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Abstract: Dried roots of Dipsacus asper (Caprifoliaceae) are used as important traditional herbal
medicines in Korea. However, the roots are often used as a mixture or contaminated with
Dipsacus japonicus in Korean herbal markets. Furthermore, the dried roots of Phlomoides umbrosa
(Lamiaceae) are used indiscriminately with those of D. asper, with the confusing Korean names
of Sok-Dan and Han-Sok-Dan for D. asper and P. umbrosa, respectively. Although D. asper
and P. umbrosa are important herbal medicines, the molecular marker and genomic information
available for these species are limited. In this study, we analysed DNA barcodes to distinguish
among D. asper, D. japonicus, and P. umbrosa and sequenced the chloroplast (CP) genomes of
D. asper and D. japonicus. The CP genomes of D. asper and D. japonicus were 160,530 and
160,371 bp in length, respectively, and were highly divergent from those of the other Caprifoliaceae
species. Phylogenetic analysis revealed a monophyletic group within Caprifoliaceae. We also
developed a novel sequence characterised amplified region (SCAR) markers to distinguish among
D. asper, D. japonicus, and P. umbrosa. Our results provide important taxonomic, phylogenetic,
and evolutionary information on the Dipsacus species. The SCAR markers developed here will
be useful for the authentication of herbal medicines.

Keywords: plant species identification; oriental medicine; plastid; dipsaci radix; phlomidis radix

1. Introduction

Herbal medicines are widely used in oriental medicine. However, adulteration and contamination
from related species, as well as from other genera, is a common problem [1]. In general, distinguishing
authentic from inauthentic herbal products with the unaided eye is difficult. Thus, methods are needed
to discriminate good quality herbal products from adulterated preparations.

Molecular tools are helpful in the accurate identification of species and authentication of herbal
products. In plants, DNA barcoding has been used for species identification and for differentiating
authentic herbal medicines from closely related species [2,3]. The nuclear ribosomal DNA (rDNA)
internal transcribed spacers (ITS) region and matK, rbcL, and psbA-trnH genes have been frequently
used for plant species identification, as well as for phylogenetic and evolutionary analyses [4,5].
These DNA barcodes have only been used to discriminate among closely related species in several
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taxa. Moreover, identifying the authentic species based on a few sites of variable nucleotide sequences
is difficult. Chloroplast (CP) genome sequencing is a potential alternative to DNA barcoding.

The next generation of sequencing platforms has enabled the complete sequencing of CP genomes,
which has rapidly increased. The genomic information gained from sequencing projects has been
used for plant species identification, high-resolution phylogenetic analysis, marker development
to differentiate between closely related species, and the evolutionary analysis of CP structural
variation, genome arrangement, and gene loss, including gene transfer from the CP to the nucleus or
mitochondria [6-8]. CPs play an important role in photosynthesis, carbon fixation, and starch and
fatty acid biosynthesis in plants [9,10]. In higher plants, the CP genome ranges from 100 to 180 kb
in size and consists of 110-130 genes, including protein-coding genes and those encoding ribosomal
RNAs (rRNAs) and transfer RNAs (tRNAs) [6]. Comparison of CP genomes has enabled the discovery
of genetically variable regions that enable the distinguishing of species [11,12]. Insertion/deletion
(Indel) mutations and single nucleotide polymorphisms in CP genomes have been frequently used
for species identification [11,13,14]. Furthermore, the sequence characterised amplified region (SCAR)
markers have been used to distinguish authentic herbal preparations from morphologically similar
plant species [15], as these are simple, highly reproducible, and cheap. Thus, this method has been
frequently used for species identification and the authentication of herbal medicines [15-18]. Sequence
information is obtained from DNA fingerprints or barcodes, such as the presence or absence of
amplicons, using sequence-specific primers and artificial polymorphic banding patterns.

Microsatellites or simple sequence repeats (SSRs) are abundant in genomes and have been widely
used in phylogenetic analysis, population genetics, and molecular breeding [19,20]. Most SSRs are
repeats of A or T units and account for the AT richness of the chloroplast genomes [21,22].

