C-2pyr),
151.86 (C-2ur), 163.72 (C-4ur), 169.07 (NHCO), 172.76 (COOCH3). HRMS (ESI) (m/z): [M + Na]+ calcd
for C42H44N4NaO10S, 819.2676; found, 819.2684.

Glycoconjugate (53) Starting from amine derivative 21 and uracil derivative 28, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (114 mg,
70%): [α]24

D −0.8 (c 0.5, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.01, 2.02, 2.03, 2.04 (4s, 12H, CH3CO),
2.70 (t, 2H, J = 5.7 Hz, CH2O), 3.87 (ddd, 1H, J = =2.4 Hz, J = 4.6 Hz, J = 10.0 Hz, H-5), 3.95 (t, 2H,
J = 5.8 Hz, CH2O), 4.11 (dd, 1H, J = 2.3 Hz, J = 12.4 Hz, H-6a), 4.25 (dd, 2H, J = 4.7 Hz, J = 12.3 Hz,
H-6b), 5.11–5.24 (m, 4H, CH2N, H-2, H-4), 5.34 (dd~t, 1H, J = 9.3 Hz, H-3), 5.60 (d, 1H, J = 10.4 Hz,
H-1), 5.75 (d, 1H, J = 7.9 Hz, H-5ur), 7.23 (dd, 1H, J = 0.4 Hz, J = 8.7 Hz, H-3pyr), 7.34 (d, 1H, J = 7.9 Hz,
H-6ur), 8.05 (dd, 1H, J = 2.5 Hz, J = 8.7 Hz, H-4pyr), 8.54 (dd, 1H, J = 2.5 Hz, H-6pyr), 8.58 (s, 1H, NH),
9.80 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ 20.56, 20.57, 20.64, 20.71 (CH3CO), 37.30 (CH2CO),
61.99 (C-6); 65.20 (CH2O), 68.27 (C-4), 69.58 (C-2), 73.98 (C-3), 75.78 (C-5), 77.24 (CH2N), 82.54 (C-1),
103.23 (C-5ur), 123.90 (C-3pyr), 128.23 (C-4pyr), 132.22 (C-5pyr), 141.13 (C-6pyr), 143.63 (C-6ur), 149.40
(C-2pyr), 151.39 (C-2ur), 163.54 (C-4ur), 169.38 (NHCO), 169.42, 169.51, 170.13, 170.73 (CH3CO). HRMS
(ESI) (m/z): [M + Na]+ calcd for C27H32N4NaO13S, 675.1584; found, 675.1590.

Glycoconjugate (54) Starting from amine derivative 22 and uracil derivative 28, purified by column
chromatography in CHCl3:MeOH solvent system (100:1 to 25:1 (v/v)) to give thick syrup (106 mg,
65%): [α]24

D 0.1 (c 0.5, CHCl3). 1H-NMR (400 MHz, CDCl3): δ 2.00, 2.01, 2.02, 2.16 (4s, 12H, CH3CO),
2.70 (t, 2H, J = 5.7 Hz, CH2CO), 3.96 (t, 2H, J = 5.7 Hz, CH2O), 4.04–4.15 (m, 3H, H-6a, H-6b, H-5),
5.15–5.23 (s, 3H, H-3, CH2N), 5.38 (dd~t, 1H, J = 10.1 Hz, H-2), 5.48 (d, 1H, J = 3.3 Hz, H-4), 5.60 (d,
1H, J = 10.3 Hz, H-1), 5.76 (d, 1H, J = 7.9 Hz, H-5ur), 7.27 (d, 1H, J = 8.7 Hz, H-3pyr), 7.31 (d, 1H, J =
7.9 Hz, H-6ur), 8.08 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.40 (s, 1H, NH), 8.51 (d, 1H, J = 2.6 Hz,
H-6pyr), 9.47 (bs, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ 20.58, 20.67, 20.75 (CH3CO), 37.35 (CH2CO),
61.26 (C-6), 65.19 (CH2O), 66.92 (C-2), 67.29 (C-4), 72.02 (C-3), 74.44 (C-5), 77.27 (CH2N), 83.06 (C-1),
103.33 (C-5ur), 123.86 (C-3pyr), 128.28 (C-4pyr), 133.09 (C-5pyr), 141.12 (C-6pyr), 143.48 (C-6ur), 149.76
(C-2pyr), 151.30 (C-2ur), 163.25 (C-4ur), 169.29 (NHCO), 169.69, 170.03, 170.24, 170.49 (CH3CO). HRMS
(ESI) (m/z): [M + Na]+ calcd for C27H32N4NaO13S, 675.1584; found, 675.1592.

