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Abstract: Inflammatory bowel disease (IBD) is a common disease characterized by chronic
inflammation in gastrointestinal tracts, which is primarily treated by administering anti-inflammatory
and immunosuppressive drugs that inhibit the burden of intestinal inflammation and improve
disease-related symptoms. However, the established therapeutic strategy has limited therapeutic
efficacy and adverse drug reactions. Therefore, new disease-targeting drug-delivery strategies to
develop more effective treatments are urgent. This review provides an overview of the drug-targeting
strategies that can be used to treat IBD, and our recent attempts on the colon-specific delivery system
(Pae-SME-CSC) with a paeonol-loaded self-microemulsion (Pae-SMEDDS) are introduced.

Keywords: targeted drug-delivery strategies; treatment; inflammatory bowel disease

1. Introduction

Inflammatory bowel disease (IBD) includes two major types of disease: Crohn’s disease (CD) and
ulcerative colitis (UC) [1,2], which are chronic recurrent inflammatory diseases of the gastrointestinal
tract involving the large intestine or colon [3]. UC and CD are considered different conditions;
however, they share some common clinical features, such as cycles of relapse and remitting mucosal
inflammation [4]. For UC, the inflammation is restricted to the colon and rectum continuously, with
some cases even reaching the whole colon. Ulcerative colitis is one of the most common causes of
colorectal cancer. Carcinogenesis is related to the time limit and extent of lesions of ulcerative colitis.
The longer the disease course, the greater the chance of carcinogenesis in active cases with more
extensive lesions. The incidence of ulcerated colorectal cancer is significantly higher than that of
the general population. In the process of inflammatory hyperplasia, inflammatory or pseudopolyps
are often formed and cancer occurs. However, it takes a long time and the cancerous rate of this
colonic polyp is low. The occurrence of cancerous changes in the karyotype is more common in the
undifferentiated type, with a higher degree of malignancy and a poorer prognosis [5]. CD affects any
region of the GI tract, with the terminal ileum and the colon commonly affected, and the inflammation
is generally noncontinuous [6,7]. The exact cause of IBD is uncertain, but some factors have been
suggested, such as immunological, genetic and environmental [8].
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The cause and cure for IBD are yet to be discovered, and therapeutic strategies are aimed towards
attaining and maintaining remission from inflammatory episodes. Intestinal mucosa of patients with
IBD has been previously reported and is characterized by overproduction of reactive oxygen species
(ROS) and an imbalance of important antioxidants, leading to oxidative damage. Self-sustaining cycles
of oxidant production may amplify inflammation and mucosal injury [7,8]. Thus, the main goal of IBD
treatment is to prevent frequent recurrence of inflammation and maintain remission. Nonenzymatic
therapies include drugs classified as aminosalicylate, corticosteroids, immunosuppressive agents and
biological agents. Corticosteroids such as synthetic prednisone are still the most effective treatment
in activated stage of IBD. These steroids act on the immune response in a wide range of ways, and
patients often have long-term dependence on these drugs. 5-aminosalicylic acid (5-ASA) preparations
such as mesalamine and the like are widely used for remission treatment. Chemotherapy can be
administered by using azathioprine (AZA), its metabolite 6-mercaptopurine (6-MP) and methotrexate.
Antibiotics such as metronidazole or ciprofloxacin are used in IBD to treat intestinal infections caused
by high bacterial load (Bacteroides, Clostridium difficile). Although many patients are successfully
treated with conventional medications (most relief), two-thirds require surgery. Further treatment
strategies for IBD that target long-term treatment of lymphocytes and inflammatory cytokines have
been designed and under investigation. Traditionally, drugs mediating these desired effects, such as
salicylic acid, glucocorticoid, immunosuppressive agents, immune modulators, and other conventional
drugs [9], are usually administered in high doses and/or systemically, leading to significant adverse
events. Therefore, the prevention and reduction of drug-related side effects are highly challenging in
IBD treatment [10].

