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Abstract: The selective O-benzylation of 2-oxo-1,2-dihydropyridines plays a critical role in organic
synthesis of natural products and biological active molecules. Herein we report a novel ternary
system of ZnO, ZnCl2 and N,N-diisopropylethylamine (DIEA), that is highly effective for selective
O-benzylation of 2-oxo-1,2-dihydropyridines using abundant substituted benzyl halides and related
substituted 2-oxo-1,2-dihydropyridines compounds. This process allows access to a variety of
O-benzyl products under mild reaction conditions, which are important synthetic intermediates in
the protection of functional groups, and represents a new method toward the development for the
O-benzylation of 2-oxo-1,2-dihydropyridines.
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1. Introduction

2-Oxo-1,2-dihydropyridines fragments are ubiquitous reagents in organic synthesis, and some
natural compounds with this structure have emerged as potent antitumor antiviral and attention [1].
Meanwhile, they are widely used as peptide mimics, which can generate similar physiological activity
with peptides, such as protease [2,3], thrombin inhibitor [4,5], elastase [6,7], and caspase [8,9]. There is
no doubt that the selective O-alkylation of 2-oxo-1,2-dihydropyridines fragments plays a critical
role in organic synthesis of natural product and active molecule. For example, total synthesis
of pyridomacrolidin [10], the pyridone building block was successfully constructed by selective
bis-O-methylation protection and then deprotection (Scheme 1). Youngdale et al. [11] synthesized a
class of oral hypoglycemic agents via sequences reaction, in which selective O-benzylation reaction
was the critical step (Scheme 1).

The 2-oxo-1,2-dihydropyridines system is identified as an ambident anion under alkaline
atmosphere and can form two reaction sites through tautomerism. It is well-known that this reaction
can give both nitrogen and oxygen alkylation. The alkylation reaction is very sensitive to the reaction
conditions, such as the type of counterions and leaving groups, solvents and alkylating agents,
and temperature [12–15]. As selective O-alkylation and N-alkylation play vital roles in organic
synthesis, more and more methods for selective alkylation have been reported.
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Scheme 1. The synthetic routes of pyridomacrolidin and hypoglycemic agents. 

According to reports [16], silver salts promoted O-alkylation of 2-pyridones, and alkaline metal 
salts contributed to N-alkylation. Sato et al. [17] utilized cesium fluoride as an efficient catalyst to 
obtain N-alkylation in suitable yield, and the selectivity of alkylation mainly depended on the kind 
of alkyl halide (Scheme 2). Singh et al. [18] reported a microwave-assisted protocol for the selective 
O-alkylation of aromatic imidate using silver carbonate as base (Scheme 2). Meanwhile, they also 
used other silver salts such as silver nitrate, silver oxide, silver acetate, and silver sulfate, etc., which 
could not afford desired compounds. Vavilina et al. [19] disclosed that ionic liquids accelerated the 
O-alkylation reaction of ambident 2-hydroxypyridine anion in comparison with molecular liquids 
using silver salt. Kung et al. [20] conducted a process of selective O-benzylation using silver oxide in 
the synthesis of 2-pyridone derivatives, which used in the treatment of leukemia (Scheme 2). Apart 
from Ag2CO3, and Ag2O, there is another related work by Kumar et al. in the literature using NaI as 
heterogeneous promoter [21]. Although the selective O-benzylation product of 2-pyridone can be 
obtained in a moderate yield using silver oxide as base, the large consumption of expensive silver 
salts limits the large-scale synthesis of products. 
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Scheme 2. Metal-mediated benzylation of ambident anions. (A) Previous work about benzylation of 
ambident anions; (B) In this work. 

Herein (Scheme 2), we describe our efforts to prepare O-benzylation of 
2-oxo-1,2-dihydropyridines from the substituted 2-oxo-1,2-dihydropyridines and substituted benzyl 
halides using ZnO, ZnCl2 and N,N-diisopropylethylamine (DIEA). These reactions occur at 110 °C, 
under argon atmosphere and afford appropriate yields. This process is general with respect to both 
the substituted 2-oxo-1,2-dihydropyridines and substituted benzyl halides, which allows 
preparation of many complex of O-benzylation of 2-oxo-1,2-dihydropyridines. 

Scheme 1. The synthetic routes of pyridomacrolidin and hypoglycemic agents.

According to reports [16], silver salts promoted O-alkylation of 2-pyridones, and alkaline metal
salts contributed to N-alkylation. Sato et al. [17] utilized cesium fluoride as an efficient catalyst to
obtain N-alkylation in suitable yield, and the selectivity of alkylation mainly depended on the kind
of alkyl halide (Scheme 2). Singh et al. [18] reported a microwave-assisted protocol for the selective
O-alkylation of aromatic imidate using silver carbonate as base (Scheme 2). Meanwhile, they also
used other silver salts such as silver nitrate, silver oxide, silver acetate, and silver sulfate, etc., which
could not afford desired compounds. Vavilina et al. [19] disclosed that ionic liquids accelerated the
O-alkylation reaction of ambident 2-hydroxypyridine anion in comparison with molecular liquids
using silver salt. Kung et al. [20] conducted a process of selective O-benzylation using silver oxide in the
synthesis of 2-pyridone derivatives, which used in the treatment of leukemia (Scheme 2). Apart from
Ag2CO3, and Ag2O, there is another related work by Kumar et al. in the literature using NaI as
heterogeneous promoter [21]. Although the selective O-benzylation product of 2-pyridone can be
obtained in a moderate yield using silver oxide as base, the large consumption of expensive silver salts
limits the large-scale synthesis of products.
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Scheme 2. Metal-mediated benzylation of ambident anions. (A) Previous work about benzylation of
ambident anions; (B) In this work.

