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Abstract: Valorization of lignocellulosic biomass into a biorefinery scheme requires the use of all
biomass components; in this, the lignin fraction is often underutilized. Conversion of lignin to
nanoparticles is an attractive solution. Here, we investigated the effect of different lignin isolation
processes and a post-treatment homogenization step on particle formation. Lignin was isolated
from birch chips by using two organosolv processes, traditional organosolv (OS) and hybrid
organosolv-steam explosion (HOS-SE) at various ethanol contents. For post-treatment, lignin was
homogenized at 500 bar using different ethanol:water ratios. Isolation of lignin with OS resulted
in unshaped lignin particles, whereas after HOS-SE, lignin micro-particles were formed directly.
Addition of an acidic catalyst during HOS-SE had a negative impact on the particle formation,
and the optimal ethanol content was 50–60% v/v. Homogenization had a positive effect as it
transformed initially unshaped lignin into spherical nanoparticles and reduced the size of the
micro-particles isolated by HOS-SE. Ethanol content during homogenization affected the size of the
particles, with the optimal results obtained at 75% v/v. We demonstrate that organosolv lignin can be
used as an excellent starting material for nanoparticle preparation, with a simple method without the
need for extensive chemical modification. It was also demonstrated that tuning of the operational
parameters results in nanoparticles of smaller size and with better size homogeneity.

Keywords: lignin nanoparticles; micro-particles; birch; organosolv pretreatment; biomass
fractionation; homogenization

1. Introduction

Transition to a more sustainable society requires the use of renewable and sustainable resources for
the production of fuels, chemicals, and materials. Among the different options, lignocellulosic biomass
offers an important alternative as it consists of a renewable and plentiful resource [1]. Lignocellulosic
biomass can be derived from a variety of sources, such as residues and by-products from forestry
and agricultural sectors. The use of residues and by-products has many advantages, as they do
not compete directly with the production of food and feed. Furthermore, their conversion to fuels,
chemicals, and materials could become an extra source of revenue for the forestry and agricultural
sectors, contributing to the support of rural economies.
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Lignocellulosic biomass consists mainly of cellulose, hemicellulose, and lignin and its rigid
structure makes it necessary to apply a pretreatment step prior to any further conversion. A number
of different pretreatment methods, such as steam explosion, hydrothermal, alkaline, and dilute acid,
have been successfully applied to lignocellulosic biomass prior to enzymatic saccharification [2–5].
Currently, the most common approach for biomass bioconversion involves the fermentation of sugar to
ethanol or other fuel after biomass pretreatment and saccharification [6]. Conversion of hemicellulose
(consisting mainly of pentoses) to ethanol has been a challenge as Saccharomyces cerevisiae, which is
commonly used as fermenting organism, lacks the ability to naturally take up pentoses [7]. This has
resulted in extended research efforts to construct strains capable of co-utilizing glucose and pentoses
aiming to improve the overall ethanol yield [8]. A consequence of the so called ‘glucocentric’ approach
is the underutilization of lignin, which is recovered at the end of the process as a low-value by-product
and is normally burnt for the production of heat and electricity [9]. Moreover, combustion of lignin
raises environmental concerns as it can result in the generation of organic pollutants, oxygenated PAHs,
and particulate matter [10]. Lignin, however, can account for up to 40% of the plant dry biomass [6] and
techno-economic analysis of lignocellulosic biorefineries have stressed its valorization as an essential
step [11].

Lignin is the largest renewable source of aromatics [12] and its complex and diverse nature,
rich in functional groups, makes it a very interesting molecule to be used in high added-value
applications. These include the production of fuels (e.g., gasoline-range aromatics and alkanes),
fine chemicals (e.g., benzene and adipic acid), and materials (e.g., carbon fibers, adsorbents, composites,
and polymers), which prompted intense research in this field during the last years [6,12–15]. Use of
the lignin fraction in these processes is a prerequisite for establishing a sustainable biomass biorefinery,
whereby all the main biomass components are routed towards product formation. The use of lignin in
high-end applications depends on the ability to obtain high-quality lignin fractions. One approach is
to recover lignin at the beginning of the process prior to any further conversion of the carbohydrate
fractions. This can be achieved by establishing fractionation technologies, in which lignocellulosic
biomass is fractionated to relative clean streams of cellulose, hemicellulose, and lignin. These, can be
converted to a wide portfolio of products through biological or (thermo)-chemical transformations.
Among the different alternatives, organosolv pretreatment offers one of the most promising options
for a biomass fractionation process and has already been used for the fractionation of both agricultural
residues [1,16,17] and forest biomass [9,16,18]. Organosolv pretreatment utilizes aqueous-organic
solvent mixtures for the cooking of biomass at elevated temperatures (100–250 ◦C) with or without the
addition of acid catalyst [19–21]. Organosolv pretreatment is advantageous over other lignin isolation
processes (e.g., kraft and sulfite process) as it utilizes sulfur-free chemicals (thus not incorporating
sulfur into lignin) and retains the majority of the β-ether bonds, resulting in a lignin structure close to
natural lignin [12,15,22].