Dried roots of Dipsacus asper Wall. ex DC., commonly known as Dipsaci Radix (“Sok-Dan” in
Korean), and Phlomoides umbrosa (Turcz.) Kamelin and Makhm., commonly known as Phlomidis Radix
(“Han-Sok-Dan” in Korean), are used as important herbal medicines in Korea [23]. In Korean herbal
pharmacopoeia, only the dried roots of D. asper and P. umbrosa are described as authentic Dipsaci
Radix and Phlomidis Radix, respectively [23]. Unfortunately, the dried roots of D. japonicus Miq. are
often mixed with those of D. asper and misused as Dipsaci Radix in Korean herbal markets because
of the morphological similarities between them. In addition, the dried roots of P. umbrosa are also
frequently used as economically motivated adulterants of Dipsaci Radix and are used for the same
clinical purpose because of the confusing name and high cost of the authentic herb [24].

However, in traditional Korean medicine, Dipsaci Radix and Phlomidis Radix are used for
different clinical purposes [25]. Dipsaci Radix is used for its protective effect against liver and kidney
diseases, whereas Phlomidis Radix helps to discharge phlegm and heal bruises [23]. By contrast,
the currently reported pharmacological effects of Dipsaci Radix and Phlomidis Radix are completely
different. Dipsaci Radix is reported to have osteo-protective effects [26,27], whereas Phlomidis Radix
is reported to have anti-inflammatory effects [28,29]. Therefore, indiscriminate application of these
two herbal medicines can cause unforeseen side effects and threaten their use as medicines. Moreover,
differentiating herbal medicines from adulterants is important to enhance their medicinal potential
and safety and to ensure proper quality control of medicinal products.

D. asper and D. japonicus belong to the Caprifoliaceae family, which consists of 800 species in
42 genera worldwide [30]. D. asper is mainly distributed in the highland region (1500-3700 m above sea
level) of China [31], whereas D. japonicus is distributed in Korea and Japan [23]. In general, D. asper is
2 m in height and has pinnatisect leaf blades, white or lemon yellow flowers, and a white, disk-shaped
calyx with papillate-setose leaves. By contrast, D. japonicus is 1.5 m tall and has narrowly elliptic
leaf blades, purplish red flowers, and a cup-shaped calyx with non-existent papillate-setose leaves.
The Dipsacus species have a capitula [31]. The morphological traits of P. umbrosa (Lamiaceae) are
different from those of Dipsacus species. P. umbrosa is 0.5-1 m in height and has verticillasters, tubular
calyx, and white and pink flowers [23]. Although plants of D. asper, D. japonicus, and P. umbrosa can
be easily distinguished based on their morphological differences, the dried roots of these species
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are difficult to distinguish with the unaided eye. Therefore, there is a need to distinguish between
authentic Dipsaci Radix and Phlomidis Radix.

In this study, we analysed universal DNA barcodes to distinguish between D. asper, D. japonicus,
and P. umbrosa. We also sequenced and characterised the CP genomes of D. asper and D. japonicus.
Comparison of their CP genome structure and phylogenetic analysis revealed genetically divergent
regions in Caprifoliaceae. Furthermore, we developed novel SCAR markers for distinguishing D. asper
and D. japonicus from P. umbrosa. Our results provide valuable genomic information for the Dipsacus
species and an in-depth insight into the evolution within Caprifoliaceae. These data will also enable
the quality control of the valuable herbal medicines, Dipsaci Radix and Phlomidis Radix.

2. Results and Discussion

2.1. Authentication of D. asper, D. japonicus, and P. umbrosa Using DNA Barcodes

To distinguish among D. asper, D. japonicus, and P. umbrosa, we performed DNA barcode analysis
using the nuclear rDNA ITS2, matK, and rbcL regions. We sequenced a total of 12 samples among the
three species and analysed the sequence alignments (Table 1). The ITS2 region and matK gene harbored
the highest number of variable sites (ITS2 nucleotide diversity [Pi] = 0.12842; matK Pi = 0.10377) of the
three species. The Pi value of P. umbrosa was dramatically different from that of D. asper and D. japonicus.
A comparison between the two Dipsacus species revealed only three (0.2%) parsimony informative
sites in rbcL and seven (1.8%) in ITS2. These data indicate that the universal DNA barcode regions of
D. asper and D. japonicus are highly similar. DNA barcodes have been mainly used for discrimination
among herbal medicine as well as for species identification [17,18]. A previous study using ITS1 and
ITS2 regions showed that these sequences of D. asper are similar to those of D. japonicus, D. chinensis,
and D. mitis [32]. However, these sequences are insufficient for the development of molecular markers,
and P. umbrosa and the other DNA barcode regions were not included in this study. Although D. asper,
D. japonicus, and P. umbrosa exhibit species-characteristic in DNA barcode regions, these cannot be
applied to commercial herbal products because of the presence of adulterants. Therefore, to ensure the
adequate quality control of herbal medicines, molecular markers are needed to distinguish among
D. asper, D. japonicus, and P. umbrosa.