Herein (Scheme 2), we describe our efforts to prepare O-benzylation of 2-oxo-1,2-dihydropyridines
from the substituted 2-oxo-1,2-dihydropyridines and substituted benzyl halides using ZnO, ZnCl2
and N,N-diisopropylethylamine (DIEA). These reactions occur at 110 ◦C, under argon atmosphere
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and afford appropriate yields. This process is general with respect to both the substituted
2-oxo-1,2-dihydropyridines and substituted benzyl halides, which allows preparation of many complex
of O-benzylation of 2-oxo-1,2-dihydropyridines.

2. Results and Discussion

2.1. Optimization of the Reaction Conditions

According to literature [20], 2-(benzyloxy)-4,6-dimethylnicotinonitrile was obtained using silver
oxide as a base in 65% yield. It is considerate that silver oxide is too expensive, so we are committed to
finding a cheaper alternative catalytic system as a replacement.

Initially, we tried to use zinc (II), a subgroup element, which was also expected to catalyze selective
O-benzylation. Unfortunately, O-benzylation product was not detected by TLC when catalyzed by zinc
oxide alone (Table 1, entry 1). Similar results were observed using binary system of zinc oxide and zinc
chloride (Table 1, entry 2). Surprisingly, the desired O-benzylation product was acquired in 71% yield
through adding additional triethylamine to this catalytic system (Table 1, entry 3). We reasoned that
alkaline environment contributed to the O-benzylation reaction. From the perspective of yield, ternary
system of ZnCl2/ZnO/Et3N has better catalytic performance than silver oxide. Afterwards, in order
to identify which component was indispensable in the ternary system, the reaction was carried out
utilizing zinc chloride and triethylamine, but the benzylation reaction did not occur (Table 1, entry 4).
Interestingly, N-benzylation of product 5 was obtained in 15% yield, when using triethylamine as base
without zinc oxide and zinc chloride (Table 1, entry 5). This clearly highlighted the importance of
the application of ternary system of zinc oxide, zinc chloride and triethylamine which collaboratively
promoted selective O-benzylation. Attempts to reduce the amount of catalyst (0.1 equivalent (equiv))
proved unsuccessful, leading to an incomplete reaction with a yield of only 25% (Table 1, entry 6).
Meanwhile, the reaction was carried out in DIEA (1.1 equiv) and zinc salts (0.1 equiv), and experimental
result displayed that the desired compound was obtained in 13% yield. The result proved that zinc
salts also need to be stoichiometric (Table 1, entry 8). However, it was feasible to change the base
with DIEA proving to be optimal in terms of yield and ease of use (Table 1, entries 7, 9). Efforts to
optimize the reaction through modulation of the solvent proved successful, with 1,4-dioxane being the
most effective in the screening reaction (Table 1, entries 9–12). Meanwhile, the benzylation product
was not observed in polar solvents such as ethylene glycol, N,N-dimethylformamide or dimethyl
sulfoxide, on the contrary, nonpolar solvents were favored. When potassium carbonate was used
as a base, the main product was confirmed as N-benzylation of product 5 without any selectivity,
along with unreacted starting material and desired compound (Table 1, entry 13). The same result
was obtained using potassium carbonate and DMF (N-benzylation product 5 was characterized by
1H NMR, seeing supporting information page 46). Simultaneously, some conventional Lewis acids,
such as FeCl3, AlCl3, CuCl2 were also examined in the standard conditions, and no satisfactory results
were obtained (Table 1, entries 14–16). Based on optimized experimental data the optimal reaction
conditions was determined (Table 1, entry 8) which used ZnO (1.1 equiv), ZnCl2 (1.1 equiv), DIEA
(1.1 equiv) and dioxane. Under optimized conditions, the desired product 3a was isolated in 90% yield
on a 20 g scale (Table 1, entry 17).

Microwave-assisted organic synthesis, a growing area in synthetic organic chemistry, is based
on the empirical observation that some reactions proceed faster and result in higher yields under
microwave irradiation than under conventional heating. To our knowledge there are only a few
examples dealing with a comparison of the selective alkylation of the 2-pyridone system under
conventional heating and microwave irradiation [22,23]. Therefore, we investigated the use of
microwave irradiation to promote and activate O-benzylation of 1a and 2a (Scheme 3). Experimental
data displayed that the reaction time was shortened from 24 h to 60 min under microwave irradiation.
However, N-benzylation of product 5 and O-benzylation of product 3a were obtained in 21% and
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76% yield respectively, and without selectivity. Hence, microwaves were not used in the study of
substrate suitability.

Table 1. Optimization of the reaction conditions for the O-benzylation of 1a and 2a 1.
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Entry ZnO
(Equiv)

Lewis Acid
(Equiv)

Base
(Equiv) Solvent

Time
(h)

Yield (%) 2

3a 5

Entry 1 1.1 – – Toluene 24 – 3 – 3

Entry 2 1.1 ZnCl2 (1.1) – Toluene 24 – 3 – 3

Entry 3 1.1 ZnCl2 (1.1) TEA (1.1) Toluene 24 71 – 3

Entry 4 – ZnCl2 (1.1) TEA (1.1) Toluene 24 – 3 – 3

Entry 5 – – TEA (1.1) Toluene 24 – 4 15
Entry 6 0.1 ZnCl2 (0.1) TEA (0.1) Toluene 36 25 – 3

Entry 7 1.1 ZnCl2 (1.1) TEA (1.1) Dioxane 24 64 – 3

Entry 8 0.1 ZnCl2 (0.1) DIEA (1.1) Dioxane 24 13 – 3

Entry 9 1.1 ZnCl2(1.1) DIEA (1.1) Dioxane 24 90 – 3

Entry 10 1.1 ZnCl2 (1.1) DIEA (1.1) Ethylene glycol 24 – 3 – 3

Entry 11 1.1 ZnCl2 (1.1) DIEA (1.1) DMF 24 – 3 – 3

Entry 12 1.1 ZnCl2 (1.1) DIEA (1.1) DMSO 24 – 3 – 3

Entry 13 1.1 ZnCl2 (1.1) K2CO3 (1.1) DMF 24 21 73
Entry 14 1.1 AlCl3 (1.1) DIEA (1.1) Dioxane 24 – 3 – 3

