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Abstract: Exploring and detecting the causal relations among variables have shown huge practical
values in recent years, with numerous opportunities for scientific discovery, and have been commonly
seen as the core of data science. Among all possible causal discovery methods, causal discovery
based on a constraint approach could recover the causal structures from passive observational data
in general cases, and had shown extensive prospects in numerous real world applications. However,
when the graph was sufficiently large, it did not work well. To alleviate this problem, an improved
causal structure learning algorithm named brain storm optimization (BSO), is presented in this
paper, combining K2 with brain storm optimization (K2-BSO). Here BSO is used to search optimal
topological order of nodes instead of graph space. This paper assumes that dataset is generated by
conforming to a causal diagram in which each variable is generated from its parent based on a causal
mechanism. We designed an elaborate distance function for clustering step in BSO according to the
mechanism of K2. The graph space therefore was reduced to a smaller topological order space and
the order space can be further reduced by an efficient clustering method. The experimental results
on various real-world datasets showed our methods outperformed the traditional search and score
methods and the state-of-the-art genetic algorithm-based methods.

Keywords: Bayesian causal model; causal direction learning; K2; brain storm optimization

1. Introduction

In recent years, the application of causal inference in bioinformatics has become more extensive,
and plays a very important role in the development of this field. For instance, it is used for the
discovery of the causal relationships between genes and the development of symptoms [1], and how to
analyze the phenomenon of synthetic lethality [2,3] in biomedicine, which arises when a combination
of mutations in two or more genes leads to cell death. Causal inference is different from the
traditional statistical learning methods. The causal inference is the internal generative mechanism of
the research data and the traditional statistical learning is the joint distribution of observation variables.
The most significant difference between causality and relevance is whether or not to reflect the intrinsic
relationship between the data. In scientific research, understanding the causal relationship of objects
is crucial to predicting the laws of objects. Causal inference has already been applied in many fields,
such as gene therapy, economic prediction, etc.
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The problem of causal discovery or causal inference is generally formulated by a probabilistic
graphical model where causal directions are represented by the directed edges [4]. In the causal
inference algorithm, the techniques commonly used in local causality are conditional independent test
(CI) method [5] and score & search method [4].

For example, Peter-Clack algorithms (PC algorithms) [5] determine causal relationships by finding
out all the CIs in the given dataset, and the K2 algorithm [1] obtains the maximum score by searching
for an optimal structure to discover causal relationships.

In general, a CI test method is used to detect the V-structure, and we can even infer the directed
acyclic graph (DAG) [6] by the extension of the partial directed acyclic graph (PDAG). The accuracy of
the above methods in causal inference is highly impacted by the number of the detected V-structures.
In special cases, for example, without detecting the V-structure, the effect is poor. Therefore, the method
cannot completely determine all edges and cannot distinguish the Markov equivalence classes,
therefore often fails to uncover the true causal relationships contained in the given dataset if the
number of equivalence classes is sufficiently large.

To distinguish causal direction in a non-experimental setting, some researchers recently resorted to
using asymmetric relationships among variables under various hypothetical conditions. The additive
noise model (ANM) proposed by Shimizu [7,8] is proved to be effective if the given data is generated
by following linear non-Gaussian structural equation model. This method was later extended to
nonlinear cases for continuous cases [9,10] as well as discrete cases [11,12].

Concretely, the existing ANM-based algorithms can be formulated as follows: assume there
are two variables x and y satisfying a causal functional model y = f (x) + ε, where f (*) is an arbitrary
square-integrable function and ε is an independent noise of x. If the joint distribution P(x,y) allows an
ANM for one (forward) direction rather than the other one (backward), i.e., x cannot be obtained by
a function of y plus an independent noise term, then the forward causal direction x→ y is accepted
as the true causal direction. The Post-Nonlinear (PNL) model [13] further extends ANM by making
an additional function on the function f (*) such that y = g(f (x) + ε) with a bijective function g: R→ R.
More recently, some researchers have aimed to detect the asymmetry from an information-geometric
perspective [14–16]. We can see that these methods assume that reversible and deterministic mappings
can get the random variables independently. According to the previous works, these methods are used
to examine the asymmetry causality by different techniques, and effect in the low dimension is very
good, but poor in the nonlinear high dimensional causal inference between variables.

There are also some hybrid algorithms such as the hybrid algorithm (HYA) [1] and three
phases causal discovery method (TPCDM) algorithm [17], to some extent, are able to find the causal
relationships of multidimensional networks. The additive noise method (ANM) differentiates the
parent nodes and the child nodes in the HYA algorithm and also detects the relationship between the
neighbor sets and the sink nodes in the TPCDM algorithm. However, the experimental results show
that the effect of the methods above are not very accurate, because it is difficult to detect a one-to-many
network structure by ANM methods [10,18–27].

We can see that all these methods for learning causal structure are unreliable, or the time
complexity is so very high that we often cannot get the result in an acceptable time. In this situation,
we resort to optimization algorithms.

Then, we study the optimization algorithms. Problems existing in many real worlds can be
classified as optimization problems. The traditional optimization algorithm is based on a single point,
such as gradient descent algorithm, which is a point that moves in the opposite direction of the gradient
function. The traditional optimization algorithm mainly solves the problem of a single peak; it is easy
to obtain the local optimal solution in the case of complex multiple modes and nonlinear problems.

In recent years, the swarm intelligence (SI) algorithm has been a topical research topic in
solving the problem of multiple peaks. Swarm intelligence algorithms are used to solve problems by
learning some life phenomena or natural phenomena in nature, which includes the characteristics of
self-organization, self-learning and adaptability of natural life phenomena. Especially in 2011, a new
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SI algorithm [28] called “Brain Storm Optimization” (also known as Brainstorm optimization, BSO)
was proposed, which was inspired by human brainstorming activities. The paper demonstrates the
ability of BSO to solve optimization problems by testing two basic functions. Based on the idea of
human creative problem-solving, a new swarm intelligence algorithm, Shi’s [9] optimization algorithm,
was proposed. Unlike traditional swarm intelligence algorithms, such as ant colony optimization
(ACO) and artificial bee colony (ABC), the BSO algorithm is the first one to solve the problem based
on human creative thinking. Humans are the smartest animals in the world, and the BSO algorithm,
which is inspired by their social behavior, is considered a promising method [9]. Shi [9,10] elaborated
the thought and implementation process of BSO algorithm, and used the classical test function to
simulate the BSO algorithm, and the results showed the effectiveness of BSO algorithm. However,
there is still a problem of precocious maturity, and it is necessary to further study to optimize the
algorithm itself, improve the effect of BSO algorithm [11].