3.2.5. Protecting Groups Removal

Debenzylation: Corresponding glycoconjugate 33–52 (0.06 mmol) was dissolved in dry CH2Cl2
(2 mL) and anhydrous FeCl3 (97 mg, 0.60 mmol) was added. The resulting mixture was stirred under
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argon. After 30 minutes the reaction mixture was diluted with CH2Cl2 (10 mL) and washed with water.
Resulting emulsion was centrifuged (6000 rpm) and the supernatant was collected and evaporated.
The residue was dissolved in MeOH (5 mL), the silica gel was added, and solvent was evaporated and
purified by column chromatography with CHCl3:MeOH solvent system (10:1 to 3:1 [v/v]).

Glycoconjugate (55) White solid (24 mg, 93%): [α]23
D 149.2 (c 0.3, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 2.83 (t, 2H, J = 6.3 Hz, CH2CO), 3.39 (dd, 1H, J = 8.9 Hz, J = 9.8 Hz, H-4), 3.55 (m, 1H, H-3), 3.66–3.75
(m, 2H, H-6a, H-6b), 3.84 (dd, 1H, J = 5.4 Hz, J = 9.8 Hz, H-2), 3.93 (ddd, J = 3.0 Hz, J = 4.5 Hz, J =
9.8 Hz, 1H, H-5), 4.09 (t, 2H, J = 6.3 Hz, CH2N), 5.62 (d, 1H, J = 7.9 Hz, H-5ur), 6.10 (d, 1H, J = 5.4 Hz,
H-1), 7.48 (d, 1H, J = 8.7 Hz, H-3pyr), 7.64 (d, 1H, J = 7.9 Hz, H-6ur), 7.92 (dd, 1H, J = 2.7 Hz, J = 8.7
Hz, H-4pyr), 8.62 (d, 1H, J = 2.7 Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD): δ 36.18 (CH2CO), 46.36
(CH2N), 62.35 (C-6), 71.43 (C-4), 72.93 (C-2), 75.49 (C-5), 76.01 (C-3), 88.12 (C-1), 101.94 (C-5ur), 125.96
(C-3pyr), 129.77 (C-4pyr), 134.75 (C-5pyr), 142.11 (C-6pyr), 147.99 (C-6ur), 152.69 (C-2ur), 153.07 (C-2pyr),
166.75 (C-4ur), 171.33 (NHCO). HRMS (ESI) (m/z): [M + H]+ calcd for C18H23N4O8S, 455.1237; found,
455.1241.

Glycoconjugate (56) White solid (24 mg, 93%): [α]23
D 83.6 (c 0.5, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 2.84 (t, 2H, J = 6.4 Hz, CH2CO), 3.62–3.72 (m, 3H, H-6a, H-6b, H-3), 3.98 (dd, 1H, J = 1.5 Hz, J = 3.4 Hz,
H-4), 4.10 (t, 2H, J = 6.4 Hz, CH2N), 4.16–4.20 (m, 1H, H-5), 4.23 (dd, 1H, J = 5.5 Hz, J = 10.2 Hz, H-2),
5.62 (d, 1H, J = 7.9 Hz, H-5ur), 6.13 (d, 1H, J = 5.5 Hz, H-1), 7.51 (d, 1H, J = 8.6 Hz, H-3pyr), 7.65 (d, 1H, J
= 7.9 Hz, H-6ur), 7.92 (dd, 1H, J = 2.5 Hz, J = 8.6 Hz, H-4pyr), 8.63 (d, 1H, J = 2.5 Hz, H-6pyr). 13C-NMR
(100 MHz, CD3OD) δ 36.21 (CH2CO), 46.35 (CH2N), 62.39 (C-6), 69.57 (C-2), 70.68 (C-4), 72.52 (C-3),
74.07 (C-5), 88.65 (C-1), 101.96 (C-5ur), 126.25 (C-3pyr), 129.79 (C-4pyr), 134.75 (C-5pyr), 142.12 (C-6pyr),
147.98 (C-6ur), 152.70 (C-2ur), 153.21 (C-2pyr), 166.76 (C-4ur), 171.36 (NHCO). HRMS (ESI) (m/z): [M +
H]+ calcd for C18H22N4O8S, 455.1237; found, 455.1237.