Table 1. The analysis of universal DNA barcodes in Dipsacus asper, D. japonicus, and P. umbrosa.

Parsimony

) AL1 Inf tive Sit Variable Sites Nucleotide  No. of No. of
Species DNA  pength nformative Sites Diversity  Indels  Haplotypes
(bp) No. % No. % (Pi)

b D, imoni ITS2 390 91 233 145 37.2 0.12842 8 8
- asper 1‘;5' 'b]“”""””s VS matkK 1276 234 18.3 242 19.0 0.10377 2 8
- umbrosa rbeL 1511 106 7.0 113 75 0.039%4 1 6
ITS2 379 7 1.8 9 24 0.00718 0 4
D. asper vs. D. japonicus matK 1264 5 04 8 0.6 0.00332 0 4
rbeL 1501 3 0.2 6 0.4 0.00233 0 4

1 AL length: alignment length.

2.2. CP Genome Organisation of D. asper and D. japonicus

We sequenced the CP genomes of D. asper and D. japonicus to distinguish between these species.
Paired-end reads of D. asper (2.1 Gb) and D. japonicus (2.2 Gb) were trimmed to obtain 1.5 and 1.6 Gb
datasets, respectively. Sequencing revealed the total CP genome size of D. asper and D. japonicus as
160,530 and 160,371 bp, with 286 x and 170x coverages, respectively (Table S1). Sequence reads were
mapped onto the complete CP genomes (Figure S1). The CP genomes of both species were of high
quality (Figure 1 and Table 2) and showed a quadripartite structure. Both chloroplast genomes were
partly validated using polymerase chain reaction (PCR)-based sequencing (Table S2). Sequences of
junctions between the four regions of the CP genome (large single copy (LSC)/inverted repeat (IRa),
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IRa/small single copy (SSC), SSC/IRb, and IRb/LSC) were aligned against the complete CP genome
sequence (Table S3). The guanine-cytosine (GC) content of both species was 38.8%.

In general, the GC content of the inverted repeat (IR) regions was higher than that of the LSC and
SSC regions in both species. The gene content and gene order were similar in both species. The CP
genomes of both species harbored 112 unique genes, including 79 protein-coding genes, 4 rRNA
genes, and 29 tRNA genes. Eighteen genes were duplicated in the IR regions (Table S4). Fifteen
genes, including rps12, harbored a single intron, whereas ycf3 and clpP carried two introns (Table S5).
Alternative start codons, ACG in ndhD and psbL and GTG in rps19, were identified. These codons
are a general phenomenon in the CP genomes of land plants [33-35]. We also analysed the codon
usage and anticodon recognition patterns in the two Dipsacus species. Dipsacus asper and D. japonicus
harbored 23,482 and 23,826 codons, respectively, among which codons for leucine and serine were
the most abundant (Figure S2 and Table S6). Relative synonymous codon usage (RSCU) values
revealed a synonymous codon bias with a high proportion of A or T at the third nucleotide position
(Figure S3). This phenomenon is consistent with that found in other angiosperms [36-39]. The CP
genome structures of both Dipsacus species were similar to that of angiosperms [21,40,41]. Thus,
the two CP genome sequences had a 99.57% similarity, but no differences in the CP genome structure
or gene order were detected between the two species (Table 2).

Dipsacus asper
chloroplast genome
160,530 bp
Dipsacus japonicus
160,371 bp

W photosystem |

I photosystem Il

[H cytochrome bif complex
[ ATP synthase

[T NADH dehydrogenase
[ RubisCO large subunit ¢ 3 £
I RNA polymerase & g §§§
[ ribosomal proteins (SSU) & 4
Il ricosomal proteins (LSU) & £
I cipP, matk

H other genes

L hypothetical chioroplast reading frames (ycf)

[0 ORFs

H transfer RNAs

Il ribosomal RNAs

[ origin of replication

[Jintrons

M polycistronic transcripts

Figure 1. The circular gene map of Dipsacus asper and D. japonicus. The genes drawn inside the circle
are transcribed clockwise, whereas those drawn outside the circle are transcribed counterclockwise.
Dark gray shading inside the inner circle represents the GC content. LSC: large single copy; IR: inverted
repeat; SSC: small single copy; GC: guanine-cytosine; ORF: open reading frame.
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Table 2. The characteristics of the chloroplast (CP) genomes of D. asper and D. japonicus.