Entry 15 1.1 FeCl3 (1.1) DIEA (1.1) Dioxane 24 – 3 – 3

Entry 16 1.1 CuCl2 (1.1) DIEA (1.1)) Dioxane 24 – 3 – 3

Entry 17 5 1.1 ZnCl2 (1.1) DIEA (1.1) Dioxane 24 86 – 3

1 Unless otherwise noted, the reactions were performed with 1a (3.36 mmol), 2a (4.04 mmol), zinc oxide (3.70 mmol),
zinc chloride (3.70 mmol), N,N-diisopropylethylamine (3.70 mmol) in 1,4-dioxane (15 mL) under argon atmosphere
at 110 ◦C. 2 Isolated yield after column chromatography. 3 No reaction was detected by thin-layer chromatography
(TLC). 4 N-benzylation of product 5 was obtained in 15% yield. 5 The load of 1a was 20 g.
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2.2. Scope with Respect to Substituted 2-Oxo-1,2-Dihydropyridines

With the optimal conditions in hand, we chose various of substituted 2-oxo-1,2-dihydropyridiness
as substrates to investigate the scope and toleration of functional groups for this method (Table 2).
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Table 2. Scope with respect to O-benzylation of substituted 2-oxo-1,2-dihydropyridines with benzyl
chloride 1.
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chloride (4.04 mmol), zinc oxide (3.70 mmol), zinc chloride (3.70 mmol), N,N-diisopropylethylamine (3.70 mmol) in
1,4-dioxane (15 mL) and isolated after column chromatography.

The reaction enjoys wide substrate scope with respect to substituted 2-oxo-1,2-dihydropyridines
(Table 2). A range of functional groups on the 2-oxo-1,2-dihydropyridines proved to be compatible
including methyl, ethyl, isopropyl, disubstituted alkyl. Interestingly, substrates with 4-methyl
substitution afforded better yield than without 4-methy substitution. Although a more sterically
encumbered 2-oxo-1,2-dihydropyridines substrate also reacted without incident, desired compounds
were obtained in lower yield than other substrates. Not surprisingly, this reaction proceeded more
slowly than those no-ring alkyl substitutions. We postulate that the lower yields of 3e and 3f may
be caused the steric hindrance of the double ring was not conducive to the combination of benzyl
groups. The efficiency for the monoalkyl substitution of 2-oxo-1,2-dihydropyridines was not as high
as that for dialkyl substitution, and we predicted that because of the electron-donating nature of
the alkyl, intermediates of transition with higher electron density would rapidly form under the
reaction conditions. Strangely, 3j was obtained in lower yield (62%). We conducted experiments again
which displayed the same results, but N-benzylation of product was not observed by TLC. At the
same time, longer reaction time did not increase yield of 3j. The main reason was that the optimal
condition was not suitable for this substrate. However, the suitability with respect to substrates
will be further enlarged in subsequent experiments. Considering that electron-withdrawing effect of
cyano on 2-oxo-1,2-dihydropyridine, the two substrates without cyano group of pyridin-2(1H)-one
and 5-bromopyridin-2(1H)-one were tested under the standard reaction conditions. The results
displayed that both substrates provided in high yield (3l and 3m) and there was no clear relevance
of cyano group to O-benzylation. This transformation allows direct construction of a substituted
2-oxo-1,2-dihydropyridines bearing O-benzylation substituent, which remains a significant role in
organic synthesis.

2.3. Scope with Respect to Substituted Benzyl Halides

The ability of benzyl chloride to participate in the reaction opens the possibility for sequential
benzylation. The scope of the reaction with respect to substituted benzyl halides is broad (Table 3).
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Table 3. Scope with respect to O-benzylation of 1a with substituted benzyl halides 1.
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1 Unless noted otherwise, the reactions were performed with 1a (3.36 mmol), zinc oxide (3.70 mmol), zinc chloride
(3.70 mmol), N,N-diisopropylethylamine (3.70 mmol), substituted benzyl halides (4.04 mmol) in 1,4-dioxane (15 mL)
and isolated after column chromatography.

A wide range of functional groups are tolerated, including methyl, chlorides, bromides, nitriles,
nitro, methoxy and tert-butyl groups (Table 3). To our delight, most of the selected benzyl halides
gave satisfactory results under the standard conditions. Both electron-rich and electron-poor benzyl
halide participated differently well in the reaction. Benzyl halides with electron-withdrawing groups,
such as nitro, nitrile, provided the O-benzylation product under the standard reaction conditions
leading to a modest increase in the yield of target compound (92%). On the contrary, benzyl halides
with electron-donating groups, such as methyl and tert-butyl, provided the O-benzylation product in
slightly lower yield. At the same time, it was found that the position of the substituent has not much
effect on the yield of O-benzylation. Heteroaromatic compounds of chloromethyl pyridines, bearing
functional groups, also can be used in the reaction.

However, when iodomethane and iodoethane were used, the temperature had to be reduced
to boiling point. It is regretful that desired compounds were not obtained. Meanwhile, alkylation
reaction was also preceded in autoclave by standard reaction condition, leading to the same result.
In all cases, N-benzylation product were not observed, which was identified by TLC (N-benzylation
and O-benzylation products show large difference about Rf). Certainly, the major byproducts of
N-benzylation product were formed using potassium carbonate as base in N,N-dimethylformamide.