Glycoconjugate (57) White solid (17 mg, 64%): [α]23
D 145.9 (c 0.3, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 3.40 (dd, 1H, J = 8.9 Hz, J = 9.9 Hz, H-4), 3.55 (m, 1H, H-3), 3.67–3.76 (m, 2H, H-6a, H-6b), 3.84 (dd,
1H, J = 5.4 Hz, J = 9.8 Hz, H-2), 3.93 (ddd, J = 3.1 Hz, J = 4.4 Hz, J = 9.8 Hz, 1H, H-5), 4.30 (s, 2H, CH2N),
5.30 (s, 2H, CH2O), 5.71 (d, 1H, J = 7.9 Hz, H-5ur), 6.13 (d, 1H, J = 5.4 Hz, H-1), 7.50 (dd, 1H, J = 8.7
Hz, H-3pyr), 7.73 (d, 1H, J = 7.9 Hz, H-6ur), 7.99 (dd, 1H, J = 2.4 Hz, J = 8.7 Hz, H-4pyr), 8.70 (d, 1H, J =
2.4 Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD): δ 62.34 (C-6), 69.57 (CH2N), 71.42 (C-4), 72.92 (C-2),
75.52 (C-5), 76.01 (C-3), 79.07 (CH2O), 88.04 (C-1), 103.23 (C-5ur), 125.79 (C-3pyr), 130.25 (C-4pyr), 134.04
(C-5pyr), 142.61 (C-6pyr), 146.42 (C-6ur), 153.19 (C-2ur), 153.69 (C-2pyr), 166.34 (C-4ur), 170.39 (NHCO).
HRMS (ESI) (m/z): [M + H]+ calcd for C18H23N4O9S, 471.1186; found, 471.1184.

Glycoconjugate (58) White solid (19 mg, 70%): [α]23
D 107.6 (c 0.5, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 3.63–3.73 (m, 3H, H-6a, H-6b, H-3), 3.98 (dd, 1H, J = 1.2 Hz, J = 3.3 Hz, H-4), 4.18 (ddd, 1H, J = 1.5 Hz,
J = 5.3 Hz, J = 6.7 Hz, H-5), 4.24 (dd, 1H, J = 5.5 Hz, J = 10.2 Hz, H-2), 4.30 (s, 2H, CH2N), 5.30 (s, 2H,
CH2O), 5.72 (d, 1H, J = 7.9 Hz, H-5ur), 6.16 (d, 1H, J = 5.5 Hz, H-1), 7.52 (dd, 1H, J = 0.6 Hz, J = 8.7 Hz,
H-3pyr), 7.69 (d, 1H, J = 7.9 Hz, H-6ur), 7.99 (dd, 1H, J = 2.5 Hz, J = 8.7 Hz, H-4pyr), 8.70 (d, 1H, J = 2.5
Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD): δ 62.40 (C-6), 69.56 (CH2N, C-2), 70.67 (C-4), 72.53 (C-3),
74.12 (C-5), 79.08 (CH2O), 88.56 (C-1), 103.23 (C-5ur), 126.04 (C-3pyr), 130.23 (C-4pyr), 134.02 (C-5pyr),
142.58 (C-6pyr), 146.44 (C-6ur), 153.17 (C-2ur), 153.81 (C-2pyr), 166.32 (C-4ur), 170.39 (NHCO). HRMS
(ESI) (m/z): [M + H]+ calcd for C18H23N4O9S, 471.1186; found, 471.1187.

Glycoconjugate (59) White solid (18 mg, 66%): [α]23
D 67.5 (c 0.5, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 2.65 (t, 2H, J = 5.9 Hz, CH2CO), 3.55 (m, 1H, H-3), 3.64–3.76 (m, 2H, H-6a, H-6b), 3.84 (dd, 1H, J =
5.4 Hz, J = 9.8 Hz, H-2), 3.93 (m, 1H, H-5), 5.17 (s, 2H, CH2N), 5.65 (d, 1H, J = 7.9 Hz, H-5ur), 6.10 (d,
1H, J = 5.4 Hz, H-1), 7.49 (dd, 1H, J = 0.7 Hz, J = 8.7 Hz, H-3pyr), 7.61 (d, 1H, J = 7.9 Hz, H-6ur), 7.95
(dd, 1H, J = 2.6 Hz, J = 8.9 Hz, H-4pyr), 8.62 (d, 1H, J = 2.6 Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD):
δ 38.08 (CH2CO), 62.38 (C-6), 66.33 (CH2O), 71.43 (C-4), 72.95 (C-2), 75.49 (C-5), 76.01 (C-3), 78.19
(CH2N), 88.15 (C-1), 103.00 (C-5ur), 125.99 (C-3pyr), 129.76 (C-4pyr), 134.87 (C-5pyr), 142.07 (C-6pyr),
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146.21 (C-6ur), 152.70 (C-2ur), 153.22 (C-2pyr), 166.45 (C-4ur), 172.12 (NHCO). HRMS (ESI) (m/z): [M +
H]+ calcd for C19H25N4O9S, 485.1342; found, 485.1339.