Characteristic D. asper D. japonicus
Accession number MH074864 MHO074865
Total CP genome size (bp) 160,530 160,371
LSC region (bp) 86,979 87,193
IR region (bp) 27,821 27,664
SSC region (bp) 17,909 17,850
Number of genes 112 112
Protein-coding genes 79 79
rRNA 4 4
tRNA 29 29
Introns (bp) 14,368 14,392
Intergenic spacers (bp) 50,578 51,526
GC content (%) 38.8 38.8
LSC (%) 37.2 37.1
IR (%) 42.8 429
SSC (%) 34.2 34.2

CP: Chloroplast; LSC: Large single copy; IR: Inverted repeat; SSC: Small single copy.

2.3. Analysis of Repeats in the CP Genomes of D. asper and D. japonicus

In this study, 156 and 154 SSRs were detected in the CP genomes of D. asper and D. japonicus
(Figure S4). Most of the mononucleotide SSRs in the Dipsacus species were present in the intergenic
spacer (IGS) region (Figure S4A,B). In both species, the number of SSRs per unit length was higher in
the single copy regions (LSC and SSC) than in the IR regions. Seven and five species-specific SSRs were
identified in D. asper and D. japonicus, respectively. We also analysed the potential of polymorphic
SSRs for marker development in the two Dipsacus species. Twenty-seven SSRs, polymorphic between
the two species comprising A or T mononucleotides, were detected (Table S7). Structural variation
in CP genomes, including gene duplication, gene expansion, and genomic rearrangement, result in
abundant tandem repeat sequences [42]. A total of 37 and 34 tandem repeats were detected in the
CP genomes of D. asper and D. japonicus, respectively, of which 13 and 12 were short tandem repeats,
respectively (Figure S5). Tandem repeats greater than 100 bp in length were abundant in both species.
Most tandem repeats occurred in exons and in the IGS region present within the LSC and IR regions of
the chloroplast genomes. Three palindromic repeats, 25-33 bp in length, were detected in both species
(Table S8). Tandem repeats, which are variable in copy numbers between species, are often used as
molecular markers [13,14].

2.4. Comparative Analysis of CP Genomes within Caprifoliaceae

We compared the CP genome sequences of five plant species within the Caprifoliaceae family,
including D. asper, D. japonicus, Patrinia saniculifolia, Kolkwitzia amabilis, and Lonicera japonica, to identify
divergent regions (Figure 2). The CP genomes of D. asper and D. japonicus were highly conserved in
the coding and non-coding regions, except for the accD and ycf2 genes, but were highly divergent
from the other Caprifoliaceae species in the coding region. The divergence patterns of P. saniculifolia,
K. amabilis, and L. japonica were similar to those of D. asper and D. japonicus. We compared the LSC,
IRa, SSC, and IRb boundaries in the five species (Figure S6). The structure of the IR region was
highly similar in the two Dipsacus species. The rpl3 gene extended into the IRa region in D. asper,
D. japonicus, K. amabilis, and L. japonica. The ycfl genes were located at the IRa/SSC and SSC/IRb
junctions in D. asper, D. japonicus, and P. saniculifolia. Overall, the CP genomes of the five species
were highly divergent in the IR regions. Contraction and expansion of the IR regions due to genomic
rearrangement is a common phenomenon in angiosperms [43]. Further investigations are needed
to dissect the structural variation in the chloroplast genomes and to understand the evolutionary
relationships within Caprifoliaceae.
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Figure 2. The comparative analysis of chloroplast genomes of species within the family Caprifoliaceae
using mVISTA. Blue indicates conserved genes, light blue indicates tRNA and rRNA, red indicates
conserved non-coding sequences (CNS), and white represents divergent regions. A cut-off of a 50%
identity was used for the plots. The Y-axis represents 50-100% identity.