According to the poor reaction performance in polar solvent, we postulate that these
reactions proceed via a SN2 mechanism involving nucleophilic substitution from the electron-rich
2-oxo-1,2-dihydropyridines to the benzyl chloride (Scheme 4). Upon loss of hydrogen, this process
generates an oxygen anion, which undergoes coupling with the transition state of benzylic cation to
afford the desired compound.
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3. Materials and Methods

3.1. Materials

All of the starting materials, reagents, and solvents are commercially available and used without
further purification. The microwave-assisted reactions were performed using a CEM Discover System
908010 microwave apparatus (Charlotte, NC, USA). Melting points were determined with a X-4
apparatus and were uncorrected. The nuclear magnetic resonance (NMR) spectra were recorded
on a Bruker 600 MHz spectrometer in CDCl3 or DMSO-d6 using tetramethylsilane (TMS) as an
internal standard. Electrospray ionization mass spectrometry (ESI-MS) analyses were recorded in an
Agilent 1100 Series MSD Trap SL (Santa Clara, CA, USA). The reactions were monitored by thin-layer
chromatography (TLC: HG/T2354-92, GF254), and compounds were visualized on TLC with UV light.

3.2. Microwave-Assisted Synthesis of 3a

To a solution of 1a (0.20 g, 1.35 mmol), zinc oxide (0.12 g, 1.48 mmol), zinc chloride (0.20 g,
1.48 mmol), N,N-diisopropylethylamine (0.19 g, 1.48 mmol), 1,4-dioxane (3 mL) was added benzyl
chloride (0.2 g, 1.61 mmol). The mixture was irradiated at 110 ◦C for 60 min in a dedicated CEM
Discover system, operating at a frequency of 2.45 GHz with continuous irradiation power from
0 to 300 W. After completion of the reaction, the insoluble residue was filtered off through celite,
and the cake was washed with ethyl acetate (30 mL). The filtrate was washed with water (10 mL × 2),
once with brine (10 mL), dried over magnesium sulfate, filtered, and concentrated in vacuo to afford
crude product. The product was purified by column chromatography on silica gel (ethyl acetate:
petroleum ether = 1:20) to afford O-benzylation in 65% yield and N-benzylation in 21% yield.
1-Benzyl-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (5): Yellow solid, m.p. 104–107 ◦C,
Rf = 0.30 (EtOAc:PE = 1:1). 1H-NMR (CDCl3, 600 MHz): δ 7.32 (t, J = 7.0 Hz, 2H), 7.28 (d, J = 7.3 Hz,
1H), 7.16 (d, J = 7.3 Hz, 2H), 6.01 (s, 1H), 5.32 (s, 2H), 2.41 (s, 3H), 2.33 (s, 3H).

3.3. General Procedures for the Synthesis of Substituted 2-Oxo-1,2-dihydropyridines of 1a–1k

A substituted alkyl methyl ketone or cyclic ketone (1 equiv) and ethyl formate or ethyl acetic
(1 equiv) was added dropwise to absolute ether solution of sodium metal (1 equiv) for 1 h while
maintained below 20 ◦C. After the addition, the reaction was allowed to stir in an ice bath until
the sodium metal had disappeared. The precipitate was filtered, washed with absolute ether and
dried to give the corresponding compound which was directly used for the next step without
further purification.

To a solution of previous product (1 equiv), and cyanoacetamide (1.05 equiv) in water was stirred
6 min at room temperature. The mixture was added dropwise piperidine acetate solution (0.3 equiv),
which was prepared from piperidine (1 equiv), acetic acid (1 equiv) and water (5 equiv). The solution
was heated to reflux for 2 h. Then, the reactor was cooled to room temperature, and adjusted to pH 4
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by 4 N hydrochloric acid. The resulting solid was filtered, respectively washed with water and ether,
and dried to give the corresponding compound which was purified by recrystallizing using menthol
as solvent.

4,6-Dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1a): 58% yield, white solid, m.p. 264–266 ◦C
(lit. [24] 294 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 12.31 (br, 1H), 6.16 (s, 1H), 2.30 (s, 3H), 2.22 (s, 3H).

6-Methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1b): 58% yield, yellow solid, m.p. 295–297 ◦C (lit. [25]
293–294 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 12.56 (br, 1H), 8.01 (d, J = 6.1 Hz, 1H), 6.21 (d, J = 5.7 Hz,
1H), 2.27 (s, 3H).

5,6-Dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1c): 54% yield, yellow solid, m.p. 223–225 ◦C
(lit. [26] 223–225 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 12.46 (br, 1H), 7.94 (s, 1H), 2.23 (s, 3H), 1.98
(s, 3H).

6-Isobutyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1d): 33% yield, white solid, m.p. 140–142 ◦C (lit. [27]
149–150 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 12.52 (br, 1H), 8.04 (d, J = 7.3 Hz, 1H), 6.21 (d, J = 7.4 Hz,
1H), 2.41 (d, J = 7.4 Hz, 2H), 1.98–1.91 (m, 1H), 0.87 (d, J = 6.6 Hz, 6H).

2-Oxo-2,5,6,7-tetrahydro-1H-cyclopenta[b]pyridine-3-carbonitrile (1e): 21% yield, yellow solid, m.p. > 300 ◦C,
1H-NMR (DMSO-d6, 600 MHz): δ 12.75 (br, 1H), 8.01 (s, 1H), 2.80 (t, J = 7.6 Hz, 2H), 2.64 (t, J = 7.3 Hz,
2H), 2.06–2.01 (m, 2H).

2-Oxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (1f): 25% yield, yellow solid, m.p. 248–249 ◦C (lit. [28]
245–248 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 11.64 (br, 1H), 7.89 (s, 1H), 2.56 (t, J = 6.1 Hz, 2H),
2.42 (t, J = 6.2 Hz, 2H), 1.70–1.60 (m, 4H).

6-Ethyl-4-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1g): 24% yield, white solid, m.p. 230–233 ◦C
(lit. [29] 243–244 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 12.27 (br, 1H), 6.19 (s, 1H), 2.52–2.48 (q, 4H),
2.32 (s, 3H), 1.15 (t, J = 7.6 Hz, 3H).

6-Isobutyl-4-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1h): 42% yield, white solid, m.p. 169–172 ◦C,
1H-NMR (DMSO-d6, 600 MHz): δ 12.27 (br, 1H), 6.17 (s, 1H), 2.36 (d, J = 7.4 Hz, 2H), 2.32 (s, 3H),
1.97–1.90 (m, 1H), 0.87 (d, J = 6.6 Hz, 6H).