Lignin valorization for the production of chemicals can nevertheless be challenging due to
its complex and non-homogeneous structure, which is also affected by the chosen lignin isolation
method [23]. Utilization of lignin for the formation of nanostructured materials may overcome
this issue [24] as it avoids complex depolymerization and upgrading processes. This approach has
already resulted in the preparation of various forms of lignin nanostructures, such as nanolignins,
colloidal nanospheres, and nanocapsules [25]. The ensuing lignin micro- and nanoparticles have
various applications in material science for improving the mechanical, thermal stability, barrier,
antibacterial, and antioxidant properties of polymer nanocomposites, as drug carriers, in the delivery
of hydrophobic molecules, and as UV barrier [23,24,26]. Various approaches have been proposed
for the formation of lignin particles, including self-assembly, chemical, mechanical, or ultrasonic
treatments [27]. Mechanical treatments such as homogenization have already been effectively used
for the formation of lignin particles, often in relatively simple and straightforward processes [25,26].
The use of solvents is common [28,29] and important for micro- and nanoparticles formation [25].
Crucially, it overcomes the intrinsic poor solubility of kraft lignin in organic solvents, which requires
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the application of laborious chemical modifications such as acetylation and grafting to improve
yields [25]. Besides adding up to/increasing the process complexity, such modifications often employ
environmentally hazardous chemicals [28]. Organosolv lignin has higher solubility in organic solvents,
making it a better candidate for these processes.

The aim of the current work was to study the formation of micro- and nanoparticles from
organosolv-isolated lignin from birch chips. We assessed the effect of operating conditions of the
organosolv fractionation process on the ability to form lignin particles. Specifically, we compared
a traditional organosolv fractionation method (OS) that was optimized for birch biomass by our
group [18] with a newly developed hybrid organosolv steam-explosion fractionation method
(hybrid, HOS-SE) [9]. The effects of the explosive discharge (occurring in the hybrid fractionation
process), ethanol content, and addition of acidic catalyst during fractionation on particle formation
were examined. Subsequently, we evaluated the effect of homogenization as a post-treatment step on
the formation of lignin particles under various ethanol:water ratios and in relation to the choice of
lignin isolation process.

2. Results and Discussion

2.1. Effect of the Fractionation Process on Particle Formation

Initially, we evaluated the effect of various operational conditions of the HOS-SE fractionation
process on the direct formation of lignin particles. Addition of acidic catalysts, such as sulfuric or
phosphoric acid, is common during organosolv as it can improve the cellulose content, saccharification,
and delignification yields [9,30,31]. Use of acid during pretreatment has also an impact on lignin itself,
as it can promote the cleavage of ether bonds [32,33], causing chemical changes to the lignin structure.
Here, addition of sulfuric acid (1% w/wbiomass) during organosolv pretreatment promoted the formation
of unshaped lignin, whereas absence of the acid catalyst favored the formation of lignin micro-particles
(Figure 1). The latter, however, appeared non-homogenous in size, varying mainly from a few µm
to >1 µm in diameter, whereas few particles were also smaller than 1 µm. Importantly, this finding
demonstrated that spherical lignin particles could be isolated directly from the liquor after pretreatment,
without any need for further processing.

Molecules 2018, 23, x 3 of 12 

 

environmentally hazardous chemicals [28]. Organosolv lignin has higher solubility in organic 
solvents, making it a better candidate for these processes. 