In this study, we design an efficient method to support causal discovery by combining K2 with
Brain Storm Optimization Algorithm (K2-BSO). We use the score returned by the K2 algorithm as the
fitness function, and design an elaborate distance function for the clustering step in the BSO according
to the mechanisms of K2. The graph space therefore was reduced to a smaller topological order space
and the order space can be further reduced by an efficient clustering method. After a optimal causal
order is returned by BSO, we run K2 to search for the optimal causal structure, and output the causal
skeleton. In the case of high dimensions, the following methods are first used to process the skeleton.
We split the causal skeleton into n (the number of variables in the skeleton) smaller sub-skeleton,
and employ ANM to detect the causal directions between the target variables and all its parents
from each causal skeleton. Consequently, we obtain a partial DAG (PDAG) w.r.t. each sub-skeleton.
By merging all the PDAGs, the whole structure corresponding to the high dimensional causal network
w.r.t. the given dataset is finally reconstructed. K2-BSO is designed for a certain problem, and the most
different thing from other BSO methods should be the clustering procedure, since in the our design,
we need to measure the distance between two node sequences in term of the corresponding orders
instead of two sequences perset, therefore the existing clustering methodologies used in other BSO
methods like those mentioned in [29–31] are not applicable for our case.

The rest of this paper is organized as follows: Section 2 briefly summarizes these definitions.
Then we focus on the introduction to the basic concepts, algorithm flow and advantages and
disadvantages of K2 and BSO algorithms in Section 3. The details of Causal Discovery combining K2
with Brain Storm Optimization Algorithm are discussed in Section 4. The correctness and performance
characteristics of three algorithms are shown in the Section 5. Section 6 gives detailed experimental
results. Finally, the conclusions are drawn in Section 7.

2. Definitions

In this section, we will introduce several basic definitions applied in our method. The concepts of
the D-separation, V-structure and Additive noise model, which is described as follows:

A causal network can be expressed as a directed acyclic graph (DAG) GN = {VN,EN}, in which EN
= {e1,e2, . . . ,en} and VN = {x1,x2, . . . ,xn} denote the sets of edges and nodes in GN.

A. D-separation

Definition 1. (d-Separation). Assume L is a path from xi to xj, and is blocked by a set of variables Z if one of the
following conditions holds:

(1) L either contains a chain, xi ← xk ← xj, and xk ∈ Z,

(2) or a fork, xi ← xk → xj, and xk ∈ Z,

(3) or a collider, xi → xk ← xj, and xk /∈ Z, and no descendent of xk is contained in Z.

We say a set Z separates two disjointed sets Xi and Xj (Xi, Xj ⊆ VD) if Z blocks each path between
Xi and Xj.
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B. V-structure

Definition 2. (V-Structure). Given three variables x, y, and z. If x and z are the parent nodes of y, and no other
edge is existing between x and z, then x, z and y together form a V-structure. As shown in Figure 1.
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C. Additive noise model

Definition 3. (Additive noise model (ANM for short)) ANM is represented by a collection of n equations
S = {S1,S2, . . . Sn}: Si:xi = fi(xpa(i) ) + εi, i = {1,2, . . . ,n}, where xpa(i) is the direct parent set of xi, the noise
terms εi are jointly independent, and are independent from xi.

It can be seen that the data-generating processes of X can be expressed as:

Si : xi = εi, i = {1, 2, . . . , k} (the root nodes)

Sj : xj = f j

(
xpa(j)

)
+ ε j, j = {1, 2, . . . , n− k} (the other nodes)

As shown aforementioned ANM provides a way for finding casualties by using the assumption
of additional noise data generation process rather than satisfying Markov conditions.

3. The K2 and Brain Storm Optimization

In this section, we first introduce the K2 algorithm. Then, the basic concepts, algorithm flow and
advantages and disadvantages of BSO algorithm are introduced in detail. All in all, the whole process
of the K2 and Brain Storm Optimization can be described as follows.

3.1. The K2 Algorithm

K2 Algorithm, developed by Cooper and Herskovits in 1992, is a Bayesian Network Structure
learning algorithm based on the score search method. It is a classical algorithm in the Bayesian
Network Structure field with excellent learning performance [32].

As we all know, Bayesian Network Structure Learning aims to find the Bayesian Network Structure
BS which best connects with D through the analysis of data set D. That is the Bayesian Network
Structure BS with maximum posterior probability P(BS|D). Because P(BS|D) = P(BS|D)/P(D) in which
P(D) is a constant, what we find is the network structure BS that maximizes the probability P(BS|D),
that is:

max[P(BS, D)] = c
n

∏
i=1

max

[
q1

∏
j=1

(ri − 1)!(
Nij + ri − 1

)
!

ri

∏
k=1

Nijk!

]
, (1)

where c is the a priori probability P(BS|D) of each network structure, which is meant to be a constant
because in the algorithm of K2, it is assumed that every network structure BS has the same probability;
n is the number of nodes; ri is the number of values of node Xi; πi is parent nodes set of node Xi; qi is
the number of configurations of πi; Nijk is the sample number of node Xi, which takes the value of k,
and its parent set is the jth configuration in data set D; Nij = ∑ri

k=1 Nijk.
As is showing above, K2 Algorithm uses Equation (1) as a score function to learn the Bayesian

Network Structure. From Equation (1), the score function can be decomposed, that is, it can be seen as
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products of n local structures, which is made up of each node Xi, i = 1, 2, . . . , n and its corresponding
parent nodes set. Then the following equation is derived:

g(Xi, πi) =
qi

∑
j=1

(ri − 1)!(
Nij + ri − 1

)
!

ri

∏
k=1

Nijk! (2)

G(BS, D) =
n

∑
i=1

g(Xi, πi) (3)

so we can maximize G(Bs,D) if we maximize every local structure’s scores g(Xi,πi), inevitably also
maximizing the scores of the whole Bayesian Network Structure (Equation (1)). According to this
idea, given nodes order ρ and the upper limits µ of each node’s parent nodes, the K2 algorithm can
use Greedy Searching to find each node’s parent nodes in turn so as to finally construct a whole
complete Bayesian Network. The concrete method is as follows: firstly, for every node Xi, i = 1,2, . . . ,n,
constantly choose the former nodes in former nodes’ set from nodes order into parent set πi of node
Xi, making the score function g(Xi,πi) of πi and Xi continuously increase. The above process cannot
stop until function g(Xi,πi) does not increase any more when adding nodes. In that process, we need
to limit that the parent node’s number should be under µ.

As is known to all that the K2 algorithm has two prerequisites, given nodes order ρ and the upper
limits µ of each node’s parent nodes. With these two prerequisites, it can obtain a very good learning
performance, but in most situations, we can’t always meet the above prerequisites, causing difficulties
in the application of the K2 algorithm.