4-Methyl-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (1i): 31% yield, white solid, m.p. 247–250 ◦C
(lit. [30] 308–310 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 12.32 (br, 1H), 2.72 (t, J = 5.9 Hz, 2H), 2.38
(t, J = 6.3 Hz, 2H), 2.21 (s, 3H), 1.68–1.66 (m, 4H).

2-Oxo-6-propyl-1,2-dihydropyridine-3-carbonitrile (1j): 41% yield, yellow solid, m.p. 141–143 ◦C (lit. [28]
151–152 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 12.54 (br, 1H), 8.04 (d, J = 7.4 Hz, 1H), 6.23 (d, J = 7.3 Hz,
1H), 2.52–2.49 (t, 2H), 1.63–1.57 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H).

4-Methyl-2-oxo-6-propyl-1,2-dihydropyridine-3-carbonitrile (1k): 25% yield, white solid, m.p. 154–157 ◦C
(lit. [31] 210–211 ◦C), 1H-NMR (DMSO-d6, 600 MHz): δ 12.29 (br, 1H), 6.19 (s, 1H), 2.46 (t, J = 7.4 Hz,
2H), 2.32 (s, 3H), 1.64–1.56 (m, 2H), 0.88 (t, 7.4 Hz, 3H).

3.4. General Procedures for the Synthesis of 3a–3m

To a solution of substituted 2-oxo-1,2-dihydropyridines (3.36 mmol), zinc oxide (0.30 g, 3.70 mmol),
zinc chloride (0.50 g, 3.70 mmol), N,N-diisopropylethylamine (0.48 g, 3.70 mmol), 1,4-dioxane (15 mL)
was added benzyl chloride (0.58 g, 4.04 mmol) under argon atmosphere. The mixture was heated in
110 ◦C oil bath with rapid stirring for the indicated time. The reactor was cooled to room temperature,
and the insoluble residue was filtered off through celite, and the cake was wash with ethyl acetate
(30 mL). The filtrate was washed with water (10 mL × 2), once with brine (10 mL), dried over
magnesium sulfate, filtered, and concentrated in vacuo to afford crude product. The product was
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purified by column chromatography on silica gel (ethyl acetate: petroleum ether = 1:20) to yield the
corresponding compounds.

2-(Benzyloxy)-4,6-dimethylnicotinonitrile (3a): Yield: 0.72 g (90%), white solid, m.p. 86–87 ◦C, Rf = 0.70
(EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.49 (d, J = 7.5 Hz, 2H), 7.37 (t, J = 7.3 Hz, 2H), 7.31
(t, J = 7.4 Hz, 1H), 6.69 (s, 1H), 5.48 (s, 2H), 2.45 (s, 3H), 2.44 (s, 3H). 13C-NMR (CDCl3, 150 MHz):
δ 163.66, 160.58, 154.48, 136.55, 128.45, 129.91, 127.85, 117.71, 114.97, 94.15, 68.14, 24.55, 20.08. HRMS
(ESI): m/z [M + Na]+ calculated for C15H14N2ONa: 261.1004, found: 261.1010.

2-(Benzyloxy)-6-methylnicotinonitrile (3b): Yield: 0.55 g (73%), white solid, m.p. 80–81 ◦C (lit. [32]
106 ◦C), Rf = 0.75 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.74 (d, J = 7.6 Hz, 1H), 7.37
(t, J = 7.3 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 7.7 Hz, 1H), 5.50 (s, 2H). 13C-NMR (CDCl3,
150 MHz): δ 163.04, 162.00, 142.91, 136.31, 128.45, 127.99, 127.93, 116.06, 115.63, 93.54, 68.21, 24.76.
HRMS (ESI): m/z [M + Na]+ calculated for C14H12N2ONa: 247.0847, found: 247.0851.

2-(Benzyloxy)-5,6-dimethylnicotinonitrile (3c): Yield: 0.70 g (88%), white solid, m.p. 79–81 ◦C, Rf = 0.72
(EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.60 (s, 1H), 7.49 (d, J = 7.3 Hz, 2H), 7.37 (t, J = 7.3 Hz,
2H), 7.30 (t, J = 7.3 Hz, 1H), 5.48 (s, 2H), 2.45 (s, 2H), 2.21 (s, 3H). 1H-NMR (CDCl3, 150 MHz):
δ 163.06, 162.04, 142.93, 136.35, 128.48, 128.02, 127.95, 116.11, 115.66, 93.55, 68.24, 24.79. HRMS
(ESI): m/z [M + Na]+ calculated for C15H14N2ONa: 261.1004, found: 261.1008.

2-(Benzyloxy)-6-isobutylnicotinonitrile (3d): Yield: 0.74 g (83%), light yellow liquid, Rf = 0.74
(EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.74 (d, J = 7.7 Hz, 1H), 7.48 (d, J = 7.4 Hz, 2H), 7.36
(t, J = 7.3 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 5.50 (s, 2H), 2.59 (d, J = 7.2 Hz, 2H),
2.16–2.09 (m, 1H), 0.91 (d, J = 6.7 Hz, 6H). 13C-NMR (CDCl3, 150 MHz): δ 165.12, 163.02, 142.71, 136.44,
128.42, 127.93, 127.88, 116.31, 115.68, 93.64, 68.17, 47.40, 28.59, 22.39. HRMS (ESI): m/z [M + Na]+

calculated for C17H18N2ONa: 289.1317, found: 289.1323.

2-(Benzyloxy)-6,7-dihydro-5H-cyclopenta[b]pyridine-3-carbonitrile (3e): Yield: 0.51 g (61%), light yellow
solid, m.p. 68–71 ◦C, Rf = 0.76 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.65 (s, 1H), 7.49
(d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 5.49 (s, 2H), 2.97 (t, J = 7.7 Hz, 2H),
2.88 (t, J = 7.5 Hz, 2H), 2.18–2.13 (m, 2H). 13C-NMR (CDCl3, 150 MHz): δ 169.05, 163.67, 138.17, 136.40,
129.59, 128.45, 127.92, 127.72, 116.20, 93.46, 68.29, 34.74, 29.55, 23.06. HRMS (ESI): m/z [M + Na]+

calculated for C16H14N2ONa: 273.1004, found: 273.1014.