The ratio of non-synonymous to synonymous mutation rates (Ka/Ks) was used to understand
gene evolution. Adaptive evolution in response to the environment occurs when the genes are under
positive selection [37,44,45]. We calculated the Ka/Ks ratios of 78 collinear protein-coding genes in the
two Dipsacus species against those in L. japonica to identify the selection pressure on these genes in
Caprifoliaceae (Figure 3). The most conserved genes appeared to be undergoing purifying selection,
as the Ka/Ks ratio was less than 0.001. No significant differences were detected in the Ka/Ks ratios
among the LSC, IR, and SSC regions. The Ka/Ks ratios of the two Dipsacus species varied from 0.001
to 1.843 (average = 0.284). The Ka/Ks ratio of the rps genes encoding the small ribosomal subunits was
0.524, indicating a relaxed selection. Among the rps genes, rps7 showed the highest Ka/Ks ratio (1.843),
indicating a positive selection. The rps7 gene encodes the ribosomal protein 57 and has been reported
under a positive selection in the Salix species (Salicaceae). The cIpP and ycf2 genes also showed positive
selection (Ka/Ks > 1); these genes have been frequently reported as lost or highly variable [6,10,46].
The clpP gene encodes a protein involved in translation and protein modification, whereas ycf2 has
an unknown function [6]. In this study, cIpP and ycf2 showed a weak selection during the adaptive
evolution in Caprifoliaceae. Taken together, we suggest that rps7, ycf2, and clpP evolved rapidly in
Caprifoliaceae. These genes were found from other CP genomes [47,48]. We propose that the positive
selection of these genes undergo essential adaptations to the environment.

To examine divergence at the sequence level in D. asper and D. japonicus, we estimated the Pi
(Figure 4). A total of 81 regions with a Pi value greater than zero were classified as coding, non-coding,
and IGS. Single copy regions (LSC and SSC) were more variable than the IR regions. The average
Pi values for the single copy regions was 000054 and 0.0065 for the IR regions. Genic regions were
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more conserved than the IGS region. The ycf2-trnL region showed the highest Pi value of 0.0325.
Among the protein-coding genes, clpP showed the highest Pi value and was highly variable in the
two Dipsacus species, indicating the positive selection in Caprifoliaceae. Although the CP genomes of
D. asper and D. japonicus showed a highly conserved structure, the intergenic regions and a few coding
regions diverged. In the chloroplast genomes of angiosperms, the intergenic regions have a higher
representation than the genic regions [49].
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Figure 3. The analysis of Ka, Ks, and Ka/Ks values of the chloroplast genomes of D. asper, D. japonicus,
and L. japonica. The ratio of non-synonymous substitution rate (Ka) to synonymous substitution rate
(Ks) was calculated for 78 conserved protein-coding genes. (A) Ka values of genes with Ka/Ks > 0.5.
(B) Ks value of genes with Ka/Ks > 0.5. (C) Ka/Ks values of specific genes. (D) Average Ka/Ks values
of gene groups.
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The CP genomes have been successfully used in numerous phylogenetic studies of angiosperms.
Using the chloroplast genomes is advantageous, as these are more accurate and have a greater
resolution than a few cp loci and nuclear rDNA ITS regions [50,51]. We investigated the phylogenetic
relationship among 18 species in the families Caprifoliaceae and Adoxaceae within the order Dipsacales,
and in the family Araliaceae within the order Apiales using the maximum likelihood (ML) and Bayesian
inference (BI). Sequences of 69 CP protein-coding genes from all 18 species were aligned (alignment
length = 58,243 bp) (Figure 5). Most nodes showed 100% ML bootstrap values and 1.0 BI posterior
probabilities, except for two nodes in Araliaceae. All 18 species have been shown to cluster according to
the APG IV system [52]. P. saniculifolia formed a sister group with two Dipsacus species, and. L. japonica
showed a distinct phylogenetic relationship to the other four species in Caprifoliaceae. The phylogenic
tree reconstructed in this study was clearly consistent with those in previous studies [53-55]. Previous
studies used the ITS/ITS2 region or other CP loci to understand the phylogenetic relationship among
the Caprifoliaceae or Dipsacales species [53-55]. Despite the few CP genomes applied in this study;,
this is the first report of phylogenetic analysis of the genus Dipsacus using protein-coding genes in the
CP genome. These data provide an improved phylogenetic relationship among the species within
Caprifoliaceae, supported by strong bootstrap values.

Family Order Clade
Eleutherococcus senticosus
+/~ Kalopanax septemlobus
65/0.7416
Metapanax delavayr
+/-\7a0.999
Fatsia_japonica Apiales

Araliaceae

- Schefflera delavayr

Aralia undulata
+/- Panax ginseng
+/

- Panax notoginseng

Viburnum utife

Sambucus williamsii
4”_‘7 Li Sinadoxa corydalifolia Adoxaceae
/-

Asterids

Adoxa moschatellina

Py s,

A Tetradloxa omeiensis

Dipsacales

Lonicera japonica
Dipsacus asper A

*f= +/- L Dipsacus _japonicus 4 | Caprifoliaceae

Patrinia saniculifolia

Kotkwitzia amabilis

Figure 5. The phylogenetic analysis of 69 protein-coding genes in 18 species, including D. asper and
D. japonicus, using the maximum likelihood (ML) method and Bayesian posterior probabilities (PP).
The ML topology is shown with the ML bootstrap support values and Bayesian PP given at each node.
A total of 100% bootstrap and 1.0 PP support are indicated above each node using + and —, respectively.
The black triangles indicate the CP genomes of D. asper and D. japonicus examined in this study.