The oral dosage form is characterized by low production cost, easy handling for the patient,
accurate dose, and excellent stability and storage. In contrast, the oral route is affected by changes
in intestinal absorption, metabolism of the intestinal cells, and usually the liver is encountered in the
portal circulation, thereby passing the first-pass effect. In general, the oral route is the most desirable
and acceptable route for administering drugs in the treatment of IBD [11]. After oral formulations are
administered, the dosage forms release the active ingredients into the intestinal lumen where they are
absorbed by the gastrointestinal mucosa. Finally, the active ingredient reaches the systemic circulation
and is distributed throughout the body. However, systemic adverse drug reactions may also occur and
may affect the quality of life of patients. The marked differences in the intestinal tract environment
of the gastrointestinal tract and the differences between the healthy and inflamed intestinal regions
have facilitated the development of pharmaceutical technologies that specifically deliver the active
compounds to the inflamed intestinal regions. Oral drug-delivery systems for the treatment of IBD
have been developed and allow more or less effective delivery of drugs to the site of disease. Based on
the persistent large intestine in UC, most oral dosage forms are used to treat the colon. Therefore, it is
much more difficult to treat discrete areas of inflammation in the CD by using an oral drug-delivery
system [12].

Targeting preparations could improve pharmacological effects and reduce adverse reactions [13].
Targeted drug delivery can be divided based on carriers. These include liposomes, microparticles,
nanoparticles and emulsions. Among recent techniques used for colon-specific delivery, micro-
and nanoparticles are well known for achieving site specificity and increasing drug stability via
encapsulation [14]. The main objective of targeted drug strategy is to target the maximum concentration
of active agents in inflamed intestinal tissues by using selective delivery to achieve therapeutic efficacy,
while simultaneously reducing adverse effects. In addition, such a targeted delivery system must
meet the conditions for complete biodegradation and high biocompatibility without pro-inflammatory
properties [15]. Nanotherapeutics [16,17], therapeutic targets [18] and colon-targeted oral drug-delivery
systems [19] for inflammatory bowel disease have been reviewed. In our review, new targeting
preparations in IBD therapy are systematically reviewed. The structural diagram of these oral
colon-targeted delivery systems is shown in Figure 1. This paper provides a valuable pharmaceutical
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strategy for studying the formula and preparation technology of oral colon-targeted delivery systems
that are suitable for treating IBD.Molecules 2018, 23, x FOR PEER REVIEW  3 of 15 
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Figure 1. Structural diagram of oral colon-targeted delivery systems in IBD.

2. Pharmaceutical Strategies

2.1. Liposomes

Liposomes are double-layer vesicle structures based on phospholipids that are enclosed in aqueous
volumes. Liposomes exhibit highly compatible phospholipid vesicles that are capable of carrying
hydrophilic (aqueous core) and lipophilic (in lipid bilayer) medicaments due to their amphoteric
properties. A lipophilic drug is incorporated in the liposome at the same time the lipid membrane
is formed, and the hydrophilic drug is dissolved in the aqueous medium. The lipid membrane is
hydrated by continuous rotation, extrusion, sonication or other ways to form vesicles. These systems
are designed using a controlled delivery system, but the system must be targeted and protected
from changes in pH [20]. Liposomes, which are biodegradable and essentially nontoxic vehicles, can
encapsulate both hydrophilic and hydrophobic materials [21]. The use of liposomes has been shown to
selectively target inflamed tissues, with the disruption of the intestinal barrier function at the site of
inflammation, allowing accumulation of particulate delivery carriers. Liposomes can also be modified
to enhance binding and cellular uptake to diseased tissue with the use of cationic lipids or attachment
of targeting ligands [22].