Glycoconjugate (60) White solid (25 mg, 93%): [α]23
D 130.2 (c 1.0, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 2.64 (t, 2H, J = 5.9 Hz, CH2CO), 3.64–3.73 (m, 3H, H-6a, H-6b, H-3), 3.91 (t, 2H, J = 5.9 Hz, CH2O),
3.98 (dd, 1H, J = 1.6 Hz, J = 3.3 Hz, H-4), 4.19 (ddd, 1H, J = 1.5 Hz, J = 5.3 Hz, J = 6.7 Hz, H-5), 4.24
(dd, 1H, J = 5.5 Hz, J = 10.2 Hz, H-2), 5.18 (s, 2H, CH2N), 5.65 (d, 1H, J = 7.9 Hz, H-5ur), 6.14 (d, 1H,
J = 5.5 Hz, H-1), 7.51 (dd, 1H, J = 0.6 Hz, J = 8.7 Hz, H-3pyr), 7.62 (d, 1H, J = 7.9 Hz, H-6ur), 7.94 (dd,
1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.64 (d, 1H, J = 2.6 Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD):
δ 38.07 (CH2CO), 62.42 (C-6), 66.33 (CH2O), 69.57 (C-2), 70.70 (C-4), 72.51 (C-3), 74.07 (C-5), 78.20
(CH2N), 88.66 (C-1), 102.99 (C-5ur), 126.24 (C-3pyr), 129.70 (C-4pyr), 134.88 (C-5pyr), 142.06 (C-6pyr),
146.26 (C-6ur), 152.96 (C-2ur), 153.06 (C-2pyr), 166.44 (C-4ur), 172.13 (NHCO). HRMS (ESI) (m/z): [M +
H]+ calcd for C19H25N4O9S, 485.1342, found, 485.1342.

Glycoconjugate (61) White solid (18 mg, 76%): [α]23
D 90.2 (c 0.2, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 2.93 (t, 2H, J = 6.3 Hz, CH2CO), 3.55 (dd, 1H, J = 8.8 Hz, J = 10.0 Hz, H-3), 3.67–3.75 (m, 2H, H-6a,
H-6b), 3.84 (dd, 1H, J = 5.4 Hz, J = 9.8 Hz, H-2), 3.93 (ddd, 1H, J = 2.9 Hz, J = 4.6 Hz, J = 9.8 Hz, H-5),
4.07 (t, 2H, J = 6.3 Hz, CH2N), 4.74 (s, 2H, CH2O), 5.61 (d, 1H, J = 7.9 Hz, H-5ur), 6.13 (d, 1H, J = 5.4
Hz, H-1), 7.50 (dd, 1H, J = 0.6 Hz, J = 8.7 Hz, H-3pyr), 7.65 (d, 1H, J = 7.9 Hz, H-6ur), 7.95 (dd, 1H, J =
2.7 Hz, J = 8.7 Hz, H-4pyr), 8.60 (dd, 1H, J = 0.6 Hz, J = 2.7 Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD):
δ 33.61 (CH2CO), 46.04 (CH2N), 62.38 (C-6), 63.91 (CH2O), 71.44 (C-4), 72.94 (C-2), 75.54 (C-5), 76.04
(C-3), 88.03 (C-1), 101.97 (C-5ur), 125.84 (C-3pyr), 130.06 (C-4pyr), 134.14 (C-5pyr), 142.34 (C-6pyr), 148.01
(C-6ur), 152.75 (C-2ur), 153.65 (C-2pyr), 166.79 (C-4ur), 168.29 (COO), 172.25 (NHCO). HRMS (ESI) (m/z):
[M + H]+ calcd for C20H25N4O10S, 513.1291, found, 513.1294.