The aim of the current work was to study the formation of micro- and nanoparticles from 
organosolv-isolated lignin from birch chips. We assessed the effect of operating conditions of the 
organosolv fractionation process on the ability to form lignin particles. Specifically, we compared a 
traditional organosolv fractionation method (OS) that was optimized for birch biomass by our group 
[18] with a newly developed hybrid organosolv steam-explosion fractionation method (hybrid, HOS-
SE) [9]. The effects of the explosive discharge (occurring in the hybrid fractionation process), ethanol 
content, and addition of acidic catalyst during fractionation on particle formation were examined. 
Subsequently, we evaluated the effect of homogenization as a post-treatment step on the formation 
of lignin particles under various ethanol:water ratios and in relation to the choice of lignin isolation 
process. 

2. Results and Discussion 

2.1. Effect of the Fractionation Process on Particle Formation 

Initially, we evaluated the effect of various operational conditions of the HOS-SE fractionation 
process on the direct formation of lignin particles. Addition of acidic catalysts, such as sulfuric or 
phosphoric acid, is common during organosolv as it can improve the cellulose content, 
saccharification, and delignification yields [9,30,31]. Use of acid during pretreatment has also an 
impact on lignin itself, as it can promote the cleavage of ether bonds [32,33], causing chemical changes 
to the lignin structure. Here, addition of sulfuric acid (1% w/wbiomass) during organosolv pretreatment 
promoted the formation of unshaped lignin, whereas absence of the acid catalyst favored the 
formation of lignin micro-particles (Figure 1). The latter, however, appeared non-homogenous in size, 
varying mainly from a few μm to >1 μm in diameter, whereas few particles were also smaller than 1 
μm. Importantly, this finding demonstrated that spherical lignin particles could be isolated directly 
from the liquor after pretreatment, without any need for further processing. 

  
(a) (b) 

Figure 1. Morphology of lignin after HOS-SE pretreatment, (a) with sulfuric acid catalyst; (b) without 
sulfuric acid catalyst. Pretreatment took place at 200 °C for 15 min with 60% v/v ethanol content. 

Lignin is generally insoluble in water [18], but it also contains several hydrophilic functional 
groups, such as carboxylic and aliphatic hydroxyl groups [34], which give it an amphiphilic nature. 
Solvent type and content play important roles during the assembly of lignin nanoparticles [28,35]. 
Therefore, we hypothesized that the ethanol content during pretreatment might affect the formation 
of lignin nanoparticles. To this end, we evaluated the formation of lignin nanoparticles at an ethanol 
content varying from 50% to 70% v/v. We observed that an ethanol content of 50–60% v/v promoted 
the formation of lignin micro-particles with a well-defined spherical shape (Figure 2a,b). Use of a 

Figure 1. Morphology of lignin after HOS-SE pretreatment, (a) with sulfuric acid catalyst;
(b) without sulfuric acid catalyst. Pretreatment took place at 200 ◦C for 15 min with 60% v/v
ethanol content.

Lignin is generally insoluble in water [18], but it also contains several hydrophilic functional
groups, such as carboxylic and aliphatic hydroxyl groups [34], which give it an amphiphilic nature.
Solvent type and content play important roles during the assembly of lignin nanoparticles [28,35].



Molecules 2018, 23, 1822 4 of 12

Therefore, we hypothesized that the ethanol content during pretreatment might affect the formation
of lignin nanoparticles. To this end, we evaluated the formation of lignin nanoparticles at an ethanol
content varying from 50% to 70% v/v. We observed that an ethanol content of 50–60% v/v promoted the
formation of lignin micro-particles with a well-defined spherical shape (Figure 2a,b). Use of a higher
ethanol content resulted in larger particles, but they lacked a defined spherical shape, as indicated by
spherical, oval, and undefined appearances (Figure 2c).
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Application of high-pressure conditions during homogenization has been used previously for the
fabrication of lignin particles [25,26]. For this reason, we suspected that the tension on the solubilized
lignin elicited by the explosive discharge step could drive the formation of lignin micro-particles
during pretreatment. To test this hypothesis, we compared the morphology of lignin particles with
and without the inclusion of the explosive discharge step. For this purpose, we assessed lignin isolated
with 50% v/v or 60% v/v ethanol. Compared to HOS-SE pretreatment (Figure 3a,b), traditional OS
(without the explosive discharge step) failed to yield spherical lignin particles, resulting instead in
amorphous undefined shapes (Figure 3c,d). The outcome was not affected by the ethanol content.
Thus, the forces created during the explosive discharge appear responsible for particle formation
during pretreatment.
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2.2. Lignin Particle Formation through Homogenization

