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Abstract: Light irradiation with high photon flux in the vacuum and far-UV region is known to
denature the conformation of biopolymers. Measures are in place at Diamond Light Source B23
beamline for Synchrotron Radiation Circular Dichroism (SRCD) to control and make this effect
negligible. However, UV denaturation of proteins can also be exploited as a novel method for
assessing biopolymer photostability as well as ligand-binding interactions. Usually, host–ligand
binding interactions can be assessed monitoring CD changes of the host biopolymer upon ligand
addition. The novel method of identifying ligand binding monitoring the change of relative rate
of UV denaturation using SRCD is especially important when there are very little or insignificant
secondary structure changes of the host protein upon ligand binding. The temperature study, another
method used to determine molecular interactions, can often be inconclusive when the thermal
effect associated with the displacement of the bound solvent molecules by the ligand is also small,
making the determination of the binding interaction inconclusive. Herein we present a review on
the UV-denaturation assay as a novel method to determine the relative photostability of protein
formulations as well as the screening of ligand-binding interactions using the high photon flux
Diamond B23 beamline for SRCD.

Keywords: circular dichroism; ligand binding; high photon flux; protein stability; synchrotron
radiation; SRCD; vacuum UV

1. Introduction

Circular Dichroism (CD) is a spectroscopic technique to obtain low-resolution structural
information about a wide variety of chiral materials in solution such as small molecules (drugs),
proteins, DNA, and polymers. For biopolymers, the knowledge of their active conformation and their
conformational behaviour as a function of environment (solvent polarity, pH, temperature, chemical
agents, and detergents) are essential to understand the mode of action at the molecular level and
identify quickly new potential targets for novel therapeutic drugs [1–13].

In the far-UV region, benchtop CD instruments using arc Xe lamps possess low photon flux at
shorter wavelength than 200 nm, requiring repeated consecutive scans and/or increased integration
time to achieve good signal-to-noise spectra. The use of synchrotron radiation light overcame this
limitation, extending the utility of the technique down 130 nm in the vacuum-UV region [14,15].
The development of Diamond B23 beamline for synchrotron radiation circular dichroism (SRCD)
with a unique, highly collimated microbeam [6] enabled the use of small aperture cuvette cells and
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capillaries (flat or round) to study precious samples with limited availability otherwise unattainable
with benchtop CD instruments [8].

Diamond Light Source B23 beamline for SRCD has been designed to generate high photon flux
(at 200 nm 3.2 × 1012 photons s−1 (0.1% bandwidth)−1) [6]. Although high UV photon flux leads to
protein denaturation in the far-UV region [7,8], the implementation of a set of simple yet effective
measures enables the control of the denaturation/degradation of biomolecules which can be used as
a novel assay to assess biopolymer photostability and ligand-binding interactions.

We have previously reported the protein photo denaturation using the high far-UV photon flux
of B23 beamline [7]. Like thermal denaturation, UV denaturation varies from protein to protein
showing different amounts of conformational changes that correlate with the degree of protein stability.
With synchrotron beamlines for SRCD, the protein photo denaturation induced in far-UV region
is radiation power and dose-dependent [16]. This effect can also be induced using Chirascan CD
spectropolarimeter (Applied Photophysics, Leatherhead, UK) but with bandwith ≥4 nm. However,
as the photon flux generated by the Xe arc lamp of the Chirascan decreases with the age of the lamp,
the effect is greater with new lamps and greatly reduced for old lamps. Also, the damage of the
monochromator MgF2-coated aluminium mirrors is increased when operating the instrument with
bandwidths greater than 1 to 2 nm [16]. This limitation does not exist for B23 as the beamline operates
in constant topping mode between 290 and 300 mA [6] and the mirrors are made of uncoated silicon to
withstand any solarisation effects.

OH radicals from water radiolysis formed by UV irradiation of aqueous solutions have been
proposed as the cause of the protein unfolding, termed UV denaturation [17]. Another mechanism has
been suggested where the thermal effect of the water molecules bound to the proteins when irradiated
with far-UV light was the cause of protein UV denaturation [18,19]. This latter mechanism was based
on the apparent similarity of the protein conformational changes induced by both UV irradiation and
heating. The fact that under the same conditions—number of scans and beamline configuration in
the far-UV region—the protein UV denaturation does not occur in the near-UV region (250–330 nm)
(data not shown) even though the thermal denaturation can still be observed in this wavelength
range, is a further indication that the origin of the protein UV denaturation is not due to thermal
effects. However, as the SRCD changes are UV radiation and dose-dependent, namely irradiation time,
the protein denaturation in the near-UV region cannot be ruled out for very long light exposures.