3.2. Brain Storm Optimization

3.2.1. Brainstorming Algorithm Principle

Inspired by human behavior patterns, in 2011, a human brainstorming process was proposed for
the first time by Shi et al., called Brainstorming Optimization Algorithm (BSO). Shi’s article expounds
the thought and realization process of BSO in detail, and simulates the BSO algorithm with classical
test function, and the experimental results show that the BSO algorithm is effective. However, there are
some deficiencies in the new algorithm, such as easily falling into local optima, resulting in premature
convergence. Therefore, it is necessary to improve the BSO algorithm and optimize the algorithm so as
to improve its effect [33–38].

The concept and theory of the basic BSO algorithm is derived from the simulation of the human
brainstorming process. A brainstorming meeting needs a moderator, a number of owners to solve
problems, and a group of parliamentarians with different backgrounds. Since parliamentarians have
different backgrounds, different experiences and different ways of thinking, one problem will get
different solutions. The moderator, in accordance with the four Rules of the Conference (see Table 1),
presides over the meeting and gets solutions from as many as possible [38–43]. The algorithm needs a
skilled host, with no or almost no problem-solving knowledge, so as not to lead host into bias, and also
the host cannot engage in new ideas until all ideas are proposed. The host can divide it into K classes,
and for each class, people can diversify their thinking and propose better solutions until they get the
best solution. The BSO algorithm gets its inspiration from this model and then simulates the process.
In the BSO algorithm, the feasible solution of each optimization problem is a quantity of information
in the search space, all the information has an adaptive value which is determined by the function
of optimization, and then the optimal information is iterated by clustering and learning all kinds of
excellent information.
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Table 1. Osborn’s Original Rules for Idea Generation in a Brainstorming Process.

Rule 1 No bad ideas, every thought is good
Rule 2 Every thought has to be shared and recorded
Rule 3 Most ideas are based on existing ideas, and some ideas can and should be raised to generate new ideas
Rule 4 Try to produce more ideas

The brainstorming session procedure is as follows:

(A) Assemble as many parliamentarians with different backgrounds as possible;
(B) Get the solutions based on the brainstorming rules in Table 1;
(C) Choose a scheme as the best solution for the current problem from each of the

problem-solving owners;
(D) Generate new schemes from the schemes selected in C according to the rules in Table 1
(E) Choose a solution from the idea of each problem-solving owner in D as the best solution for the

current problem
(F) Randomly select a scheme as a clue to generate new schemes in the case of meeting the Rules in

Table 1;
(G) Each problem-solving owner chooses a scheme from F to be the best solution for the

current problem;
(H) Get the best solution that is desired by considering merging these programs.

3.2.2. BSO Algorithm Steps

The brainstorming algorithm is mainly composed of two modules: a clustering module and a
learning module. In the clustering module, the algorithm uses the clustering method to gather the
information into K classes, and the cluster center in each class is the optimal value. The algorithm is
optimized by learning, also the information in each class is in parallel. Similarly the local search is
promoted, and the algorithm jumps out of the local optimization through the cooperation between
classes and the mutation operation, which promotes the global search. The convergence of the
algorithm is ensured by the optimization process of cluster center, and the process of optimizing the
information variation in the class ensures the diversity of the algorithm population. Each individual
in the BSO algorithm represents a potential problem solution that is updated by the individual’s
evolution and fusion, a process similar to that of the human brainstorming process [44–46].

The implementation of BSO algorithm is simpler:

(1) Obtain the solution of n potential problems, then divide n individuals into M class by K-means
method, the individual in each class is sorted by evaluating these n individuals, and the optimal
individual is selected as the central point of the class;

(2) Randomly select the central individual of a class and determine whether it is replaced by a
randomly generated individual according to the probability;

(3) to update the individual, the way is updated by the following four ways: (a) randomly select a
class (the probability of selection is proportional to the number of individuals within the class),
the random perturbation is added to the class center to produce a new individual; (b) randomly
select a class (the probability of selection is proportional to the number of individuals within
the class) and randomly select an individual in the selected class, plus a random perturbation to
produce a new individual; (c) randomly selected two classes, the fusion of the class center and
the random perturbation to produce a new individual; (d) randomly select two classes, randomly
select an individual in each class, and then add a random perturbation to create a new individual.
By adjusting the parameters to control the proportion of the above four ways to produce new
individuals. After the new individual generation, compared with the original individual, the final
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selection of the best one to retain to a new generation of individuals, repeat the above operation,
the n individual to update each one, produced a new generation of n individuals.

This loops until the upper limit of the preset individual update algebra is reached. In the third
step, the update of the individual has four ways to produce a new individual process; the selected
amount of information plus a Gaussian random is worth the new amount of information, such as the
following Equation (4):

Xd
new = Xd

selected + ε× n(µ, σ), (4)

where Xd
new is the d dimension of the new information, Xd

selected is the d dimension of the selected
information, n(µ, σ) is the Gaussian function whose mean value is µ and variance is σ; ε is a weight
coefficient which is described by Equation (5):

ξ = log sig((0.5×max_iteration− current_iteration)/k)× rand(), (5)

where logsig() is a s-type logarithmic transfer function, and max_iteration is the maximum number of
iterations, while current_iteration means the current number of iterations; k can change the slope of the
function logsig(), rand() is the random value between (0,1).

4. The K2-BSO Method

In this section, the details of the K2-BSO method are given, we show that this method is able to
discover causation combining K2 with the Brain Storm Optimization algorithm. All in all, the whole
process of causality is deduced, which is described as follows:

4.1. Skeleton Learning Phase Based on K2-BSO

The Additive Noise Model (ANM) could find out the causal relationships correctly between
variables in sparse causal networks, but this model would encounter multiple challenges when applied
to high-dimensional complex network structures [12]. First of all, high-dimensional causal networks
contain a large number of variables, and the causal relationships between them are very complex,
so the algorithm requires the ability to quickly search. Causal relationship references based on the
traversal method will face all possible network structures, which leads directly to the insufferable
computational complexity, the storage space overflow and other problems. The K2 algorithm needs to
satisfy two prerequisites, given nodes order and the upper limits of each node’s parent nodes. However,
it is difficult to make it in fact. What’s more, the K2 algorithm is easy to fall into the local optimal
solutions while the BSO algorithm could get rid of local optimizations. Therefore, the combination
of the algorithm K2 and BSO can effectively solve the structural learning problem of causal network
structure. As discussed in the previous section, there are three points we need to note:

(1) What needs to be optimized is the causal order that will highly affect the accuracy of K2. Generally,
an input order approaching the actual topological order of the underling causal network will
return the highest score and most similar causal structure.