Homogenization has been used for the preparation of lignin nanoparticles from kraft and
organosolv lignin using either a shear homogenizer [26] or a homogenizer [25]. During the process,
formation of lignin particles was reported to be significantly affected by ethanol content [25], but not by
homogenization time, as long as sufficient time was provided. Accordingly, we investigated the effect
of homogenization at different ethanol contents (0% v/v, 50% v/v, and 75% v/v). To ensure that adequate
time was given for particles to form, homogenization was performed by recycling the liquid five times.

To determine whether post-treatment by homogenization affected the formation of micro- and
nanoparticles of different shapes or sizes, we used lignin isolated by both OS and HOS-SE methods.
Specifically, we sought to determine the effect of homogenization on amorphous lignin (OS lignin)
and on size reduction of already formed particles (HOS-SE lignin). Treatment of HOS-SE lignin
(isolated with 60% v/v ethanol) by homogenization at 50% v/v and 75% v/v ethanol content significantly
reduced particle size and improved their homogeneity (Figure 4). Specifically, prior to homogenization,
HOS-SE lignin (Figure 4a) consisted mainly of micro-particles of 1–3 µm, with a few having slightly
higher or lower diameter. After homogenization with 50% v/v ethanol, smaller particles with a diameter
ranging from 1 µm to approximately 250–300 nm were formed (Figure 4c). Increasing ethanol content
during homogenization to 75% v/v, further reduced particle size, with the majority of them now
ranging between 250 nm and 500 nm (Figure 4d). On the contrary, homogenization without ethanol
caused deformation of already spherical particles (Figure 4b). A similar homogenization outcome was
observed also with HOS-SE lignin isolated with 50% v/v and 70% v/v ethanol.

An analogous positive effect of homogenization was observed with OS lignin (Figure 5a).
There, homogenization facilitated the formation of defined spherical particles from initially unshaped
and amorphous lignin. Similar to HOS-SE lignin, homogenization in the absence of ethanol (with 100%
v/v water) failed to improve lignin morphology (Figure 5b). In contrast, homogenization with 50% v/v
ethanol promoted the formation of spherical particles of various sizes (Figure 5c), which was further
improved in terms of shape and size homogeneity when ethanol was increased to 75% v/v (Figure 5d).
At these homogenization conditions, nanoparticle diameter varied between approximately 130 nm
and 350 nm, with some of them being even smaller (Figure 5d). Comparable results were obtained by
homogenization of OS lignin from the 50% v/v pretreatment.

The above observations were also confirmed by determining particle size with dynamic light
scattering (DLS) (Table 1). Volume and intensity distributions of particle sizes of nanoparticles
are shown in Supplementary Material, Figure S1. The results were in accordance with scanning
electron microscopy (SEM) images and confirmed a reduction in particle size after homogenization.
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Increasing ethanol content during homogenization resulted in nanoparticles of lower diameter, in both
OS and HOS-SE lignin samples (when spherical particles were formed).
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Table 1. Determination of particle size, polydispersity index, and zeta potential of lignin micro- and
nanoparticles isolated in the present study.

Lignin Sample Size (nm) PDI Zeta Potential (mV)

HOS-SE, 50% v/v EtOH, w/o homogenization 3101 ± 81 0.635 ± 0.084 −30.4 ± 0.8
HOS-SE, 50% v/v EtOH, homogenization with 0% v/v EtOH 2002 ± 52 0.248 ± 0.016 −47.1 ± 0.6

HOS-SE, 50% v/v EtOH, homogenization with 50% v/v EtOH 650 ± 9 0.164 ± 0.027 −37.1 ± 1.2
HOS-SE, 50% v/v EtOH, homogenization with 75% v/v EtOH 488 ± 14 0.486 ± 0.011 −24.5 ± 0.6

HOS-SE, 60% v/v EtOH, w/o homogenization 4505 ± 326 0.285 ± 0.043 −30.2 ± 1.8
HOS-SE, 60% v/v EtOH, homogenization with 50% v/v EtOH 1165 ± 42 0.338 ± 0.029 −30.9 ± 0.5
HOS-SE, 60% v/v EtOH, homogenization with 75% v/v EtOH 825 ± 25 0.356 ± 0.002 −37.2 ± 1.9