The good news is that SRCD protein UV denaturation/degradation at B23 can be controlled.

2. Discussion

2.1. Exploitation and Control of the High UV Photon Flux of B23

For B23, the control of the UV denaturation can be achieved by adopting a combination of different
measures such as:

1. Increased irradiated area of the sample by removing the lens located in front of the polariser
Rochon prism [6]. This action decreases the photon flux density (brilliance), increasing the protein
stability against UV denaturation.

2. Decreased photon flux by reducing the slit width of the double grating subtractive
monochromator from 0.500 mm to 0.200 mm, which correspond to a bandwidth of 1.1 and
0.5 nm, respectively.

3. Combination of the above two measures as illustrated in Figure 1 where the least photostable
human serum albumin essentially fatty-acid-free and globulin-free (HSAff) can withstand the
far-UV irradiation of 100 consecutive scans.

4. Using the rotating cell holder for cylindrical cells (Hellma 121.00-QS type) (Figure 1). In this
manner, the monochromator slit width can be kept as wide as possible yet allowing a high
number of consecutive spectra (up to 100 scans) to be scanned without inducing detectable CD
spectral changes.
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In general, it is not necessary to scan up to 100 SRCD spectra. Often, 20–30 repeated consecutive
scans are sufficient to assess the degree of protein photostability and what measure or measures are
more appropriate to eliminate it. For studies where protein conformational changes may occur in the
far-UV region as a function of temperature and/or ligand-binding interactions, it is essential, however,
that the protein UV denaturation is eliminated. In these cases, the SRCD changes will arise only from
the chosen type of perturbing agent such as temperature, pH, and ligand titration, and not from the
contribution of UV denaturation.
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Figure 1. 100 Repeated CD scans of HSAff in H2O measured with B23 end-station without plano-
convex lens, integration time = 1 s, 0.02 cm cylindrical cell, and with different monochromator slit 
widths. (a) With 0.280 mm slit (0.8 nm bandwidth (bw)), only the first six spectra were within 3% of 
the overall intensity change whilst with (b) 0.200 mm slit (bw = 0.5 nm), no significant denaturation 
was observed to 100 repeated scans. Similar result was observed when a rotating cell holder (photo 
below) with 1.1 nm bw was used. (c) Rotating cell holder: 1, cylindrical cell; 2, cell holder with rotor; 
3, cover; and 4, Peltier temperature controlled holder. 

2.2. Temperature Scan 

For example, an experiment where the SRCD is measured every 2 °C would require 46 spectra 
for the 4–94 °C heating ramp and 45 spectra for the reversed 92–4 °C cooling ramp for a total of 91 
spectra. If three repeated scans are required for each temperature increment to improve the signal-
to-noise ratio, a compromise for a 5–85 °C range at 5 °C increments rather than 2 °C has to be made, 
resulting in 99 scans. For these studies, it is recommended to operate in scanning mode rather than 
at fixed wavelength. With the scanning mode, the plot of the CD intensity versus temperature can be 
extracted slicing the CD spectra at the wavelength of the most significant spectral features, usually 
for proteins at 190 nm, 210 nm, and/or 220 nm wavelengths. The advantage of measuring the full CD 
spectrum rather than the change at fixed wavelength is that for each temperature, the secondary 
structure content can be estimated, revealing at which temperatures the α-helix, β-strand, polyproline 
of type II (PPII), β-turn, and unordered elements are varying: increasing, decreasing, or remaining 

Figure 1. 100 Repeated CD scans of HSAff in H2O measured with B23 end-station without plano-convex
lens, integration time = 1 s, 0.02 cm cylindrical cell, and with different monochromator slit widths.
(a) With 0.280 mm slit (0.8 nm bandwidth (bw)), only the first six spectra were within 3% of the overall
intensity change whilst with (b) 0.200 mm slit (bw = 0.5 nm), no significant denaturation was observed
to 100 repeated scans. Similar result was observed when a rotating cell holder (photo below) with
1.1 nm bw was used. (c) Rotating cell holder: 1, cylindrical cell; 2, cell holder with rotor; 3, cover; and 4,
Peltier temperature controlled holder.