(2) The fitness function is easy to be chosen, that is the score return by K2.
(2) The clustering method of BSO should be redesigned; all the distance function likes [46] cannot

be directly applied to this case, as what we consider is the topological order. We design a new
distance function like this:

Step I. Given two orders R1 and R2, for each variable in R1, we find the same variable in R2,
assume it is v1.

Step II. Consider n variables in front of v1 in R1, and m variables in front of v1 in R2, we calculate
the number of the repeated variables in n + m variables.

Step III. By literately sum up the repeated variables w.r.t. every variable in R1 (or R2), we get a
number, and let this number as the distance between R1 and R2.



Molecules 2018, 23, 1729 8 of 16

We note that, the clustering step is crucial to the BSO, as shown before, our distance function
is designed based on the mechanism of K2, which will highly improve the clustering performance
in BSO.

4.2. Direction Learning Phase

Algorithm 1 can obtain the skeleton of network returned by K2-BSO. Because the K2 can only
examine a set of Markov equivalence classes rather than the realistic causal structure, we aim to detect
the remaining directions of the output skeleton for distinguishing this equivalence in this section.
Because of the existence of Markov equivalence classes, the structural learning methods are generally
difficult to infer all causal direction. On the other hand, the ANM provides an effective way to learn
causal direction in low-dimensional cases. Note that, we get the causal skeleton, then we can separate
the causal skeleton S into n sub-skeletons (Si, . . . ,Sn) which contain a target node Xi and all its neighbor
nodes Ni according to S. In general, these sub-skeletons are generally low-dimensional and therefore
can be solved by using ANM. The way to orient the edges of a skeleton in ANM method is described
as follows:

Algorithm 1. Skeleton learning based on K2-BSO.

Input: dataset X, population size |V|.
Output: the skeleton w.r.t. X.
1: Randomly generate n potential causal order R = R1 ∼ Rn;
2: Cluster R into m clusters C = C1 ∼ Cm;
3: For each Ri
Scorei = K2(Ri);
4: End For
5: Score = Score1 ~Scoren;
6: Roptimal = BSO (X, R, Score, C);
7: Goptimal = K2(Roptimal);
8: X = Goptimal;
9: return the causal skeleton X.

Firstly, consider a given dataset X = {X1,X2, . . . ,Xn} with index V = {1,2, . . . ,n}. X corresponds to
an n-dimensional DAG G = {V,E}, where E represents the edges of V. Assume that X is generated by
the following way: each variable Xi ∈ X corresponds to one node i ∈ V in G, and is determined by a
causal function Xi = fi(xpa(i)) + εi in which fi is nonlinear, xpa(i) is the parent of xi. The noise terms εi
have a non-Gaussian distribution and are jointly independent.

In the issue of seeking out the causal direction, we aim to seek out all the parent nodes (contained
in Ni) amount to each target Xi from Si. On the basis of the mechanism of ANM, we denote the
homologous remains between Xi and each candidate parent set Cik as Xi = f (Cik) + εi by using GPR,
and we test whether Cik and ε are statistically independent. If they are independent we accept the model
Cik → Xi; if not, we deny it. In this phase, we measure the independence by using the kernel-based
conditional independence (KCI) test. The details of causal directions inference from a output causal
skeleton is presented in Algorithm 2.

Algorithm 2. Learning causal direction from a sub-skeleton.

Input: sub-skeleton Si and the corresponding target node Xi with all its neighbors Ni.
Output: the direction between Xi and (partial) Ni.
1: For each candidate parent set Cik;
2: fit Xi and Cik to ANM;
3: if ε is independent of Cik then
4: accept Cik → Xi;
5: end if
6: end for
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4.3. K2-BSO Framework (Algorithm 3)

We first present the details of the K2-BSO method:

Step 1. Learning the causal skeleton S by algorithm 1.
Step 2. Split S into n sub-skeleton S1, . . . , Sn according to each node Xi contained in S.
Step 3. Perform Algorithm 2 for each sub-skeleton Si.
Step 4. Merge all the partial results and output the final causal structure.

Algorithm 3. K2-BSO framework.

Input: Dataset X, threshold k
Output: Causal structure G.
1. Set Dimension X to n;
2. if (n < k) then
3. S = Algorithm 1(X); G = Algorithm 2(X, S);
4. else
5. Split S into n sub-skeleton S1, . . . , Sn according to each node Xi contained in S;
6. For each Si in S
7. Si = Algorithm 1(Xi); PDAGi = Algorithm 2(Xi, Si);
8. Merge all PDAGi to G;
9. End for
10. end if
11. return the final causal structure G.

5. The Correctness and Performance of the Algorithms

In this part, we analyze theoretically about the respective characteristics of the correctness and
performance with the three algorithms (K2-Random, K2-BSO, K2-GA).

First, we discuss the K2-Random algorithm. It is a traditional method, and there is not much
optimization process. The main process is: first step, randomly obtain p data sort, then sort the score
from the top to the bottom and select the highest score. The second step is to continue to randomly
obtain p data sort, found the highest score Tscore, until 10 consecutive times are the same highest
score, and end the program; this method is very easy to enter the local optimization state, but the
experimental result is unstable.

Second, we discuss the K2-BSO algorithm, which is the method proposed in this paper. It is
better to avoid local optimization problems. The main process is: first step, randomly obtain p data
sort, then sort the score from the top to the bottom and obtained m data sort by clustering method.
The second step is to obtain m new subclasses by random perturbation about m subclasses by the BSO
algorithm. Then we reevaluate the score until the score converges.

Third, we discuss the K2-GA algorithm. The main process is: The main process is: first step,
randomly obtain p data sort, Then sort the score from the top to the bottom and select the highest score
until the score converges. The second step is to obtain p new data sort by means of Genetic Algorithm
(GA) method with randomly perturbation the highest ranking data. Then sort the score from the top
to the bottom to obtain the highest score Tscore.

In summary, the first algorithm in time complexity is the best, but the accuracy rate is the lowest
and unstable; the second algorithm and the third algorithm’s time complexity are the same, especially
with the increase of network dimensions, second algorithms tend to advance convergence faster than
the third algorithms, and the accuracy of the second algorithms is better than the third algorithm. Next,
we’ll use real data to validate three algorithms in the next chapter.