2.5. Authentication of D. asper, D. japonicus, and P. umbrosa Using SCAR Markers

The gene region is more stable than the IGS region for the development of molecular markers.
In this study, indels were detected in the accD gene of both Dipsacus species and in the matK gene of
P. umbrosa. We used these indels for the development of SCAR markers to distinguish between D. asper
and D. japonicus. The primer pairs DAJ-AC_F/DAJ-AC_R and PU-M_F/PU-M_R were used to amplify
the accD and matK genes from the two Dipsacus species and P. umbrosa, respectively (Table S9). We also
tested these markers on 12 individual plants, including five D. asper, three D. japonicus, and four
P. umbrosa individual plants, obtained from the Korea Institute of Oriental Medicine (KIOM) (Figure 6
and Table 510). The DAJ-AC primers amplified 185 and 329 bp amplicons from D. asper and D. japonicus,
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respectively, but showed no amplification from P. umbrosa. In contrast, the PU-M primers amplified a
256 bp fragment from P. umbrosa but not from the Dipsacus species.

D. japonicus 144 bp - insertion
DAJ-AC_F l <« DAJ-ACR
A accD

P umbrosa 6 bp - insertion
B PU-M_F!» <« PU-M_R
matK |
M 1 2 3 M

256 bp

Figure 6. The gel images of CP DNA of D. asper, D. japonicus, and P. umbrosa amplified using sequence
characterised amplified region (SCAR) markers. Twelve individual plants were used in this study
using (A) DAJ-AC and (B) PU-M primers. Details of the germplasm are provided in Supplementary
Table S10. (1) D. asper, (2) D. japonicus, (3) P. umbrosa.

SCAR markers are a valuable tool for species identification and have been used to discriminate
herbal medicines from adulterants. Moreover, SCAR markers are reliable and easy to use, requiring
only PCR and gel electrophoresis [18]. A CP-specific SCAR marker was previously used to distinguish
Aconitum coreanum from its closely related species on the basis of a 6 bp insertion in its CP genome [16].
The nuclear rDNA ITS barcode region has been frequently used for the development of SCAR
markers as it is highly variable in sequence. SCAR markers have been used to differentiate valuable
herbal plants, including Aralia continentalis and Angelica biserrata, from adulterants [17]. Therefore,
SCAR markers are a powerful molecular tool for the identification of herbal medicines. The novel
SCAR markers developed in this study will be useful for the identification of D. asper, D. japonicus,
and P. umbrosa and the authentication of herbal medicines.

3. Materials and Methods

3.1. Plant Materials

Fresh leaves of D. asper (36°43'35.9” N and 127°27'38.0” E) and D. japonicus (37°14'04.5"" N and
128°56'57.0"" E) were collected from their native habitats in Korea. All samples were assigned unique
identification numbers and registered with the Korean Herbarium of Standard Herbal Resources
(Index Herbarium code KIOM) at the KIOM. Details of these samples are listed in the Supplementary
Table S10.

3.2. Universal DNA Barcode Analysis for D. asper, D. japonicus, and P. umbrosa

Universal DNA barcodes, including ITS2, matK, and rbcL, were PCR amplified using ITS2-s2f/1TS4,
matK-AF/matK-8R, and rbcL-N/rbcL-R primer pairs, respectively, from the nuclear and CP of
D. asper, D. japonicus, and P. umbrosa, using previously described amplification parameters [56-58].
The amplified DNA fragments were extracted from the agarose gel using a gel extraction kit, cloned
into a pGEM-T Easy vector (Promega, Madison, WI, USA), and sequenced on an ABI 3730 DNA
Analyzer (Applied Biosystems Inc., Foster City, CA, USA) [17,18]. The obtained sequences were



Molecules 2018, 23, 1748 10 of 15

aligned and edited using BioEdit ver. 7.2.5 [59]. Parsimony informative sites and Pi values were
calculated using DnaSP ver. 5.1 [60].