Glycoconjugate (62) White solid (29 mg, 95%): [α]23
D 105.4 (c 1.0, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 2.73 (dd, 1H, J = 5.8 Hz, J = 16.2 Hz, CHHCO), 2.84 (dd, 1H, J = 7.7 Hz, J = 16.2 Hz, CHHCO), 3.39
(dd, 1H, J = 8.9 Hz, J = 9.9 Hz, H-4), 3.55 (m, 1H, H-3), 3.68 (s, 3H, CH3), 3.65–3.75 (m, 2H, H-6a, H-6b);
3.83 (dd, 1H, J = 5.4 Hz, J = 9.8 Hz, H-2), 3.93 (ddd, J = 3.0 Hz, J = 4.5 Hz, J = 9.8 Hz, 1H, H-5), 4.05
(ddd, 2H, J = 7.0 Hz, J = 14.0 Hz, J = 24.0 Hz, CH2N), 5.64 (d, 1H, J = 7.9 Hz, H-5ur), 6.10 (d, 1H, J = 5.4
Hz, H-1), 7.48 (dd, 1H, J = 0.5 Hz, J = 8.7 Hz, H-3pyr), 7.57 (d, 1H, J = 7.9 Hz, H-6ur), 7.91 (dd, 1H, J =
2.5 Hz, J = 8.7 Hz, H-4pyr), 8.61 (d, 1H, J = 0.5 Hz, J = 2.5 Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD): δ
36.57 (CH2CO), 41.89 (CH), 50.62 (CH2N), 52.81 (CH3), 62.35 (C-6), 71.43 (C-4), 72.94 (C-2), 75.48 (C-5),
76.00 (C-3), 88.15 (C-1), 102.31 (C-5ur), 125.99 (C-3pyr), 129.66 (C-4pyr), 134.83 (C-5pyr), 142.02 (C-6pyr),
147.51 (C-6ur), 151.77 (C-2ur), 152.94 (C-2pyr), 166.71 (C-4ur), 171.31 (NHCO), 174.57 (COOCH3). HRMS
(ESI) (m/z): [M + H] + calcd for C21H27N4O10S, 527.1448; found, 527.1450.

Glycoconjugate (63) White solid (31 mg, 98%): [α]23
D 43.5 (c 0.25, CH3OH). 1H-NMR (400 MHz, CD3OD):

δ 2.74 (dd, 1H, J = 5.8 Hz, J = 16.2 Hz, CHHCO), 2.85 (dd, 1H, J = 7.7 Hz, J = 16.2 Hz, CHHCO), 3.37
(m, 1H, CH), 3.64–3.72 (m, 6H, H-6a, H-6b, H-3, CH3), 3.98 (dd, 1H, J = 1.2 Hz, J = 3.3 Hz, H-4), 4.06
(ddd, 2H, J = 7.0 Hz, J = 14.0 Hz, J = 20.1 Hz, CH2N), 4.18 (ddd, 1H, J = 1.3 Hz, J = 5.4 Hz, J = 6.7 Hz,
1H, H-5), 4.23 (dd, 1H, J = 5.5 Hz, J = 10.1 Hz, H-2), 5.64 (d, 1H, J = 7.9 Hz, H-5ur), 6.12 (d, 1H, J = 5.5
Hz, H-1), 7.51 (dd, 1H, J = 0.5 Hz, J = 8.7 Hz, H-3pyr), 7.59 (d, 1H, J = 7.9 Hz, H-6ur), 7.91 (dd, 1H, J =
2.6 Hz, J = 8.7Hz, H-4pyr), 8.61 (dd, 1H, J = 0.5 Hz, J = 2.6 Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD): δ
36.56 (CH2CO), 41.88 (CH), 49.64 (CH2N), 52.83 (CH3), 62.39 (C-6), 69.58 (C-2), 70.68 (C-4), 72.52 (C-3),
74.07 (C-5), 88.68 (C-1), 101.28 (C-5ur), 126.28 (C-3pyr), 129.66 (C-4pyr), 134.84 (C-5pyr), 142.01 (C-6pyr),
147.59 (C-6ur), 152.86 (C-2ur), 153.07 (C-2pyr), 166.60 (C-4ur), 171.32 (NHCO), 174.55 (COOCH3). HRMS
(ESI) (m/z): [M + H] + calcd for C21H26N4O10NaS, 549.1267; found, 549.1262.