6. Experiments

In this section, we evaluate our proposal on eight real-world datasets that cover a variety
of applications including Small Networks (Asia, Sachs), Medium Networks (Child, Alarm),
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Large Networks (Barley, Win95pts), and Very Large Networks (Pigs, MINUN) that cover a variety
of applications, including, medicine (ASIA, SACHS, CHILD and ALARM), agricultural industry
(BARLEY), system troubleshooting (WIN95PTS) and bioinformatics (PIGS and MUMIN) are available
at “http://archive.ics.uci.edu/ml/datasets.html”. The structural statistics of the eight networks are
summarized in Table 2.

Table 2. Statistics on the network.

Network Nodes Edges Avg Degree Maximum in-Degree

ASIA 8 8 2 2
SACHS 11 17 3.09 3
CHILD 20 25 1.25 2

ALARM 37 46 2.49 4
BARLEY 48 84 3.5 4

WIN95PTS 76 112 2.95 7
PIGS 441 592 2.68 2

MUMIN 1041 1397 2.68 3

In this group of experiments, our proposed method is compared with other two mainstream
causal discovery methods—K2-Random (Causal Discovery combining K2 with Random) method and
K2-GA (Causal Discovery combining K2 with Genetic Algorithm) method. We evaluate these methods
by different sample size at 250, 500, 1000, 2000, respectively. We use three criteria, Recall, Precision,
and F1 to evaluate these methods, which are defined as follows:

Recall = (Inferred directions∩Actual directions)/(Actual directions), (9)

Precision = (Inferred directions∩Actual directions)/(Inferred directions), (10)

F1 = (2× Recall× Precision)/(Recall + Precision) (11)

Obviously Precision is the actual fraction of inferred causality with respect to a true graph.
Similarly, Recall is the part of actual causality found by the algorithm. F1 is the organic combination of
Precision and Recall which can serve as the accuracy standard for our algorithms.

The experimental environment is as follows:

(1) CPU of the physical host: CPU E5-2640 v3, 2.60 GHz (2-way 8-core);
(2) Platform belongs to the cloud platform version from Bingo Cloud: v6.2.4.161205143;
(3) Memory is 24 G.

As shown in Table 3, we can see that the K2-Random runs much faster than the other two
algorithms. However, as showed in Figure 2, the accuracy of K2-Random is lowest, this means
K2-Random easily falls into a local optimum. One can imagine that if we use K2-Random to test
all possible causal orders detailed we can obtain the best score, but we usually cannot get the final
result in an acceptable time, because the time complexity of such an exhaustive algorithm reaches the
upper limit.

On the other hand, we can see that in the small networks, K2-GA runs faster than K2-BSO.
However, as the size of the networks grows, the running time of K2-BSO increases slower than that
consumed by K2-BSO, and the running time of the two methods tend to be very close. We can see that
in the case of WIN95PTS, K2-BSO runs much faster than K2-GA. What is the most different between
K2-BSO and K2-GA in the task is that K2-BSO performs a clustering step, which can greatly reduce
the convergence time. Recall that, the clustering step in K2-BSO also costs time. Therefore, when the
causal network spends more time in clustering step, K2-BSO is probably slower than K2-GA, while for
a network to spend less time in the clustering step, theoretically K2-BSO runs much faster than K2-GA.
Accordingly, the specific structure of a certain causal network weighs heavily on total time.

http://archive.ics.uci.edu/ml/datasets.html
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Table 3. Comparisons between three algorithms on execution time.

Dataset Sample
K2-Random K2-BSO K2-GA

Best Mean Worst Best Mean Worst Best Mean Worst

ASIA 250 1.2555 1.749 2.6157 3.0185 4.5585 5.8543 2.8367 4.2504 5.5427
ASIA 500 1.085 1.4656 1.9224 3.2043 4.3753 6.3392 2.1125 4.8925 6.4698
ASIA 1000 1.5104 1.7994 2.2099 4.7037 5.0472 5.3491 3.1055 5.1146 8.2191
ASIA 2000 2.2676 2.4993 2.6629 3.3815 3.9774 4.3823 4.1878 5.506 8.1496
SACHS 250 4.5248 5.025 5.3196 6.2266 6.4963 6.6793 3.02 4.6432 7.501
SACHS 500 2.4084 3.6746 5.2433 8.7819 11.2107 15.6879 5.5198 8.1696 8.6039
SACHS 1000 2.7062 3.5759 4.0197 8.3591 11.7962 15.3562 5.4356 8.6128 12.8977
SACHS 2000 3.4966 4.6789 6.4649 9.3677 10.7807 11.5173 6.1085 6.1516 6.1762
CHILD 250 7.7092 9.117 12.5631 28.0133 29.961 31.325 21.1455 25.986 30.974
CHILD 500 8.9414 11.8924 14.1062 17.7665 28.9292 41.265 30.2484 34.1696 38.9523
CHILD 1000 10.059 17.5069 28.2669 33.4957 38.4505 43.9597 23.6723 24.608 25.3404
CHILD 2000 10.709 13.8898 18.3508 30.1317 58.6901 78.3929 21.3343 38.465 47.0478
ALARM 250 46.647 71.9888 86.3291 217.3178 266.3269 355.1756 147.9969 283.8744 371.7365
ALARM 500 94.125 103.2041 119.5914 227.3739 293.7428 377.54 133.6973 388.0371 519.749
ALARM 1000 62.140 92.5241 125.1668 157.303 247.1288 294.8618 144.2063 316.8503 475.2459
ALARM 2000 95.002 159.3802 232.1197 323.0716 394.6686 496.8733 219.1187 275.1111 345.3221
BARLEY 250 66.378 91.2914 136.5331 198.4244 325.1975 400.4625 160.181 205.9434 233.3933
BARLEY 500 75.057 99.7028 138.1832 304.5911 364.1937 368.7941 194.9004 358.4717 567.8317
BARLEY 1000 86.012 100.4193 116.8377 326.8585 370.2588 404.4023 255.2328 396.0264 505.5334
BARLEY 2000 96.159 103.1696 116.3037 478.3594 525.7576 549.7203 368.8762 810.5905 1.48 × 103