2.2. Temperature Scan

For example, an experiment where the SRCD is measured every 2 ◦C would require 46 spectra for
the 4–94 ◦C heating ramp and 45 spectra for the reversed 92–4 ◦C cooling ramp for a total of 91 spectra.
If three repeated scans are required for each temperature increment to improve the signal-to-noise
ratio, a compromise for a 5–85 ◦C range at 5 ◦C increments rather than 2 ◦C has to be made, resulting
in 99 scans. For these studies, it is recommended to operate in scanning mode rather than at fixed
wavelength. With the scanning mode, the plot of the CD intensity versus temperature can be extracted
slicing the CD spectra at the wavelength of the most significant spectral features, usually for proteins at
190 nm, 210 nm, and/or 220 nm wavelengths. The advantage of measuring the full CD spectrum rather
than the change at fixed wavelength is that for each temperature, the secondary structure content
can be estimated, revealing at which temperatures the α-helix, β-strand, polyproline of type II (PPII),
β-turn, and unordered elements are varying: increasing, decreasing, or remaining stable often at the
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expense of each other [20–22]. We strongly recommend that the study of protein behaviour is richer in
information if conducted measuring the full spectrum rather than the fixed wavelength as a function
of the perturbing agent.

2.3. Titration

The CD titration is another example that requires the recording of many spectra to determine the
formation of molecular interactions. Although the observation in the far-UV region of SRCD spectral
changes of the protein secondary structure upon the addition of the ligand is unambiguously indicative
of binding interactions, the contrary is not true. As long as a molecular interaction does not change the
secondary structure content or induce any distortion of the canonical secondary structures, the lack
of detectable CD changes does not necessarily mean that there are no binding interactions. Though
this is often the case, binding interactions that affect the quaternary structures can take place without
significant changes at the protein secondary structure level. For proteins, the CD in the far-UV region
is mainly originated by the coupling of the electric transition moments of the amide bond of π–π*.
Unordered structures like loops possess are characterized by a weak and U type of spectrum centered
at about 200 nm. Changes of the dihedral angles of these loops will generate very little CD changes.
Therefore, in a protein “breathing” mode, the movements of structured domains around loops will
be largely invisible in the far-UV but could be seen in the near-UV region that is sensitive to the local
environment of the side-chain of aromatic residues and dihedral angle of disulphide bonds [9–11].

Very often, the near-UV region offers the best choice of detecting CD changes of the local
environment of aromatic amino-acid residues upon ligand addition that can be used successfully
as natural probes to determine ligand-binding interactions qualitatively and quantitatively using
a nonlinear regression analysis [8–11]. On the other hand, if the aromatic chromophores of the
protein residues or the ligand are far from the binding site (>6 Å) or the ligand is devoid of
suitable chromophores, other methods to determine molecular interactions must be used, such as the
temperature study discussed above (thermal stability often increases with protein–ligand complex
formation) or isothermal calorimetry (ITC). The use of ITC could have limitations due to the large
amount of sample required in comparison with CD studies or the fact that the heat involved
in the binding interactions is rather small or compensated by the replacements of many bound
water molecules.

2.4. UV Photodenaturation Application

In these cases, the protein denaturation induced by UV irradiation provides a novel type of assay
to determine the biopolymers’ stability and ligand-binding interactions. Figure 2 illustrates the
spectral changes of HSAff with and without ligands such as diazepam (1:1 molar ratio), fatty acids
(octanoic acid), tolbutamide, β-cyclodextrin, γ-cyclodextrin, and flavopiridol when irradiated through
repeated consecutive scans. The repeated spectra were scanned under the same conditions of
integration time = 1 s, bandwidth = 0.8 or 1.1 nm, wavelength range = 260–178 nm, synchrotron
radiation ring current of 250 mA, HSAff concentration (5 µM or 10 µM in a 0.02 cm cell), and number
of scans (100) as for HSAff alone reported in Figure 1. The reduced overall intensity of the SRCD
spectra was indicative of a decreased content of α-helical conformation that was greater for albumin
alone (Figure 2a) than for albumin with the ligand (Figure 2b).
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Figure 2. (a) Thirty repeated consecutive SRCD spectra of HSAff with inset the rate of protein
denaturation at 191 nm. (b) Plot of SRCD percentage intensity change relative to the first scan (∆CD) at
191 nm versus the number of scans for HSAff in H2O (10 µM) and with ligands such as diazepam (DZ),
tolbutamide, and fatty acids (fa). The solutions with fatty acids were respectively labelled HSAfa and
HSAfrV based on the different amounts of octanoic acid (redrawn from [7]). (c) Negative control with
β-cyclodextrin, γ-hydroxypropyl cyclodextrin, and HSAff. (d) acid-glycoprotein (AGP) in the presence
of antileukaemia agent, flavopiridol.