L. Li and his colleagues evaluated the preclinical antitumor activity of liposomal curcumin in
colorectal cancer. In this study, the efficacy of liposomal curcumin with standard chemotherapeutic
agents (oxaliplatin) was compared. Different ratios of total lipid to curcumin (w/w) were evaluated
from 10:1 to 4:1. The optimized 10:1 ratio was selected based on the test to determine the optimal
encapsulation efficiency of curcumin by the liposomes. In-vitro studies with curcumin liposomes
and dose-dependent growth inhibition were observed, and apoptosis in LoVo and Colo205 human
colorectal cancer cell lines was observed. Synergy was also observed in in-vitro LoVo cells with a 4:1
ratio of liposomal curcumin and oxaliplatin. In-vivo studies also showed significant tumor growth
inhibition in Colo205 and LoVo cells, and the growth inhibition observed with liposome curcumin was
higher in Colo205 cells than oxaliplatin. Antiangiogenic effects are seen when tumors from animals are
treated with liposomal curcumin. By immunohistochemical observation of CD31, the expression of
vascular endothelial growth factor and interleukin-8 was attenuated. Therefore, curcumin liposomes
exhibit better in-vitro and in-vivo activity in colorectal cancer [23,24].

2.2. Nanoparticles

Granular carriers are small carrier-based lipids and polymer matrix systems, where the drug
is dispersed or dissolved in a lipid or polymer matrix. These systems are called nanoparticles or
microparticles, based on size. Nanoparticles (NPs) in nanoscale units consist of two types: solid
lipid nanoparticles and nanostructured lipid particles. Microparticles, on the other hand, are usually
micron-sized microspheres. In order to increase the efficacy of IBD treatment, these particle systems
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can be further modified by coating or encapsulating with alginate beads. This matrix system prevents
rapid drug release and promotes controlled release by reducing mobility of the drug molecules
bound to the solid matrix. The release of the drug in the matrix system is further influenced by
matrix composition and particle structure [25]. NPs, with a diameter of 10–1000 nm, are drug-loaded
particles that are prepared by taking natural polymers or synthetic chemicals as carriers. Drugs can be
embedded or dissolved in NPs and adsorbed or coupled on their surface. Encapsulating drugs within
NPs can improve the solubility and pharmacokinetics of drugs and, in some cases, enable further
clinical development of new chemical entities that have stalled because of poor pharmacokinetic
properties [26].

Solid lipid NPs (SLNs) are beneficial in terms of drug protection and prevention of degradation.
As a result of the homogenization of SLNs, increase in entrapment efficiency and initial release results
in an increase in the bioavailability of the encapsulated drug. Due to the slow degradation of the lipid
matrix, SLNs have unique properties, such as micro size with high surface area, high drug-loading
capacity, and extended drug release. These systems are typically prepared by applying high-pressure
homogenate and ultrasonic treatment of molten lipids. Some NP carriers for the treatment of IBD are
based on chitosan, poly (lactic-co-glycolic acid) (PLGA), Eudragit P-4135F, which is a new pH-sensitive
polymer, and silica NPs [27]. Nanostructured lipid carriers (NLCs) are part of the nanometer linear
system. These systems are mixed with solid and liquid lipids. Liquid lipids provide flexibility in
the carrier system, allowing for improved drug loading. The concept behind its preparation is that
the solid lipid crystals with a higher melting point form a lipid core, and then the liquid lipid forms
an outer layer containing a higher amount of lipophilic drug. Advantages of this structure include
providing oxidation and hydrolytic stability [28]. Table 1 shows the formula, preparation method and
biological activity of different nanoparticles in treating UC.
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Table 1. Studies on the formula, preparation method and biological activity of different nanoparticles in treating ulcerative colitis (UC).

Categories Carrier Materials Pharmaceutical Ingredients Preparation Methods Biological Activity Ref.