Deacetylation: The corresponding glycoconjugate 53 or 54 (0.12 mmol) was dissolved in MeOH
(10 mL) and 1 M MeONa in MeOH (0.2 mmol, 0.2 mL) was added. The resulting mixture was stirred
at room temperature. The progress of the reaction was monitored on TLC plate in MeOH:CHCl3 (2:1)
solvent system. After completion (30 min.), the reaction mixture was neutralised with silica gel, the
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solvent was evaporated purified by column chromatography with CHCl3: MeOH solvent system (10:1
to 2:1 [v/v]).

Glycoconjugate (64) Purified by column chromatography in CHCl3:MeOH solvent system (10:1 to 2:1
(v/v)) to give white solid (50 mg, 87%): [α]21

D −43.4 (c 1.0, CH3OH). 1H-NMR (400 MHz, CD3OD): δ
2.64 (t, 2H, J = 5.9 Hz, CH2O), 3.32–3.47 (m, 4H, H-2, H-3, H4, H-5), 3.66 (dd, 1H, J = 5.6 Hz, J = 12.1
Hz, H-6a), 3.85 (dd, 1H, J = 2.2 Hz, J = 12.1 Hz, H-6b), 3.90 (t, 2H, J = 5.9 Hz, CH2O), 5.08 (d, 1H, J = 9.9
Hz, H-1), 5.17 (s, 2H, CH2N), 5.64 (d, 1H, J = 7.9 Hz, H-5ur), 7.46 (dd, 1H, J = 0.6 Hz, J = 8.7 Hz, H-3pyr),
7.60 (d, 1H, J = 7.9 Hz, H-6ur), 7.97 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.60 (dd, 1H, J = 0.6 Hz, J =
2.6 Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD) δ 38.09 (CH2CO), 62.78 (C-6), 66.33 (CH2O), 71.31 (C-4),
73.89 (C-2), 78.18 (CH2N), 79.71 (C-3), 82.16 (C-5), 86.91 (C-1), 103.01 (C-5ur), 125.38 (C-3pyr), 129.77
(C-4pyr), 134.92 (C-5pyr), 141.88 (C-6pyr), 146.18 (C-6ur), 152.85 (C-2pyr), 152.95 (C-2ur), 166.44 (C-4ur),
172.09 (NHCO). HRMS (ESI) (m/z): [M + H]+ calcd for C19H25N4O9S, 485.1342; found 485.1341.

Glycoconjugate (65) Purified by column chromatography in CHCl3:MeOH solvent system (10:1 to 2:1
(v/v)) to give white solid ( 45 mg, 78%): [α]22

D −34. 7 (c 1.0, CH3OH). 1H-NMR (400 MHz, CD3OD): δ
2.64 (t, 2H, J = 5.9 Hz, CH2CO), 3.56 (dd, 1H, J = 3.3 Hz, J = 9.2 Hz, H-3), 3.64–3.78 (m, 4H, H-2, H-5,
H-6a, H-6b), 3.90 (t, 2H, J = 5.9 Hz, CH2O), 3.93 (d, 1H, J = 3.1 Hz, H-4), 5.04 (d, 1H, J = 9.9 Hz, H-1),
5.17 (s, 2H, CH2N), 5.65 (d, 1H, J = 7.9 Hz, H-5ur), 7.49 (dd, 1H, J = 0.7 Hz, J = 8.7 Hz, H-3pyr), 7.60
(d, 1H, J = 7.9 Hz, H-6ur), 7.95 (dd, 1H, J = 2.6 Hz, J = 8.7 Hz, H-4pyr), 8.59 (dd, 1H, J = 0.5 Hz, J = 2.6
Hz, H-6pyr). 13C-NMR (100 MHz, CD3OD): δ 38.09 (CH2CO), 62.69 (C-6), 66.34 (CH2O), 70.52 (C-4),
70.90 (C-2), 76.35 (C-3), 78.18 (CH2N), 80.84 (C-5), 87.41 (C-1), 103.01 (C-5ur), 125.06 (C-3pyr), 129.78
(C-4pyr), 134.74 (C-5pyr), 141.78 (C-6pyr), 146.19 (C-6ur), 152.97 (C-2pyr), 153.34 (C-2ur), 166.47 (C-4ur),
172.08 (NHCO). HRMS (ESI) (m/z): [M + H]+ calcd for C19H25N4O9S, 485.1342; found 485.1337.