2.4.1. Ligand Binding

With the UV-denaturation assay, the protein HSAff showed substantially higher photostability
with ligands than without that can be used successfully to identify qualitatively binding interactions,
particularly for ligand devoid of UV absorption in the far-UV region (Figure 2b).

The rate of protein UV denaturation is better illustrated in the plot of the SRCD intensity at fixed
wavelength (191 nm) versus the number of scans that shows different kinetics (Figure 2b). The initial
slope of protein denaturation was much steeper for human serum albumin fatty acid free (HSAff) than
the other types of albumin–ligand mixtures (HSAfa and HSAfrV) that correlated with an increased
stability due to the binding interactions with Diazepam, Tolbutamide, and octanoic acid. It is interesting
to note that a similar stability was observed for two types of albumin, HSAfa and HSAfrV, that contain
approximately 4 and 2 equivalents of octanoid acid, respectively. As an example of a negative control
using β-cyclodextrin (β-CD) and γ-hydroxypropyl cyclodextrin (γ-HPCD), they were also measured
in a mixture with HSAff 1:1, which showed no changes in the rate of UV denaturation at 191 nm
(Figure 2c). Flavopiridol is used as potential antileukaemia and showed to bind to acid glycoprotein,
which is the next most abundant circulating protein in the blood, altering the photodenaturation profile
of AGP (Figure 2d).

It is not trivial to determine the binding of achiral molecules or those with carbonyl chromophores
such as sugar, for example, glycosaminoglycans (GAGs), that have little or no absorption or CD signal
contributions in the far-UV region [23]. GAGs are present in all amyloid deposits. It is known that
the interaction between lysozyme, a prototypic amyloid-forming protein, and GAGs can be altered
by the addition of cations [23], which might have implications in the formation of amyloid. We have
also recently reported the use of UV-denaturation assay to probe the mechanism of amyloidosis of
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α-synuclein [24–26], glial fibrillary protein (GFAP), and human lysozyme [27–29]. The use of β-lactam
antibiotic ceftriaxone as a potential drug to ameliorate neurodegenerative diseases was studied using
GFAP and lysozyme showing that the presence of ceftriaxone could reduce significantly the rate of UV
photodenaturation of the proteins (Figure 3a).
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Ceftriaxone has been found to interact with GFAP (Figure 3a), one of the proteins involved in
specific neurodegenerative diseases, inhibiting their pathological aggregation [24–27]. Ceftriaxone may
act as a chaperone-like molecule, preventing or reversing protein denaturation and aggregation [28].
The effect of ceftriaxone was found to be pH-dependent. In phosphate buffer, pH 6.8, ceftriaxone
appeared to decrease the UV-induced lysozyme denaturation (Figure 3b), whilst in Gly buffer pH 2.8,
no significant effect of ceftriaxone was detected (Figure 3b) [28,29].

Another example of the application of the UV-denaturation assay is that it revealed with few
repeated consecutive SRCD scans the photostabilising effect of gold nanoparticles (AuNP) on human
serum albumin (HSA) (Figure 4a,b). This can be illustrated in the plotting of SRCD intensity at
209 nm versus irradiation exposure time (Figure 4c) and the loss of α-helical content induced by
UV irradiation that was mirrored by the increase of β-strand, β-turn, and unordered conformations
(Figure 4d) [30–33].
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fourth scan in black. (redrawn from [31]). (c) Secondary structure content estimated for the free HSA
from the 30 repeated consecutive scans. (d) The SRCD photodenaturation assay of HSA (red circles)
and HSA bound to AuNP (black circles) was conducted as 30 consecutive repeated scans. As each
spectrum was measured in 3 min, the overall exposure of the 195–250 nm wavelength range could be
approximated as 90 min. The SRCD intensity at 209 nm is plotted against overall irradiation time (free
HSA fitted to a single exponential function, blue line and data for HSA bound to AuNPs fitted with
a linear function, orange line). In this plot, the first SRCD values at 209 nm of the first spectrum is the
“zero” time irradiation.