Nanoparticles Polymethacrylate (Eudragit RL) Clodronate Modified solvent-displacement method Confirmed therapeutic benefit of ClNP in vivo [29]

Nanoparticles
Poly (lactic acid) poly (ethylene

glycol) block copolymer
(PLA-PEG)

TNFα siRNA Double emulsion/solvent evaporation Powerful and efficient nanosized tools for
delivering siRNAs into colonic macrophages [30]

Nanoparticles —

Lipids, proteins, microRNAs
(miRNAs), and ginger bioactive

constituents (6-gingerol and
6-shogaol)

Derived from edible ginger

Improve inflammatory bowel disease (IBD)
prevention and treatment with an added benefit of
overcoming limitations such as potential toxicity

and limited production scale

[31]

Nanoparticles Polymeric mixtures of poly
(lactic-co-glycolic) acid (PLGA) Budesonide Oil/water (O/W) emulsion-evaporation

technique
An efficient delivery system for targeted drug

delivery to the inflamed intestinal mucosa [32]

Nanoparticles PLGA 50:50 Betamethasone
Oil-in-water solvent-evaporation method

(simple oil/water emulsification
technique)

Stable targeting moiety in the gastrointestinal tract [33]

Nanoparticles Eudragit FS30D, Eudragit RS100 Budesonide Oil-in-water emulsion method An effective oral colon-targeted delivery system
for colitis therapy [34]

Nanocapsules Eudragit S100 Prednisolone Nanoprecipitation method Provide effective way of treatment of
colonic disease [35]

Nanoparticles
Polymeric mixtures of poly PLGA
and a pH-sensitive methacrylate

copolymer
Budesonide

An adaption of the modified
spontaneous emulsification solvent

diffusion method

Useful for colon-specific delivery in inflammatory
bowel disease [36]

Nanoparticles PLGA Budesonide Oil-in-water (O/W) emulsion technique Targeted drug delivery to the inflamed
intestinal mucosa [37]

Nanostructure lipid
carriers (NLCs) Precirol ATO®5, Miglyol 812 Budesonide High-pressure homogenization A targeted drug-delivery system for IBD treatment [38]

Nanoparticles
Trimethylchitosan (TMC)

Eudragit® S100 PLGA, PEG-PLGA
and PEG-PCL

Ovalbumin (OVA)
Water-in-oil-in-water

solvent-evaporation method, ionic
complexation/gelation method

The highest accumulation of ovalbumin (OVA) in
inflamed colon [10]

Nanoparticles PLA CD98 Fab′-bearing quantum
dots (QDs)

A modified oil-in-water (O/W) emulsion
solvent-evaporation technique Active colitis-targeted delivery [39]

Nanoparticles EC Betamethasone Emulsification solvent-evaporation
technique A significantly higher mitigating effect [40]

Nanoparticles Eudragit RL PO Silybin Solvent-evaporation emulsification
technique

Reduced TNF-a, IL-6 and MPO
activity significantly [41]

Nanoparticles
Enzyme-sensitive

azo-polyurethane and pH-sensitive
methacrylate copolymer

Budesonide A quasiemulsion solvent diffusion with
some modifcations

An effective and safe colon-targeted delivery
system for colitis therapy [42]
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Table 1. Cont.

Categories Carrier Materials Pharmaceutical Ingredients Preparation Methods Biological Activity Ref.

Nanoparticles
Novel pH-sensitive hydrolyzed
polyacrylamide-grafted xanthan

gum (PAAm-g-XG)
Curcumin

A modified version of the
solvent-evaporation cross-linking

technique
Suitable for colon targeting [43]

Silica nanoparticles
(SiNPs) Silica 5-Amino salicylic acid (5ASA) — Combine advantages from selective drug

targeting and prodrugs [44]

Nanoparticles Eudragit S100 (EU S100) 5-Aminosalicylic acid (5-ASA) Supercritical fluids (SEDS) technique

5-ASA was imbedded into EU S100 in an
amorphous state after SEDS processing and the

SEDS process did not induce degradation of
5-ASA

[45]

Nanoparticles Oxidation-responsive
b-cyclodextrin material (OxbCD) Tempol (Tpl) A modified

nanoprecipitation/self-assembly method Reduce ulcerative colitis in mice effectively [46]

Nanoparticles EudragitR S100 Curcumin–celecoxib combination Emulsion solvent-evaporation technique More efficacious than nanoparticles of either
drugs or drug suspension [47]