2-(Benzyloxy)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3f): Yield: 0.58 g (66%), white solid, m.p.
67–68 ◦C, Rf = 0.74 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.54 (s, 1H), 7.49
(d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 5.46 (s, 2H), 2.83 (t, J = 6.3 Hz,
2H), 2.67 (t, J = 6.3 Hz, 2H), 1.88–1.84 (m, 2H), 1.81–1.77 (m, 2H). 13C-NMR (CDCl3, 150 MHz): δ 161.01,
160.43, 143.35, 136.60, 128.41, 127.91, 127.88, 125.20, 115.77, 93.70, 68.02, 32.74, 27.46, 22.44. HRMS (ESI):
m/z [M + Na]+ calculated for C17H16N2ONa: 287.1160, found: 273.1173.

2-(Benzyloxy)-6-ethyl-4-methylnicotinonitrile (3g): Yield: 0.73 g (86%), light yellow liquid, Rf = 0.78
(EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.48 (dd, J = 1.3 Hz, 8.2 Hz, 2H), 7.36 (t, J = 7.3 Hz,
2H), 7.30 (t, J = 7.3 Hz, 1H), 6.68 (s, 1H), 5.50 (s, 2H), 2.71 (q, J = 7.6 Hz, 15.1 Hz, 2H), 2.45 (s, 3H),
1.26 (t, J = 7.8 Hz, 3H). 13C-NMR (CDCl3, 150 MHz): δ 165.49, 163.71, 154.55, 136.66, 129.39, 127.89,
127.86, 116.48, 115.01, 94.22, 68.02, 31.21, 20.13, 13.00. HRMS (ESI): m/z [M + Na]+ calculated for
C17H16N2ONa: 287.1160, found: 273.1173.

2-(Benzyloxy)-6-isobutyl-4-methylnicotinonitrile (3h): Yield: 0.76 g (80%), Colorless liquid, Rf = 0.77
(EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.48 (d, J = 7.4 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 7.29
(t, J = 7.3 Hz, 1H), 6.64 (s, 1H), 5.49 (s, 2H), 2.53 (d, J = 7.2 Hz, 2H), 2.45 (s, 3H), 2.15–2.08 (m, 1H),
0.90 (d, J = 6.6 Hz, 6H). 13C-NMR (CDCl3, 150 MHz): δ 163.69, 163.62, 154.22, 136.67, 128.39, 127.83,
127.81, 117.92, 115.01, 94.23, 68.08, 47.25, 28.50, 22.43, 20.12. HRMS (ESI): m/z [M + Na]+ calculated for
C18H20N2ONa: 303.1473, found: 303.1479.
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2-(Benzyloxy)-4-methyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3i): Yield: 0.66 g (71%), white solid, m.p.
90–92 ◦C, Rf = 0.75 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.49 (d, J = 7.4 Hz, 2H), 7.36
(t, J = 7.3 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 5.49 (s, 2H), 2.87 (t, J = 6.2 Hz, 2H), 2.55 (t, J = 5.9Hz, 2H),
2.41 (s, 3H), 1.84–1.76 (m, 4H). 13C-NMR (CDCl3, 150 MHz): δ 161.32, 159.29, 152.65, 136.90, 128.37,
127.80, 127.76, 124.23, 115.08, 93.42, 67.71, 28.51, 25.35, 22.53, 22.50, 21.49. HRMS (ESI): m/z [M + Na]+

calculated for C18H18N2ONa: 301.1317, found: 301.1360.

2-(Benzyloxy)-6-propylnicotinonitrile (3j): Yield: 0.46 g (62%), light yellow liquid, Rf = 0.73
(EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.75 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 7.2 Hz, 2H), 7.37
(t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 5.51 (s, 2H), 2.71 (t, J = 7.4 Hz, 2H),
1.78–1.71 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). 13C-NMR (CDCl3, 150 MHz): δ 165.80, 163.13, 142.88, 136.46,
128.45, 127.97, 127.95, 115.92, 115.64, 93.67, 68.18, 40.25, 22.12, 13.76. HRMS (ESI): m/z [M + Na]+

calculated for C16H16N2ONa: 275.1160, found: 275.1159.

2-(Benzyloxy)-4-methyl-6-propylnicotinonitrile (3k): Yield: 0.78 g (82%), Colorless liquid, Rf = 0.72
(EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.48 (d, J = 7.3 Hz, 2H), 7.36 (t, J = 7.1 Hz, 2H), 7.30
(t, J = 6.3 Hz, 1H), 6.67 (s, 1H), 5.49 (s, 2H), 2.65 (t, J = 7.4 Hz, 2H), 2.45 (s, 3H), 1.76–1.68 (m, 2H), 0.93
(t, J = 7.3 Hz, 3H). 13C-NMR (CDCl3, 150 MHz): δ 164.33, 163.70, 154.38, 136.66, 128.39, 127.84, 117.23,
115.01, 94.22, 68.06, 40.05, 22.09, 13.76. HRMS (ESI): m/z [M + Na]+ calculated for C17H18N2ONa:
289.1317, found: 289.1315.

2-(Benzyloxy)pyridine (3l): Yield: 0.90 g (93%), Colorless liquid, Rf = 0.75 (EtOAc:PE = 1:10). 1H-NMR
(CDCl3, 600 MHz): 8.18 (dd, J = 1.4, 5.0 Hz, 1H), 7.60–7.57 (m, 1H), 7.46 (d, J = 7.4 Hz, 2H), 7.37
(t, J = 5.7 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 6.89–6.87 (m, 1H), 6.81 (d, J = 8.3 Hz, 1H), 5.38 (s, 2H).
13C-NMR (CDCl3, 150 MHz): δ 163.6, 146.8, 138.6, 137.3, 128.4, 127.9, 127.8, 116.9, 111.3, 67.5. MS (ESI)
m/z [M + H]+ 186.1.