HOS-SE, 70% v/v EtOH, w/o homogenization 2615 ± 999 1.000 ± 0.000 −19.6 ± 1.6
HOS-SE, 70% v/v EtOH, homogenization with 75% v/v EtOH 200 ± 4 0.341 ± 0.001 −30.8 ± 1.6

OS, 50% v/v EtOH, homogenization with 50% v/v EtOH 956 ± 10 0.413 ± 0.035 −38.0 ± 1.0
OS, 50% v/v EtOH, homogenization with 75% v/v EtOH 530 ± 972 0.502 ± 0.094 −35.4 ± 0.7
OS, 60% v/v EtOH, homogenization with 50% v/v EtOH 906 ± 125 0.548 ± 0.069 −20.5 ± 1.1
OS, 60% v/v EtOH, homogenization with 75% v/v EtOH 834 ± 27 0.457 ± 0.072 −39.3 ± 0.8

Analysis with DLS was performed only on lignin samples that formed spherical particles.

DLS served also to determine surface charge (zeta potential) of lignin samples forming spherical
particles. Zeta potential is often used to predict colloidal stability [36]. High positive or negative zeta
potential values indicate adequate electrical double layer repulsion between suspended nanoparticles,
preventing their aggregation. The zeta potential is often measured on lignin nanoparticles [37],
which generally exhibit negative values, a fact that can be attributed to the negative charge of phenols,
as well as (partly) to the adsorption of hydroxyl ions [28,37–39]. In the present study, we observed
a significant effect of ethanol content during pretreatment of HOS-SE on the zeta potential. Specifically,
the surface charges on particles of HOS-SE lignin (prior to homogenization) isolated with 50% and
60% v/v ethanol were −30.4 ± 0.8 mV and −30.2 ± 1.8 mV, respectively. In contrast, at 70% v/v
ethanol content, the zeta potential was less negative. This reduced zeta potential value could partially
explain why, as noted by SEM, lignin particles isolated with HOS-SE using 50% v/v and 60% v/v had
a well-formed spherical shape (Figure 2a,b), whereas lignin isolated with 70% v/v ethanol formed less
defined spherical particles, which tended to create amorphous aggregates (Figure 2c).

In general, the homogenization post-treatment step resulted in the formation of more stable
particles when compared to the initial lignin samples. Zeta potential values of the nanoparticle
dispersion formed with HOS-SE and OS lignin at 60% v/v ethanol content after homogenization at
75% v/v ethanol were −39.3 ± 0.8 and −37.2 ± 1.9 mV, respectively (Table 1). These values indicate
that such lignin particles were relatively stable in water [28]. This characteristic, combined with
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their well-distributed particle size and spherical shape, renders these lignin nanoparticles suitable for
different applications, such as the production of nanocomposite films [38] or as drug carriers [40].

The same positive effect of homogenization on nanoparticle formation was observed in a previous
study, whereby initially amorphous lignin was re-arranged and formed spherical nanoparticles [41].
However, it should be noted that optimal ethanol content for the formation of spherical nanoparticles
was 50% v/v in that study. In general, the solvent:water ratio plays an important role in the formation of
lignin nanoparticles, as these tend to form a hydrophobic core surrounded by a hydrophilic shell [42].
During self-assembly and formation of lignin nanoparticles, organic solvent content is gradually
reduced by adding water, leading to hydrophobic aggregation of lignin molecules and subsequent
sphere formation when water content surpasses a critical value [29,42]. A similar process for the
formation of spherical lignin particles has also been proposed to occur during homogenization,
whereby abundant hydrophilic moieties are constantly exposed to ethanol, resulting in the formation
of spheres [25]. The optimal solvent:water ratio can therefore vary and is dependent on many factors,
such as lignin chemical structure (the presence of hydrophilic moieties, their relative abundance, etc.),
the type of solvent used, or the process operational parameters (speed of water content increase,
pressure, etc.), all of which have an important effect on particle formation [28,29,42,43].