Nanovesicles

Hydrogenated soy
phosphatidylcholine-coating

polyethylene glycol-containing
vesicles with chitosan and nutriose

Quercetin — A marked amelioration of symptoms of
2,4,6-trinitrobenzenesulfonic acid-induced colitis [48]
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2.3. Microparticles

Microparticles (MPs) used in IBD therapy often range from 1–150 µm in diameter and are designed
to target inflamed intestinal tissues and/or to be internalized by immune cells. The most common
methods for MP fabrication include the complex coacervation method. This involves the emulsion
solvent-evaporation approach, spray-drying process, and solvent-extraction method. MPs can be
divided into noncoated and coated forms. Noncoated MPs can be characterized as a system that
encapsulates the drug directly into polymers [49]. Table 2 shows the formula, preparation method and
biological activity of different microparticles in treating UC.
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Table 2. Studies on the formula, preparation method and biological activity of different microparticles in treating UC.

Categories Carrier Materials Loaded-Ingredients Preparation Methods Biological Activity Ref.

Microsphere Chitosan-alginate Icariin Emulsification-internal
gelation technique

Exert the colon-protective effects through reducing the
inflammatory response [50]

Microsphere Eudragit S100 liquid paraffin Metronidazole Emulsification
solvent-evaporation method Enhance drug entrapment, and effect the drug release [51]

Microsphere PLGA microsphere Glucagon-like peptide-2 Solid-in-oil-in-water (S/O/W) method Resistant to degradation and decreased the severity of
dextran sulfate sodium (DSS)-induced ulcerative colitis [52]

Microspheric vehicle Microspheric vehicle formed by cationic
konjac glucomannan (cKGM), phytagel

An antisense oligonucleotide
against TNF-α Water-in-oil (W/O) emulsion method Significantly decreased the local level of TNF-α and

alleviated the symptoms of colitis in the mice [53]

Microsphere pH-triggered Eudragit-coated
chitosan microspheres Curcumin

Emulsion crosslinking method
followed by coating with

Eudragit S-100

A promising system for pH-dependent delivery of drug
to colon in ulcerative colitis [54]

Microsphere The enzyme diamine oxidase (DAO) in
CaCMS/alginate microspheres

The enzyme diamine
oxidase (DAO) — A procedure able to afford protection of the entrapped

enzyme against gastrointestinal degradation [55]

Microsphere

Colon-targeted microspheres which were
compressed into tablets using the

enzyme-dependent polymer (pectin)
as coat

The nonsteroidal
anti-inflammatory bumadizone

calcium dihydrate

Quasi-emulsion
solvent-diffusion method

Achieved significant decrease in myeloperoxidase activity
and inflammation with delayed Tmax (4 h) and lower

Cmax (2700 ng/mL) when compared to marketed product
[56]

Microsphere Hydrogel microspheres of chitosan
grafted with vinyl polymers 5-Aminosalicylic acid (5-ASA) Water-in-oil (W/O)

emulsification method
Exhibited better therapeutic effects in comparison to

5ASA plain drug solution in oral administration [57]

Microsphere Chitosan microspheres 5-ASA and camylofine
dihydrochloride

Emulsion method followed by enteric
coating with Eudragit® S-100

Specific delivery of drug to the colon and reduce
symptoms of ulcerative colitis [58]

Microsphere
Eudragit L100 (EuL)-coated chitosan

(Ch)–succinyl-prednisolone (SP)
conjugate microspheres (Ch SP-MS/EuL)

Prednisolone (PD) — Enhanced effectiveness of PD and reduced toxic side
effects of PD greatly [59]

Microsphere Budesonide (BUD) guar
gum microspheres Budesonide (BUD) Emulsion crosslinking technique Prolong the acting time of BUD in vivo [60]

Microsphere Chitosan microparticles Mesalamine Emulsion chemical
crosslinking technique

Maintain the drug concentration within target ranges for
a long period of time [61]

Microparticle Kafrin microparticles Prednisolone A phase-separation method
The majority of the loaded prednisolone was not released

in in-vitro conditions simulating the upper
gastrointestinal tract

[62]