3.3. Genome Sequencing and Assembly

DNA was extracted using DNeasy Plant Maxi kit (Qiagen, Valencia, CA, USA), according to the
manufacturer’s instructions. Illumina short-insert paired-end sequencing libraries were constructed
and sequenced using the NextSeq platform (Illumina, San Diego, CA, USA). CP genome sequences
were determined from the de novo assembly of low-coverage whole-genome sequences. Trimmed
paired-end reads (Phred score > 20) were assembled using the CLC genome assembler ver. 4.06
beta (CLC Inc., Rarhus, Denmark) with the default parameters. Principal contigs representing the
chloroplast genome were retrieved from the total collection of contigs using Nucmer [61] and aligned
with the chloroplast genome sequence of Ilex wilsonii (KX426471) as a reference. A de novo SOAP gap
closer was performed to fill the gaps based on aligned paired-end reads [62]. PCR-based sequencing
was used to validate the sequences of the four chloroplast junction regions, LSC/IR, IR/SSC, SSC/IR,
and IR/LSC, using the primers listed in Supplementary Table S2. Finally, the CP genome sequence
reads were mapped onto the complete genomes using a Burrows-Wheel Aligner ver. 0.7.25 [63].

3.4. Genome Annotation and Comparative Analysis

Gene annotation of the CP genomes of D. asper and D. japonicus was performed using GeSeq [64]
and the annotation results were concatenated using an in-house pipeline. Protein-coding sequences
were manually curated and confirmed using Artemis [65] and checked against the protein database
of the National Center for Biotechnology Information (NCBI). Sequences of the tRNA genes were
confirmed using tRNAscan-SE 1.21 [66], and those of the IR regions were confirmed using the IR finder
and RepEx [67]. Circular maps of the two Dipsacus CP genomes were obtained using OGDRAW [68].
The GC content and RSCU values were analysed using the MEGAG6 software [69]. Sequences of the
LSC/IR, IR/SSC, SSC/IR, and IR/LSC junctions of the completed CP genomes were validated via
PCR-based sequencing using the primers listed in Tables S2 and S3. NCBI accession numbers of the
CP genome sequences of D. asper and D. japonicus are MH074864 and MH074865, respectively. The CP
genomes of D. asper, D. japonicus, Patrinia saniculifolia (NC_036835.1), Kolkwitzia amabilis (NC_029874.1),
and Lonicera japonica (NC_026839.1) were compared using mVISTA in the Shuffle-LAGAN mode,
with the CP genome of D. asper as a reference. The Pi values for D. asper and D. japonicus were
calculated using DnaSP ver. 5.1 [60]. The step size was set to 200 bp. To analyse the synonymous (Ks)
and non-synonymous substitution rates, shared functional protein gene sequences and amino acid
sequences were used for calculating Ka and Ks values using PAML with the yn00 program [70].

3.5. Repeat Analysis

SSRs in the CP genomes of the two Dipsacus species were detected using MISA [71], with the
minimum number of repeats set to 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-,
and hexa-nucleotides, respectively. The minimum alignment score and maximum period size of
tandem and palindromic repeats for 20 or more bp were set at 50 and 500, respectively, and the identity
of repeats was set to 90% or greater [72,73].

3.6. Phylogenetic Analysis

The CP genomes of 18 species belonging to the families Caprifoliaceae, Adoxaceae, and Araliaceae
were subjected to phylogenetic analyses. Of these, the CP genome sequences of 16 species were
downloaded from NCBI (Supplementary Table S11). To construct the phylogenetic tree, sequences of
69 protein-coding genes were aligned using MAFFT [74] and manually adjusted using BioEdit [59].
The best-fitting model of nucleotide substitutions was determined according to the Akaike Information
Criterion (AIC) in JModeltest ver. 2.1.10 [75]. The GTR+I+G model was used in both. The maximum
likelihood method was used to construct the phylogenetic tree in MEGAG6 [69], with 1000 bootstrap
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replicates. Bayesian inference analyses were conducted using MrBayes ver. 3.2.2 [76], with two
independent runs and four chains using the Markov chain Monte Carlo (MCMC), and simultaneous
runs for one million generations. Each chain started with a random tree with default priors.
Phylogenetic trees were sampled every 1,000,000 generations with the first 25% discarded as
burn-in. The consensus tree was determined based on the 50% majority rule to estimate the
posterior probabilities.