2.4.2. Peptide Design

The conformational changes promoted by perturbations of the environment or modifications of the
primary sequence can affect both the physical and biological properties of peptides and proteins [9,33].
In the case of vasoactive intestinal peptide (VIP) and VIP-analogues, the acylation of amino groups
of the peptide sequence appeared to induce different conformations in aqueous solutions [33].
In membrane-like environments, however, no conformational changes were observed [33]. As VIP
is known to bind to G-protein coupled receptor (GPCR), a membrane protein, the understanding of
the local binding environment is important as it might give further insight into the structure activity
relationship of VIP and guiding the design of more active VIP analogues. Increasing the VIP α-helical
conformation in the analogues was crucial as it appeared to enhance the biological activity. While all
three peptides lost similar amounts of helical contribution after 100 scans, VIP is more resistant over
the first 20 scans compared to the other two peptides before reaching a plateau as shown in Figure 5.
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2.4.3. Bioformulation

An application of the UV-denaturation assay is the screening of formulations that promote
protein stability [9]. The efficiency of the screening was increased by using the 6-cell turret. The rate
of UV denaturation of a monoclonal antibody Mab1 in six different formulations was determined
for each formulation by scanning in the far-UV region (185–260 nm) 30 consecutive repeated spectra
that corresponded to an irradiation dose of approximately 90 min (Figure 6). For each formulation,
30 repeated consecutive SRCD spectra revealed the collapse at different rates of the positive CD band
at about 200 nm associated with the π–π* transition of the β-strand conformation, which was the direct
indication of the loss of secondary structure as the antibody unfolded and was related to the reduction
of protein stability. The complete experiment was carried out overnight over 9 h as a single multiscript
experiment controlling the operation of the B23 beamline. The six rates of UV-denaturation assay
revealed that Mab1 in buffer formulation EC4 was the most stable (100% to 70%, Figure 6c) and the
least stable in EC6 formulation (Figure 6b). In terms of relative stability, the six formulations can be
therefore ranked qualitatively as follows: EC4 > EC5 > EC1 = EC2 >> EC6 (Figure 6c) [9].
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2.4.4. Food Chemistry

Another relevant application of the use of the 6-cell turret was the ligand screening of ethyl
esters interacting with wine proteins. During wine fermentation, ethyl esters, which largely contribute
to the wine aroma, have been suggested to interact with wine proteins [34]. In the production
of wine, bentonite is used to stabilize the wine. However, an undesired effect of the bentonite
treatments is the removal of wine proteins that bound to the aroma alkyl esters, altering the wine
aroma negatively [35,36]. The UV-denaturation assay carried out at B23 beamline [37] confirmed that
the main wine protein, the thaumatin-like protein VVTL1, was able to bind to ethyl esters of different
chain lengths: C6, C8, C10, and C12 (Figure 7). The rates of UV denaturation of 20 consecutive repeated
SRCD scans for the VVTL1 protein in the presence of alkyl esters were significantly different from that
of VVTL1 alone and these results were unambiguously indicative of the formation of protein–ethyl
ester complexes. Ethyl octanoate (C8) appeared to increase the VVTL1 photostability more than the
other C6, C10, and C12 esters with the following order: C8 > C10 > C12 ≈ C6 (Figure 7a).

The content of β-strand and unordered conformations estimated from each of the 20 repeated
consecutive SRCD scans was different for the complexes of VVTL1 with ethyl octanoate (VVTL1-C8)
and VVTL1 with ethyl decanoate (VVTL1-C10) than that of VVTL1 alone (Figure 7b). Among the
protein–ethyl ester complexes, the one with octanoate (C8) showed very slight UV-denaturation rate,
whilst that with C6 showed the highest rate, suggesting that this ester may act as a negative effector
for the protein stability. The results of the UV-denaturation assay indicated that the treatment with
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bentonite should be carried out before the aroma compounds (ethyl esters) are formed during the must
fermentation in order to preserve the organolectic quality of the wine [35,36,38].
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3. Conclusions

The UV-denaturation assay has been developed at the high photon flux Diamond B23 beamline
for SRCD to assess the relative protein stability and determine qualitatively ligand-binding interactions,
in particular, for ligands devoid of UV chromophores or with little UV absorption.

The UV-denaturation assay has been used successfully for the identification of stabilising agents
in protein formulations, particularly for monoclonal antibodies. In general, protein–ligand binding
interactions can be assessed monitoring the spectral changes of the CD of the protein upon ligand
addition. The novel method of identifying ligand binding is to determine the change of the relative
UV denaturation rate of the protein with and without ligand using B23 beamline. This assay is often
coupled with the temperature study, another method used to determine molecular interactions that
can be inconclusive due to the thermal effect associated with the displacement of the bound solvent
molecules being cancelled, thus the ligand interaction is essential in revealing otherwise elusive
protein–ligand binding interactions.

In summary, the protein UV-denaturation assay using the high photon flux Diamond B23 beamline
for SRCD is an important tool that can be used to characterise the photostability of proteins as a function
of the environment such as formulations, pH, concentration, excipients, chemical agents, detergents,
membranes, and ligands/drugs.
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