Microparticle N-Succinyl-chitosan
(SucCH) microparticle 5-ASA Spray-drying method Improved efficacy in the healing of induced colitis in rats [63]

Microsphere pH-sensitive microspheres using
Eudragit P4135F

Low-molecular-weight
heparins (LMWH)

A double emulsion technique with
either solvent extraction or evaporation

Exhibited a particle size adapted to the needs of
inflammatory bowel disease therapy, an efficient LMWH

encapsulation, and a pH-controlled drug release
[64]

Microparticle Poly-ε-caprolactone (PCL)
celecoxib-loaded microparticles Celecoxib Solvent-diffusion technique Enhanced the bioavailability and extended the duration

of drug-plasma concentration in rats [65]
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2.4. Self-Assembled Polymer System

Self-assembled polymer systems consist of natural and synthetic polymers, which are oriented in
specific shapes or forms, or swell in the presence of water or any suitable specific polar solvent system.
These systems are commonly used in antifungal and topical forms to treat ulcers and cancers.

Hydrogels are crosslinked networks of hydrophobic polymers that are physically or chemically
linked to each other. The system is expanded by absorbing large amounts of water, and the drug
is released by swelling or by degradation of the polymer after swelling. The intestinal mucosal
region acts as a hydrogel that provides effective control of release of the drug into the inflammatory
site. Hydrogels can be classified as macroporous, microporous, or nonporous according to pore size
formed by the entanglement of the polymer. The pore size of macroporous hydrogels is 0.1–1 µm.
The microporous water gel pore is 100–1000 Å, and the nonporous hydrogel pore is 10–100 Å [66].

In our previous study, we provided evidence for paeonol as a novel therapeutic agent in the treatment
of UC, which was isolated from Cynanchum paniculatum (Bge.) Kitag. or Aaeoina suffruticosa Andr.
in traditional Chinese medicine [67]. We also developed satisfactory paeonol coating tablets with
pH-time-delayed controlled release in the colon [68,69]. Moreover, we prepared the colon-specific
delivery system (Pae-SME-CSC) with paeonol-loaded self-microemulsion (Pae-SMEDDS), and
evaluated its properties in vitro and in vivo, especially the anti-inflammatory effects on UC rats.
It indicated that the developed Pae-SME-CSC was suitable for colon-specific drug delivery [70].

2.5. Emulsion-Based Carrier

These carriers are formed by the dispersion of two or more immiscible liquids stabilized by a
surfactant or an emulsifier. The emulsifier causes the liquid to disperse evenly into the continuous
liquid medium and produce a physical exclusion between the droplets to avoid coalescence by coating
the droplets and lowering the interfacial tension [71].

Microemulsions are thermodynamically stable isotropic dispersions. The biphasic immiscible
liquid is stabilized by the interfacial membrane of the surfactant molecule bound to the co-surfactant.
The relative concentration of these three components can be estimated by constructing a ternary
phase diagram. The components are oil in water (o/w) or water in oil (w/o), in the range of 5–100 nm.
Microemulsions (o/w and w/o) improve the oral bioavailability of drugs. These have additional
formulation advantages, thermodynamic stability, easy sterilization by filtration, small droplet size,
and high surface area, which provide increased surface area for absorption and delivery of drug
molecules. Release from the microemulsion is controlled by the interaction between the drug surfactant
and the distribution of the drug between the oil phase and the aqueous phase. These systems can be
highly developed for the treatment of internal inflammatory diseases [72].

Nanoemulsions are a uniform population of particle droplets consisting of long-term
thermodynamically stable lipids and surfactants. These droplets are usually composed of lipid monolayer
surrounding the liquid lipid core. Nanoemulsions are prepared by high-pressure homogenization, which
results in the formation of droplets of uniform size. Using nanoemulsions as a carrier system has already
been studied for broad-spectrum antimicrobial activity against microorganisms. In-vivo studies reveal its
efficacy for treating vaginal, fungal and respiratory infections against the skin and mucous membranes.
Moreover, this may be effective in treating gastritis [73].