WIN95PTS 250 649.75 1.10 × 103 1.52 × 103 1.81 × 103 4.44 × 103 7.16 × 103 1.60 × 104 2.06 × 104 2.31 × 104

WIN95PTS 500 555.26 727.4609 819.2716 2.33 × 103 4.76 × 103 6.67 × 103 6.23 × 103 1.83 × 104 2.48 × 104

WIN95PTS 1000 693.01 746.7864 827.4684 2.73 × 103 4.38 × 103 6.00 × 103 2.01 × 104 2.57 × 104 3.19 × 104

WIN95PTS 2000 715.72 1.43 × 103 1.85 × 103 2.25 × 103 7.04 × 103 1.50 × 104 2.13 × 104 3.44 × 104 4.98 × 104

PIGS 250 1.87 × 104 2.52× 104 3.96 × 104 2.60 × 105 3.89 × 105 4.85 × 105 1.45 × 105 2.48 × 105 3.77 × 105

PIGS 500 5.35 × 104 6.84 × 104 8.53 × 104 3.09 × 105 4.03 × 105 5.24 × 105 1.58 × 105 2.56 × 105 3.03 × 105

PIGS 1000 7.12 × 104 8.64 × 104 9.71 × 104 2.92 × 105 4.14 × 105 4.59 × 105 1.85 × 105 2.70 × 105 3.57 × 105

PIGS 2000 6.17 × 104 9.00 × 104 1.09 × 105 4.26 × 105 5.26 × 105 7.05 × 105 1.98 × 105 2.74 × 105 3.33 × 105

MINUN 250 1.98 × 105 2.70 × 105 4.33 × 105 1.71 × 106 2.70 × 106 3.46 × 106 4.54 × 105 7.74 × 105 1.09 × 106

MINUN 500 3.10 × 105 4.05 × 105 4.98 × 105 2.52 × 106 3.24 × 106 4.17 × 106 5.45 × 105 9.00 × 105 1.07 × 106

MINUN 1000 3.39 × 105 4.14 × 105 4.72 × 105 2.43 × 106 3.41 × 106 3.88 × 106 8.19 × 105 1.17 × 106 1.57 × 106

MINUN 2000 2.93 × 105 4.23 × 105 5.06 × 105 2.93 × 106 3.67 × 106 4.99 × 106 9.81 × 105 1.35 × 106 1.65 × 106

As shown in Figure 2, K2-BSO achieves the better score in the majority of cases, which means
that the clustering step can not only improve the convergence speed on the basis of the number of
iterations, but also prevent K2-BSO from falling into local optima. Even the largest network PIGS
shows that the F1 score is 2% better than K2-GA.

Figure 2 also shows the main trends of the indexes (Recall (R), Precision (P), and F1) of the
three algorithms (K2-R, K2-BSO, K2-GA), with different samples [250,500,1000,2000] in eight datasets,
including ASIA, ALARM, SACHS, BARLEY, CHILD, Win95pt, PIGS and MINUN. The blue line ‘o:’
represents the numerical trend of the Recall of K2-Random; the blue line ‘o–’ indicates the numerical
trend of the Precision of K2- Random; the blue line ‘*—’ indicates the numerical trend of the F1 of
K2-Random; The red line ‘o:’ represents the numerical trend of the Recall of K2-BSO; the red line ‘o–’
indicates the numerical trend of Precision of K2-BSO; the red line ‘*—’ indicates the numerical trend of
F1 of K2-BSO; The green line ‘o:’ represents numerical trend of the Recall of K2-GA; the green line
“o–” indicates the numerical trend of the Precision of K2-GA, and the blue line “*—” indicates the
numerical trend of the F1 of K2-GA.

Figure 2a shows the curves of the three methods (K2-R, K2-BSO, K2-GA) with different samples
in the data set ASIA. It can be seen that the red curve basically goes above the green one and the blue
one, which means that K2-BSO’s indexes R, P, F1 are higher than that of K2-R and K2-GA, thus proves
that K2-BSO algorithm is better than K2-R algorithm and K2-GA algorithm.

Figure 2b–e show the curves of the three algorithms (K2-R, K2-BSO, K2-GA) with different samples
in data sets SACHS, CHILD, ALARM and BARLEY. It can be observed that the results are similar to
that in Figure 2a, that K2- BSO’s indexes R,P,F1 are higher than that of K2-R and K2- GA, thus also
proves that K2-BSO algorithm is better than K2-R algorithm and K2-GA algorithm. Figure 2f–g shows
the curves of the three methods (K2-R, K2-BSO, K2-GA) with different samples in data set WIN95PTS,
PIGS and MINUN. WIN95PTS is a 76-dimensional network, PIGS is a 441-dimensional network and
MINUN is a 1041-dimensional network, so they belongs to the high dimensional networks. We can see
from Figure 2f that the curve of the blue value is the lowest; with sample 500 and 2000, the value of
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the green curve is slightly higher than that of the red curve, while on the whole, the red curve goes
above the green. However, when we refer to Table 3, it is obvious that the execution time of K2-BSO
is much less than that of K2-GA, which means the K2-BSO is better than the other algorithms in this
network. On the other hand, Figure 2g shows that the curves are slightly different from the form’s
results, the Recall of the three methods grows with the increase of sample size while the Precision
reduces with the increase of sample size.
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The reason for such a difference is that PIGS is a genetic network, that is, PIGS has a very complex
structure where some nodes connect with many neighboring nodes, for example, the maximum degree
is 41 (maximum in-degree is 2). Accordingly it is difficult for the subroutine K2 to remove these
in-direct causal relationships. Even so, it can be seen that the F1 score of K2-BSO is still 2% better than
those of K2-R and K2-GA. Figure 2h shows that even in the case of MINUN network of more than
1000 dimensionality, K2-BSO works much better than K2-GA and K2-R. These results demonstrate that
our method K2-BSO is much reliable than the counterparts in more complexity and higher-dimensional
cases, and also shows that K2-BSO is able to learn the causal structure from a dataset with hundreds of
variables. In summary, K2-BSO performs better than K2-GA if the accuracy and execution time are
combined, so in our future work, we will continue to perfect the K2-BSO algorithm, making it adapt to
high-dimensional network accuracy problems at the cost of some appropriate execution time.

7. Conclusions

To reduce the search space of graphs is important in causal relationship discovery; however,
the existing methods show inefficiency for large scale causal networks. In this work, an improved
causal structure learning algorithm combining K2 with brain storm optimization (BSO) called K2-BSO
is presented to alleviate this problem. In contrast to other evolutionary algorithms based on the search
and score methods, K2-BSO has two significant advantages, (1) K2-BSO searches optimal topological
order of nodes instead of graph space. The order space should be much smaller than the whole graph
space. In this phase, an elaborate distance function is introduced for clustering nodes’ orders in BSO
based on the mechanism of K2. The graph space therefore is reduced to a smaller topological order
space that can be further reduced by an efficient clustering method. (2) Our method is designed through
the following split and merge strategy, the original dataset is split into a set of subdata sets in the first
place. The BSO will run on these subdata sets to recover the corresponding substructures. Here we
further use additive noise model approach to rectify the direction of the erroneous orientation or the
side without direction. We eventually merge all these substructures and obtain the entire structure of
the graph. The experimental results on various causal networks showed our method could outperform
the traditional search and score method and the state-of-the-art genetic algorithm-based method.