3.3. Biological Evaluation

Enzymatic Assay

β4GalT activity was assayed using UDP-Gal as a glycosyl donor and (6-esculetinyl)
β-D-glucopyranoside (esculine) as a glycosyl acceptor in a total volume of 200 µL. The final
concentrations of the reagents in the reaction mixtures were as follows:

Hepes buffer (pH 5.4) or citrate buffer (pH 5.4)—50 mM
MnCl2—10 mM,
BSA—2.0 mg/mL,
Esculine—200 µM,
UDP-Gal—40 µM,
MeOH—10 µL,
Glycoconjugate 33–65—0.8 mM.

The enzymatic reactions were initiated by the addition of 0.1 mU β4GalT solution and
subsequently incubated at 30 ◦C in a thermoblock. After 60 min. the enzyme was inactivated by heating
the reaction mixture to 90 ◦C for 3 min. Resulting suspension was diluted with freshly distilled water
(300 µL) and centrifuged for 20 min. (6000 rpm). The supernatant was filtered through M.E. Cellulose
disc filter (0.2 µm × 13 mm) and the filtrate was injected into HPLC column. The inhibitory activity of
the compounds was evaluated from the intensity of the peaks on the chromatogram referring to the
product of the enzymatic reaction ((6-esculetinyl) 4′-O-β-D-galactopyranosyl-β-D-glucopyranoside).
For compound 64 with the enzyme inhibiting activity IC50 value was determined using the same
procedure using the reaction mixtures containing inhibitor in the concentrations of: 0.1, 0.2, 0.4, 0.8,
and 1.6 mM and calculated using CalcuSyn software.
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4. Conclusions

We have shown that it is convenient to steer the activity of small-molecule inhibitors by modifying
some elements of their structure. In particular, the change of the linker structure and the glycoside
configuration affects the inhibitory properties of the analogues towards the β4GalT.

In our study, we focused on a simple and efficient synthesis of the analogues of a natural glycosyl
donor substrate of β4GalT. Within the glycoconjugates structure, we proposed for the ribose to be
replaced with an acyclic linkage. Glycoconjugates exhibit improved stability against hydrolytic
cleavage thanks to replacing the oxygen atom between the linker and sugar moiety with sulphur.
Additionally, the stability of glycoconjugates was enhanced by the introduction of an amide bond
between the linker and aminopyridyl 1-thioglycoside moiety.

For the preparation of (5-nitro-2-pyridyl) 1-thio-α-D-glycosides, a number of synthetic procedures
were used and, at last, we have applied one that was previously developed in our group. It is worth
noting that products 27, 28, 30, and 32 are new compounds not described in the literature so far. Also
important is the successful use of lipase to obtain the product 32 in a stereoselective way. As a result
of the studies a series of glycoconjugates containing both benzyl and acetyl protections in the sugar
unit was obtained. Their deprotection allowed for the obtainment of a series of analogues of natural
β4GalT substrates.

The biological activity of glycoconjugates has been checked using commercially available β4GalT.
No inhibition against β4GalT when using glycoconjugates 55–63 suggests that the α-D-thiogalacto-
and α-D-thioglucopyranoside motif connected with uridine is not sufficient to ensure binding at
the active site of the enzyme. Unexpectedly, it turned out that the glucoconjugate 64 with the β

configuration at the sugar anomeric centre is able to inhibit the enzyme, and what is particularly
interesting, the D-gluco- derivative is more active than D-galacatose conjugate. A similar pattern was
observed earlier in the case of uridine glycoconjugate in which the pyrophosphate linker was replaced
with O-methylene triazole unit [66]. At the time, it was suspected that this state of affairs is due to
the relatively rigid structure of the linker. In the case of currently described glycoconjugates, it was
assumed that replacing the rigid O-methylene triazole linker connected with C-5 of the ribose unit by a
more flexible aliphatic link would allow a better fit to the active enzyme centre. However, to determine
the mechanism of their action further studies are needed.

The results presented in this paper provide evidence for the efficacy of inhibitor mimicking parts
of the β4GalT natural substrate structure. Although compound 64 bearing a β-D-glucose fragment is
β4GalT inhibitor in vitro, further experiments are needed for testing whether the described results can
be extrapolated to other glycosyltransferases.

Supplementary Materials: Supplementary materials are available online. Figure S1–S86: 1H- and 13C-NMR
spectra of compounds 13, 14, 17–20, 27, 28, 30, and 30–65.
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