In the present study, we show that homogenization of lignin in the presence of ethanol and water
solutions can promote the formation of micro- and nanoparticles. Importantly, we report that ethanol
content affects their size and homogeneity. In this context, it is also essential that the lignin remains
intact during the homogenization step and does not undergo chemical modifications or decomposition.
To verify the integrity of lignin, we collected Fourier-transform infrared (FT-IR) spectra (Figure 6).
These revealed various peaks characteristic of lignin, such as O–H stretching of aliphatic and phenolic
OH, C–H stretching in aromatic methoxy, methyl, and methylene groups, C=O stretching, aromatic
skeletal ring vibration, C–C aromatic skeletal ring vibration, C–H asymmetric deformation in methyl
and methylene groups, and aromatic skeletal ring vibrations [43,44]. The spectra for lignin prior and
after homogenization appeared similar, as indicated by the absence of changes in the number of peaks
(disappearance or appearance of new peaks) or major peak shifts following homogenization. Based on
this, we concluded that the homogenization did not have any major effect on lignin chemical structure.
Analogous results, and consequent lack of notable changes, were observed in the FT-IR spectra of other
homogenized HOS-SE and OS lignins (Supplementary Material, Figure S2).
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3. Materials and Methods

3.1. Materials

Birch chips (Betula pendula L.) from mills in Northern Sweden were used as feedstock for the
present study. The chips were air-dried and milled in a knife mill (Retsch SM 300, Retsch GmbH,
Haan, Germany) through a 1-mm screen. Milled chips were stored at room temperature until use.

3.2. Lignin Preparation

Lignin was isolated from birch chips by employing two fractionation processes, namely OS
and HOS-SE. OS was performed in an autoclave apparatus as described before [18]. The conditions
employed were 182 ◦C for 1 h at an ethanol content of 50% v/v or 60% v/v. HOS-SE fractionation
took place as previously described at 200 ◦C [9]. The fractionation parameters for the HOS-SE were
15 min with 60% v/v ethanol, with and without the addition of 1% w/wbiomass H2SO4, and 30 min with
70% v/v ethanol or 50% v/v ethanol [9]. After fractionation, pretreated solids were separated from the
pretreated liquor and lignin was isolated from the liquor as previously described [9,18].

3.3. Lignin Homogenization

Homogenization of lignin took place in an APV 1000 Rannie Mini-Lab pressure homogenizer
(Albertslund, Denmark). For this purpose, 1 g of lignin was mixed with 100 mL of ethanol-water
solution (ethanol content 0%, 50%, and 75% v/v) in a magnetic stirrer for 8 h at room temperature.
Homogenization took place at 500 bar and the solution was recycled five times through the
homogenizer. After homogenization, samples were diluted with cold water to attain an ethanol
content below 10% v/v, which reduced the solubility of lignin in the solution. The solutions were then
placed in 50-mL plastic tubes and centrifuged at 7000 rpm for 15 min, after which the supernatant was
discarded. Finally, the lignin pellet was collected and dried in a freeze dryer.

3.4. Lignin Particles Characterization

Lignin particles were observed for their shape and size in a FEI Quanta scanning electron
microscope (Thermo Fischer Scientific, Waltham, MA, USA). Imaging was carried out at an accelerating
voltage of 20 kV, under high-vacuum conditions. All samples were coated with gold prior to
imaging. An overall amount of 10 different images were taken for each sample in order to obtain a
representative picture of it. Image analysis for the determination of particle size was performed with
the ImageJ software. DLS and zeta potential measurements were performed on a Zetasizer Nano Series
(Malvern Panalytical, Malvern, UK), with a multipurpose titrator. Specifically, a particle solution of
0.05 mg/mL was used for the analysis, with water chosen as dispersant. Each data point represents
the average value of three measurements, with 11–15 runs for each measurement. FT-IR spectra were
obtained on a Perkin Elmer Spectrum 100 Spectrometer (Waltham, MA, USA); the spectra were scanned
over the range 4000–400 cm−1. The FTIR spectra presented are the average of 3 measurements.