Author Contributions: Y.H. and Z.H. designed the study. Y.H., Z.H., G.M., H.H. and A.K.S. performed the study.
Y.H. and G.M. wrote the manuscript. G.M. was the principal investigator and corresponding author.

Funding: This research was supported in part by NSFC-Guangdong Joint Found (U1501254), Natural
Science Foundation of China (61472089), (61473331), (61502108), Science and Technology Planning Project
of Guangdong Province, China (2015A030401101), (2015B090922014), (2017A040405063), (2017B030307002),



Molecules 2018, 23, 1729 14 of 16

Guangdong High-level personnel of special support program (2014TQ01X664) and International Cooperation
Project of Guangzhou (201807010047).

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Hao, Z.; Huang, J.; Cai, R.; Wen, W. A hybrid approach for large scale causality discovery. In Emerging
Intelligent Computing Technology and Applications, Proceedings of the 8th International Conference, ICIC 2012,
Huangshan, China, 25–29 July 2012; Springer: Berlin, Germany, 2013; Volume 375, pp. 1–6.

2. Li, X.J.; Mishra, S.K.; Wu, M.; Zhang, F.; Zheng, J. Syn-lethality: An integrative knowledge base of synthetic
lethality towards discovery of selective anticancer therapies. BioMed Res. Int. 2014, 2014, 196034. [CrossRef]
[PubMed]

3. Wu, M.; Li, X.; Zhang, F.; Li, X.; Kwoh, C.K.; Zheng, J. In silico prediction of synthetic lethality by
meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer. Cancer Inform.
2014, 13, 71–80. [CrossRef] [PubMed]

4. Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009.
5. Spirtes, P.; Glymour, C.N.; Scheines, R.; Heckerman, D.; Meek, C.; Cooper, G.; Richardson, T. Causation,

Prediction, and Search; Springer: New York, NY, USA, 1993; pp. 272–273.
6. Chickering, D.M. Learning equivalence classes of bayesian-network structures. J. Mach. Learn. Res. 2002, 2,

150–157.
7. Shimizu, S.; Hoyer, P.O.; Hyvärinen, A.; Kerminen, A. A linear non-gaussian acyclic model for causal

discovery. J. Mach. Learn. Res. 2006, 7, 2003–2030.
8. Shimizu, S.; Inazumi, T.; Sogawa, Y.; Hyvärinen, A.; Kawahara, Y.; Washio, T.; Hoyer, P.O.; Bollen, K.

Directlingam: A direct method for learning a linear non-gaussian structural equation model. J. Mach.
Learn. Res. 2011, 2, 1225–1248.

9. Hoyer, P.O.; Janzing, D.; Mooij, J.M.; Peters, J.; Schölkopf, B. Nonlinear causal discovery with additive
noise models. In Proceedings of the International Conference on Neural Information Processing Systems,
Vancouver, BC, Canada, 8–10 December 2008; pp. 689–696.

10. Peters, J.; Mooij, J.M.; Janzing, D.; Schölkopf, B. Causal discovery with continuous additive noise models.
J. Mach. Learn. Res. 2013, 15, 2009–2053.

11. Peters, J.; Janzing, D.; Scholkopf, B.; Teh, Y.W.; Titterington, M. Identifying cause and effect on discrete data
using additive noise models. In Proceedings of the International Conference on Artificial Intelligence and
Statistics, Sardinia, Italy, 13–15 May 2010; pp. 597–604.

12. Peters, J.; Janzing, D.; Scholkopf, B. Causal inference on discrete data using additive noise models. IEEE Trans.
Pattern Anal. Mach. Intell. 2011, 33, 2436–2450. [CrossRef] [PubMed]

13. Zhang, K.; Hyvärinen, A. Distinguishing causes from effects using nonlinear acyclic causal models.
In Proceedings of the 2008th International Conference on Causality: Objectives and Assessment, Vancouver,
BC, Canada, 8–10 December 2008; Volume 6, pp. 157–164.

14. Daniusis, P.; Janzing, D.; Mooij, J.; Zscheischler, J.; Steudel, B.; Zhang, K.; Schölkopf, B. Inferring deterministic
causal relations. In Proceedings of the Conference on UAI, Catalina Island, CA, USA, 8–11 July 2010;
pp. 143–150.

15. Janzing, D.; Mooij, J.; Zhang, K.; Lemeire, J.; Zscheischler, J.; Daniušis, P.; Steudel, B.; Scholkopf, B.
Information-geometric approach to inferring causal directions. Artif. Intell. 2012, 182–183, 1–31. [CrossRef]

16. Janzing, D.; Steudel, B.; Shajarisales, N.; Scholkopf, B. Justifying information-geometric causal inference.
In Measures of Complexity; Springer: Cham, Switzerland, 2015; pp. 253–265.

17. Chen, W.; Hao, Z.; Cai, R.; Zhang, X.; Hu, Y.; Liu, M. Multiple-cause discovery combined with structure
learning for high-dimensional discrete data and application to stock prediction. Soft Comput. 2016, 20,
4575–4588. [CrossRef]

18. Cai, R.; Zhang, Z.; Hao, Z. Causal gene identification using combinatorial v-structure search. Neural Netw.
2013, 43, 63–71. [CrossRef] [PubMed]

19. Cai, R.; Zhang, Z.; Hao, Z. SADA: A General Framework to Support Robust Causation Discovery.
In Proceedings of the 30th International Conference on Machine Learning (ICML), Atlanta, GA, USA,
16–21 June 2013; Volume 28, pp. 208–216.

http://dx.doi.org/10.1155/2014/196034
http://www.ncbi.nlm.nih.gov/pubmed/24864230
http://dx.doi.org/10.4137/CIN.S14026
http://www.ncbi.nlm.nih.gov/pubmed/25452682
http://dx.doi.org/10.1109/TPAMI.2011.71
http://www.ncbi.nlm.nih.gov/pubmed/21464504
http://dx.doi.org/10.1016/j.artint.2012.01.002
http://dx.doi.org/10.1007/s00500-015-1764-8
http://dx.doi.org/10.1016/j.neunet.2013.01.025
http://www.ncbi.nlm.nih.gov/pubmed/23500501


Molecules 2018, 23, 1729 15 of 16

20. Cai, R.; Zhang, Z.; Hao, Z.; Winslett, M. Understanding Social Causalities Behind Human Action Sequences.
IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 1801–1813. [CrossRef] [PubMed]

21. Cai, R.; Zhang, Z.; Hao, Z. BASSUM: A Bayesian semi-supervised method for classification feature selection.
Pattern Recognit. 2011, 44, 811–820. [CrossRef]

22. Mooij, J.; Janzing, D.; Peters, J.; Scholkopf, B. Regression by dependence minimization and its application to
causal inference in additive noise models. In Proceedings of the 26th Annual International Conference on
Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 745–752.