2-(Benzyloxy)-5-bromopyridine (3m): Yield: (92%), White solid, Rf = 0.71 (EtOAc:PE = 1:10), m.p. 54–55 ◦C
(lit.33 56–58 ◦C), 1H-NMR (CDCl3, 600 MHz): 8.20 (d, J = 2.2 Hz, 1H), 7.61 (dd, J = 2.4, 8.8 Hz, 1H), 7.42
(d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.3 Hz, 2H), 7.30 (t, J = 7.3 Hz, 1H), 6.69 (d, J = 8.8 Hz, 1H), 5.33 (s, 2H).
13C-NMR (CDCl3, 150 MHz): δ 162.4, 147.5, 141.2, 136.9, 128.6, 128.1, 128.0, 113.0, 112.0, 68.1. MS (ESI)
m/z [M + H]+ 264.0, 265.9.

3.5. General Procedures for the Synthesis of 4a–4k

To a solution of 1a (0.5 g, 3.36 mmol), zinc oxide (0.30 g, 3.70 mmol), zinc chloride (0.50 g,
3.70 mmol), N,N-diisopropylethylamine (0.48 g, 3.70 mmol), 1,4-dioxane (15 mL) was added substituted
benzyl halides (4.04 mmol) under argon atmosphere. The mixture was heated in 110 ◦C oil bath with
rapid stirring for the indicated time. The reactor was cooled to room temperature, and the insoluble
residue was filtered off through celite, and the cake was wash with ethyl acetate (30 mL). The filtrate
was washed with water (10 mL × 2), once with brine (10 mL), dried over magnesium sulfate, filtered,
and concentrated in vacuo. The product was purified by column chromatography on silica gel
(ethyl acetate: petroleum ether = 1:20) to yield the corresponding compounds.

4,6-Dimethyl-2-((4-methylbenzyl)oxy)nicotinonitrile (4a): Yield: 0.68 g (80%), white solid, m.p. 93–95 ◦C,
Rf = 0.71 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.38 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 7.8 Hz,
2H), 6.68 (s, 1H), 5.44 (s, 2H), 2.45 (s, 3H), 2.43 (s, 3H), 2.35 (s, 3H). 13C-NMR (CDCl3, 150 MHz):
δ 163.72, 160.52, 154.41, 137.68, 133.50, 129.09, 128.06, 117.59, 114.98, 94.13, 68.10, 24.53, 21.21, 20.04.
HRMS (ESI): m/z [M + Na]+ calculated for C16H16N2ONa: 275.1160, found: 275.1169.

2-((4-Chlorobenzyl)oxy)-4,6-dimethylnicotinonitrile (4b): Yield: 0.78 g (85%), white solid, m.p. 119–121 ◦C,
Rf = 0.72 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.42 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz,
2H), 6.70 (s, 2H), 5.44 (s, 2H), 2.45 (s, 6H). 13C-NMR (CDCl3, 150 MHz): δ 163.39, 160.55, 154.56, 135.04,
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133.71, 129.22, 128.61, 117.87, 114.85, 94.14, 67.33, 24.51, 20.06. HRMS (ESI): m/z [M + Na]+ calculated
for C15H13ClN2ONa: 295.0614, found: 295.0616.

2-(Benzyloxy)-4,6-dimethylnicotinonitrile (4c = 3a): Yield: 0.72 g (91%), white solid, m.p. 86–87 ◦C,
Rf = 0.70 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.48 (d, J = 7.3 Hz, 2H), 7.36 (t, J = 7.3 Hz,
2H), 7.30 (t, J = 7.3 Hz, 1H), 6.68 (s, 1H), 5.48 (s, 2H), 2.45 (s, 3H), 2.43 (s, 3H). 13C-NMR (CDCl3,
150 MHz): δ 163.66, 160.59, 154.48, 136.55, 128.45, 127.91, 127.87, 127.85, 117.74, 114.97, 94.14, 68.14,
24.56, 20.07. HRMS (ESI): m/z [M + Na]+ calculated for C15H14N2ONa: 261.1004, found: 261.1010.

2-((3,4-Dichlorobenzyl)oxy)-4,6-dimethylnicotinonitrile (4d): Yield: 0.90 g (88%), white solid, m.p.
104–106 ◦C, Rf = 0.72 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.57 (d, J = 1.6 Hz, 1H),
7.43 (d, J = 8.2 Hz, 1H), 7.34 (t, J = 1.7 Hz, 1H), 6.72 (s, 1H), 5.42 (s, 2H), 2.45 (s, 3H), 2.44 (s, 3H).
13C-NMR (CDCl3, 150 MHz): δ 163.10, 160.57, 154.68, 136.80, 132.47, 131.93, 130.47, 129.84, 127.18,
118.08, 114.72, 94.15, 66.62, 24.49, 20.07. HRMS (ESI): m/z [M + Na]+ calculated for C15H12Cl2N2ONa:
329.0224, found: 329.0222.

2-((2,3-Dichlorobenzyl)oxy)-4,6-dimethylnicotinonitrile (4e): Yield: 0.84 g (82%), white solid, m.p.
167–169 ◦C, Rf = 0.73 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.55 (d, J = 7.7 Hz, 1H),
7.43 (d, J = 6.8 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H), 5.56 (s, 2H), 2.47 (s, 3H), 2.46 (s, 3H). 13C-NMR (CDCl3,
150 MHz): δ 163.14, 160.83, 154.62, 136.71, 132.98, 130.73, 129.56, 127.48, 126.65, 118.16, 114.79, 94.08,
65.59, 24.55, 20.10. HRMS (ESI): m/z [M + Na]+ calculated for C15H12Cl2N2ONa: 329.0224, found:
329.0232.