3.7. Development of SCAR Markers for D. asper, D. japonicus, and P. umbrosa

To develop the SCAR markers, primers flanking the variable region in the accD gene of D. asper
and D. japonicus were designed using the Primer-BLAST (NCBI) [77]. The genomic DNA (20 ng) of
D. asper, D. japonicus, and P. umbrosa was PCR amplified in a 20 L volume using 10 pmol primers.
SCAR markers were amplified using species-specific primers (DAJ-AC and PU-M, Table S9), according
to the following conditions: DAJ-AC, 95 °C for 2 min, followed by 35 cycles at 95 °C for 30 s, 63 °C for
30 s, and 72 °C for 30 s, and a final extension at 72 °C for 5 min; PU-M, 95 °C for 2 min, followed by
35 cycles at 95 °C for 50 s, 63 °C for 30 s, and 72 °C for 50 s, and a final extension at 72 °C for 5 min.
The PCR products were verified by gel electrophoresis on a 2% agarose gel for 40 min at 150 V.

4. Conclusions

In this study, we performed a DNA barcoding analysis of D. asper, D. japonicus and P. umbrosa
which are important herbal plants. We sequenced the chloroplast genomes of D. asper, D. japonicus.
D. asper and D. japonicus, which exhibited slightly different parsimony informative sites in the ITS2,
matK, and rbcL regions. The CP genome structure of these two Dipsacus species was highly conserved
but was different from that of the other Caprifoliaceae species. We also investigated the phylogenetic
relationship among the Caprifoliaceae species; this is the first report of phylogenetic analysis of the two
Dipsacus species based on CP genomes. Additionally, we developed novel SCAR markers, DAJ-AC
and PU-M, for the identification of the authentic herbal medicines, Dipsaci Radix and Phlomidis Radix.
Taken together, these data facilitate the distinguishing of D. asper, D. japonicus, and P. umbrosa from
adulterants in the herbal medicine market and enable the commercial use of the Dipsaci Radix and
Phlomidis Radix. Furthermore, these results provide valuable information on the CP genomes and
evolution of species within Caprifoliaceae.

Supplementary Materials: The following are available online. Figure S1: Distribution of paired-end reads
mapped onto the complete chloroplast genomes of Dipsacus asper and D. japonicus, Figure S2: Frequencies of
amino acid in two Dipsacus protein-coding sequences, Figure S3: Relative synonymous codon usage (RSCU)
values for 20 amino acids and the stop codon in 78 protein-coding genes present in the chloroplast genomes of
D. asper and D. japonicus, Figure S4: Distribution of simple sequence repeats (SSRs) in the chloroplast genomes of
D. asper and D. japonicus. Number of (A) SSRs in exons, introns, and intergenic spacer (IGS) regions; (B) different
SSR types; (C) SSRs per unit length of the chloroplast genomes; and (D) common and species-specific SSRs,
Figure S5: Analysis of tandem repeats in the chloroplast genomes of D. asper and D. japonicus. Distribution of
(A) tandem repeats of different lengths and (B) tandem repeats in different regions of the chloroplast genomes.
Number of (C) tandem repeats in the IGS region, exons, and introns; and (D) common and species-specific
tandem repeats, Figure S6: Comparison of junctions between the large single copy (LSC) region, inverted repeat
(IR) regions (IRa and IRDb), and small single copy (SSC) region in the chloroplast genomes of the Caprifoliaceae
species, Dipsacus asper, Dipsacus japonicus, Patrinia saniculifolia, Kolkwitzia amabilis, and Lonicera japonica, Table S1:
Details of the raw sequence reads and chloroplast genome assembly of the two Dipsacus species, Table S2: List of
primers used for the validation of chloroplast genomes of D. asper and D. japonicus, Table S3: Polymerase chain
reaction (PCR)-based sequence validation of junctions between the large single copy (LSC), small single copy
(SSC), and inverted repeat (IRa and IRb) regions in the chloroplast genomes of D. asper and D. japonicus, Table S4:
List of genes identified in the chloroplast genomes of D. asper and D. japonicus along with the encoded proteins,
Table S5: Location and sizes of genes in the chloroplast genomes of D. asper and D. japonicus, Table S6: Distribution
of amino acids in the chloroplast genomes of D. asper and D. japonicus, Table S7: Details of polymorphic simple
sequence repeats (SSRs) in the chloroplast genomes of D. asper and D. japonicus, Table S8: Details of palindromic
repeats in the chloroplast genomes of D. asper and D. japonicus, Table S9: List of primers used for the amplification
of sequence characterised amplified region (SCAR) markers, Table S10: Details of germplasm used in this study,
Table S11: List of chloroplast genomes downloaded from National Center for Biotechnology Information (NCBI)
for phylogenetic analysis.
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