23. Zhang, K.; Peters, J.; Janzing, D.; Scholkopf, B. Kernel-based conditional independence test and application
in causal discovery. Comput. Sci. 2012, 6, 895–907.

24. Cheng, S.; Qin, Q.; Chen, J.; Shi, Y. Brain storm optimization algorithm: A review. Artif. Intell. Rev. 2016, 46,
445–458. [CrossRef]

25. Hong, Y.H.; Liu, Z.S.; Mai, G.Z. An efficient algorithm for large-scale causal discovery. Soft Comput. 2016, 21,
7381–7391. [CrossRef]

26. Hong, Y.H. Fast causal network skeleton learning algorithm. J. Nanjing Univ. Sci. Technol. 2016, 40, 315–321.
27. Hong, Y.H.; Mai, G.Z.; Liu, Z.S. Learning tree network based on mutual information. Metall. Min. Ind. 2015,

12, 146–151.
28. Duan, H.; Li, S.; Shi, Y. Predator–prey brain storm optimization for DC brushless motor. IEEE Trans. Mag.

2013, 49, 5336–5340. [CrossRef]
29. Shi, Y. Brain storm optimization algorithm. In Proceedings of the International Conference in Swarm

Intelligence, Chongqing, China, 12–15 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–309.
30. Zhan, Z.H.; Zhang, J.; Shi, Y.H.; Liu, H.L. A modified brain storm optimization. In Proceedings of the 2012

IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8.
31. Xue, J.; Wu, Y.; Shi, Y.; Cheng, S. Brain storm optimization algorithm for multi-objective optimization

problems. In Advances in Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 513–519.
32. Cooper, G.F.; Herskovits, E. A bayesian method for the induction of probabilistic networks from data.

Mach. Learn. 1992, 9, 309–347. [CrossRef]
33. Shi, Y. An optimization algorithm based on brainstorming process. In Emerging Research on Swarm Intelligence

and Algorithm Optimization; Information Science Reference: Hershey, Pennsylvania, 2015; pp. 1–35.
34. Zhou, D.; Shi, Y.; Cheng, S. Brain storm optimization algorithm with modified step-size and individual

generation. Adv. Swarm Intell. 2012, 7331, 243–252.
35. Sun, C.; Duan, H.; Shi, Y. Optimal satellite formation reconfiguration based on closed-loop brain storm

optimization. IEEE Comput. Intell. Mag. 2013, 8, 39–51. [CrossRef]
36. Jadhav, H.T.; Sharma, U.; Patel, J.; Roy, R. Brain storm optimization algorithm based economic dispatch

considering wind power. In Proceedings of the 2012 IEEE International Conference on Power and Energy
(PECon), Parit Raja, Malaysia, 2–5 December 2012; pp. 588–593.

37. Qiu, H.; Duan, H. Receding horizon control for multiple UAV formation flight based on modified brain
storm optimization. Nonlinear Dyn. 2014, 78, 1973–1988. [CrossRef]

38. Shi, Y.; Xue, J.; Wu, Y. Multi-objective optimization based on brain storm optimization algorithm. Int. J.
Swarm Intell. Res. 2013, 4, 1–21. [CrossRef]

39. Shi, Y. Brain storm optimization algorithm in objective space. In Proceedings of the 2015 IEEE Congress on
Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 1227–1234.

40. Yang, Z.; Shi, Y. Brain storm optimization with chaotic operation. In Proceedings of the 2015 Seventh
International Conference on Advanced Computational Intelligence (ICACI), Wuyi, China, 27–29 March 2015;
pp. 111–115.

41. Yang, Y.; Shi, Y.; Xia, S. Advanced discussion mechanism-based brain storm optimization algorithm.
Soft Comput. 2015, 19, 2997–3007. [CrossRef]

42. Jia, Z.; Duan, H.; Shi, Y. Hybrid brain storm optimisation and simulated annealing algorithm for continuous
optimisation problems. Int. J. Bio-Inspired Comput. 2016, 8, 109–121. [CrossRef]

43. Cheng, S.; Shi, Y.; Qin, Q.; Gao, S. Solution clustering analysis in brain storm optimization algorithm.
In Proceedings of the 2013 IEEE Symposium on Swarm Intelligence (SIS), Singapore, 16–19 April 2013;
pp. 111–118.

44. Cheng, S.; Shi, Y.; Qin, Q.; Zhang, Q.; Bai, R. Population diversity maintenance in brain storm optimization
algorithm. J. Artif. Intell. Soft Comput. Res. 2014, 4, 83–97. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2016.2556724
http://www.ncbi.nlm.nih.gov/pubmed/27164610
http://dx.doi.org/10.1016/j.patcog.2010.10.023
http://dx.doi.org/10.1007/s10462-016-9471-0
http://dx.doi.org/10.1007/s00500-016-2281-0
http://dx.doi.org/10.1109/TMAG.2013.2262296
http://dx.doi.org/10.1007/BF00994110
http://dx.doi.org/10.1109/MCI.2013.2279560
http://dx.doi.org/10.1007/s11071-014-1579-7
http://dx.doi.org/10.4018/ijsir.2013070101
http://dx.doi.org/10.1007/s00500-014-1463-x
http://dx.doi.org/10.1504/IJBIC.2016.076326
http://dx.doi.org/10.1515/jaiscr-2015-0001


Molecules 2018, 23, 1729 16 of 16

45. Cheng, S.; Shi, Y.; Qin, Q.; Ting, T.O.; Bai, R. Maintaining population diversity in brain storm optimization
algorithm. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China,
6–11 July 2014; pp. 3230–3237.

46. Georgiou, D.N.; Karakasidis, T.E.; Nieto, J.J.; Torres, A. A study of entropy/clarity of genetic sequences using
metric spaces and fuzzy sets. J. Theor. Biol. 2010, 267, 95–105. [CrossRef] [PubMed]

Sample Availability: Samples of the compounds are not available from the authors.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jtbi.2010.08.010
http://www.ncbi.nlm.nih.gov/pubmed/20708019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Definitions 
	The K2 and Brain Storm Optimization 
	The K2 Algorithm 
	Brain Storm Optimization 
	Brainstorming Algorithm Principle 
	BSO Algorithm Steps 


	The K2-BSO Method 
	Skeleton Learning Phase Based on K2-BSO 
	Direction Learning Phase 
	K2-BSO Framework (Algorithm 3) 

	The Correctness and Performance of the Algorithms 
	Experiments 
	Conclusions 
	References