2-((2,4-Dichlorobenzyl)oxy)-4,6-dimethylnicotinonitrile (4f): Yield: 0.89 g (86%), white solid, m.p.
146–148 ◦C, Rf = 0.72 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.56 (d, J = 8.3 Hz, 1H),
7.40 (d, J = 2.0 Hz, 1H), 7.28 (t, J = 2.0 Hz, 1H), 6.73 (s, 1H), 5.51 (s, 2H), 2.47 (s, 3H), 2.46 (s, 3H).
13C-NMR (CDCl3, 150 MHz): δ 163.11, 160.75, 154.60, 134.08, 133.47, 132.99, 130.91, 129.80, 127.24,
118.11, 114.74, 94.07, 64.88, 24.51, 20.07. HRMS (ESI): m/z [M + Na]+ calculated for C15H12Cl2N2O Na:
329.0224, found: 329.0219.

4,6-Dimethyl-2-((4-nitrobenzyl)oxy)nicotinonitrile (4g): Yield: 0.87 g (92%), white yellow solid, m.p.
152–154 ◦C, Rf = 0.50 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 8.24 (d, J = 8.7 Hz, 2H), 7.66
(d, J = 8.7 Hz, 2H), 6.75 (s, 1H), 5.58 (s, 2H), 2.48 (s, 3H), 2.45 (s, 3H). 13C-NMR (CDCl3, 150 MHz):
δ 162.98, 160.68, 154.81, 147.5, 144.01, 127.94, 123.74, 118.31, 114.67, 94.20, 66.74, 24.49, 20.09. HRMS
(ESI): m/z [M + Na]+ calculated for C15H13N3O3Na : 306.0855, found: 306.0852.

2-((4-Bromobenzyl)oxy)-4,6-dimethylnicotinonitrile (4h): Yield: 0.97 g (92%), white solid, m.p. 122–124 ◦C,
Rf = 0.68 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.49 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.3 Hz,
2H), 6.70 (s, 1H), 5.42 (s, 2H), 2.45 (s, 3H), 2.44 (s, 3H). 13C-NMR (CDCl3, 150 MHz): δ 163.37,
160.55, 154.57, 135.56, 131.57, 129.53, 121.86, 117.89, 114.83, 94.16, 67.35, 24.51, 20.07. HRMS (ESI):
m/z [M + Na]+ calculated for C15H12Cl2N2ONa: 329.0224, found: 329.0219.

2-((4-(tert-Butyl)benzyl)oxy)-4,6-dimethylnicotinonitrile (4i): Yield: 0.81 g (82%), white solid, m.p.
80–82 ◦C, Rf = 0.76 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.42 (d, J = 8.2 Hz, 2H),
7.39 (d, J = 8.2 Hz, 2H), 6.68 (s, 2H), 5.44 (s, 2H), 2.45 (s, 3H), 2.43 (s, 3H), 1.32 (s, 9H). 13C-NMR (CDCl3,
150 MHz): δ 163.79, 160.58, 154.44, 150.93, 133.51, 127.85, 125.38, 117.63, 115.02, 94.14, 68.09, 34.60, 31.37,
24.58, 20.07. HRMS (ESI): m/z [M + Na]+ calculated for C19H22N2ONa: 317.1630, found: 317.1642.

2-((4-Cyanobenzyl)oxy)-4,6-dimethylnicotinonitrile (4j): Yield: 0.81 g (92%), white solid, m.p. 173–175 ◦C,
Rf = 0.53 (EtOAc:PE = 1:10). 1H-NMR (CDCl3, 600 MHz): δ 7.66 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.2 Hz,
2H), 6.74 (s, 1H), 5.53 (s, 2H), 2.47 (s, 3H), 2.44 (s, 3H). 13C-NMR (CDCl3, 150 MHz): δ 163.05, 160.67,
154.76, 142.01, 132.32, 127.87, 118.75, 118.25, 114.70, 111.63, 94.17, 66.97, 24.50, 20.09. HRMS (ESI): m/z
[M + Na]+ calculated for C16H13N3ONa: 286.0956, found: 286.0949.
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2-((3,4-Dimethoxypyridin-2-yl)methoxy)-4,6-dimethylnicotinonitrile (4k): Yield: 0.81 g (80%), white solid,
m.p. 137–139 ◦C, Rf = 0.50 (EtOAc:PE = 1:5). 1H-NMR (CDCl3, 600 MHz): δ 8.26 (d, J = 5.5 Hz, 1H), 6.87
(d, J = 5.5 Hz, 1H), 6.70 (s, 1H), 5.56 (s, 2H), 3.95 (s, 3H), 3.94 (s, 3H), 2.46 (s, 3H), 2.44 (s, 3H). 13C-NMR
(CDCl3, 150 MHz): δ 163.74, 160.69, 159.01, 154.38, 149.69, 145.81, 145.17, 117.68, 115.08, 107.96, 93.88,
66.04, 61.75, 55.76, 24.56, 20.07. HRMS (ESI): m/z [M + Na]+ calculated for C16H17N3O3Na: 322.1168,
found: 322.1183.

Supplementary Materials contain all obtained 1H-NMR and 13C-NMR spectra of compounds
presented in the manuscript.

4. Conclusions

In summary, we have developed a ternary system for the selective O-benzylation of
2-oxo-1,2-dihydropyridines systems that utilizes readily available ZnO, ZnCl2, DIEA, substituted
benzyl halides and related 2-oxo-1,2-dihydropyridines compounds. This protocol proposes a novel
method in C-O bond construction and provides some examples of selective O-benzylation of
2-oxo-1,2-dihydropyridines using readily available starting materials under mild reaction conditions.
This reaction allows the conversion of simple starting materials to complex O-benzyl products,
which are important synthetic intermediates in the protection of functional groups. Efforts to apply
our Zn-based system to other 2-oxo-1,2-dihydropyridines and to expand the scope of the benzylation
reactions to other classes of alkylation are currently underway in our laboratory.

Supplementary Materials: The following are available online.
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