4. Conclusions

The present study demonstrates that organosolv lignin can serve as a promising raw material for
the preparation of lignin nanoparticles using a simple mechanical method. The technique used for
biomass fractionation plays an important role in the formation of lignin particles. Accordingly, use of
a newly established hybrid organosolv-steam explosion method allowed for the recovery of
micro-particles directly after pretreatment. Operational parameters of organosolv fractionation affect
the formation of lignin micro-particles at the end of the pretreatment. Crucially, homogenization can
facilitate the formation of spherical lignin micro- and nanoparticles, even from initially amorphous
lignin. The ethanol content during the homogenization step affects particle size, which tends to
decrease as the ethanol content increases to 75% v/v. Lignin nanoparticles with an average size as low
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as 200 nm can be obtained under optimal conditions, demonstrating that tuning of the operational
parameters for the particle preparation is a crucial step to get high quality lignin nanoparticles.
Finally, the particles’ zeta potential charge indicates that they have good colloidal stability, and FT-IR
spectra reveal that lignin molecular integrity is unaffected by the homogenization step.

Supplementary Materials: The following are available online, Figure S1: Intensity (I) and volume (V) distributions
of particle sizes of nanoparticles, Figure S2: FT-IR graphs of lignin nanoparticles.
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37. Frangville, C.; Rutkevičius, M.; Richter, A.P.; Velev, O.D.; Stoyanov, S.D.; Paunov, V.N. Fabrication of
environmentally biodegradable lignin nanoparticles. Chem. Phys. Chem. 2012, 13, 4235–4243. [CrossRef]
[PubMed]

38. Tian, D.; Hu, J.; Bao, J.; Chandra, R.P.; Saddler, J.N.; Lu, C. Lignin valorization: Lignin nanoparticles as
high-value bio-additive for multifunctional nanocomposites. Biotechnol. Biofuels 2017, 10, 192. [CrossRef]
[PubMed]

39. Wei, Z.; Yang, Y.; Yang, R.; Wang, C. Alkaline lignin extracted from furfural residues for pH-responsive
Pickering emulsions and their recyclable polymerization. Green Chem. 2012, 14, 3230. [CrossRef]

40. Sipponen, M.H.; Lange, H.; Ago, M.; Crestini, C. Understanding lignin aggregation processes. A case study:
Budesonide entrapment and stimuli controlled release from lignin nanoparticles. ACS Sustain. Chem. Eng.
2018. [CrossRef]

41. Maniet, G.; Schmetz, Q.; Jacquet, N.; Temmerman, M.; Gofflot, S.; Richel, A. Effect of steam explosion
treatment on chemical composition and characteristic of organosolv fescue lignin. Ind. Crops Prod.
2017, 99, 79–85. [CrossRef]

42. Qian, Y.; Deng, Y.; Qiu, X.; Li, H.; Yang, D. Formation of uniform colloidal spheres from lignin, a renewable
resource recovered from pulping spent liquor. Green Chem. 2014, 16, 2156–2163. [CrossRef]

43. Xiong, F.; Han, Y.; Wang, S.; Li, G.; Qin, T.; Chen, Y.; Chu, F. Preparation and formation mechanism of
size-controlled lignin nanospheres by self-assembly. Ind. Crops Prod. 2017, 100, 146–152. [CrossRef]

44. Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; Van Dam, J.E.G. Characterisation of structure-dependent functional
properties of lignin with infrared spectroscopy. Ind. Crops Prod. 2004, 20, 205–218. [CrossRef]

Sample Availability: Samples of the lignin micro- and nanoparticles are available from the authors at
a reasonable request.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acs.langmuir.6b01088
http://www.ncbi.nlm.nih.gov/pubmed/27268077
http://dx.doi.org/10.15376/biores.11.2.3073-3083
http://dx.doi.org/10.1016/j.carbon.2007.09.010
http://dx.doi.org/10.1002/cphc.201200537
http://www.ncbi.nlm.nih.gov/pubmed/23047584
http://dx.doi.org/10.1186/s13068-017-0876-z
http://www.ncbi.nlm.nih.gov/pubmed/28747994
http://dx.doi.org/10.1039/c2gc36278c
http://dx.doi.org/10.1021/acssuschemeng.8b01652
http://dx.doi.org/10.1016/j.indcrop.2017.01.015
http://dx.doi.org/10.1039/c3gc42131g
http://dx.doi.org/10.1016/j.indcrop.2017.02.025
http://dx.doi.org/10.1016/j.indcrop.2004.04.022
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Effect of the Fractionation Process on Particle Formation 
	Lignin Particle Formation through Homogenization 

	Materials and Methods 
	Materials 
	Lignin Preparation 
	Lignin Homogenization 
	Lignin Particles Characterization 

	Conclusions 
	References