2.6. Potential Therapeutic Approach

The complement system is widely considered to protect the host from invading microorganisms.
However, previous studies examining the activation of the complement system have shown that
it may play a detrimental role in the pathogenesis of many inflammatory and immune diseases.
Complement activation products include complement components (C) 3a, C4a, C5a and C5b-9,
and membrane-attack complexes. The complement activation product complement component 5a
(C5a) is a potent inflammatory peptide with a broad spectrum of functions. In-vivo and in-vitro
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studies have demonstrated that C5a plays an important role in inflammation. Li Zhiping studied
the role of C5a in IBD using an experimental mouse colitis model. Colitis was induced in mice
using 2,4,6-trinitrobenzene sulphonic acid (TNBS), followed by administration of C5a aptamer by
intraperitoneal injection. The clinical signs of the disease, the histopathological analysis of the colon
and the level of inflammatory components were examined. Symptoms of colitis, including altered
behavior, weight loss, colon damage and increased inflammatory cytokines, attenuated after treatment
of mice with TNBS-induced colitis containing C5a aptamers. By phenotypic observation, histological
examination and levels of inflammatory cytokines demonstrated that aptamer-treated mice exhibited
significant colitis-attenuating effects compared to untreated mice. Colitis is characterized by an
imbalance between proinflammatory and anti-inflammatory media. Current research results show
that C5a may play a key role in IBD inflammation [74].

3. Pharmacokinetic Studies

Pharmacokinetics is used to evaluate pharmaceutical preparations for slow-release drug-delivery
systems. First, studying pharmacokinetic properties allows us to understand the absorption,
distribution, metabolism and excretion characteristics of drugs in the body. Related pharmacokinetic
parameters, combined with the physical and chemical properties of drugs, pharmacodynamic properties
and clinical needs, help determine drug preparation’s necessity [75]. During drug preparation into a
sustained-release drug-delivery system, pharmacokinetic principles are used to design dosage form,
dose, release mode, release time, and other factors. In addition, pharmacokinetic studies are used to
evaluate and monitor whether the system achieves the desired effect of sustained drug release. In recent
years, the development of modern instrumental analysis technology brought new technologies for
pharmacokinetic studies. These include liquid chromatography, ion-selective electrode method, gas
chromatography, mass spectrometry, and application of tandem mass spectrometry in the detection of
drug concentration in chemical drugs by modern instrumental analysis methods [76].

Ye Liu applied HPLC analysis using a Dikma Diamonsil C18 on a Shimadzu LC-20A HPLC
system with an ultraviolet detector at room temperature. The wavelength of the ultraviolet detector
was 245 nm. Water and ethanol (57:43 v/v) were used as the mobile phase at a flow rate of 1 mL/min.
The prolongation of the half-life (t1/2), enhanced residence time (mean residence time, MRT), and
decreased total clearance (CL) indicated that BUD microspheres could prolong the acting time of
BUD in vivo [60]. Srinivas Mutalik prepared novel pH-sensitive hydrolyzed polyacrylamide-grafted
xanthan gum (PAAm-g-XG) nanoparticles (NPs) loaded with curcumin for colonic delivery. Curcumin
was better absorbed systemically in nanoparticulate form with increased Cmax (3-fold) and AUC
(2.5-fold) than when delivered as free curcumin [43]. Hiraku Onishi prepared and evaluated
simple Eudragit S100 microparticles loaded with prednisolone (ES-MP) and Eudragit S100-coated
chitosan-succinyl-prednisolone conjugate microparticles (Ch-MP/ES) in vitro. It was demonstrated
that Ch-MP/ES could enhance the efficacy of PD and reduce the toxic side-effect of PD, while ES-MP
could hardly improve the effects of PD. Only Ch-MP/ES significantly changed in-vitro and in-vivo
characteristics and was found to improve PD’s in-vivo function [77].

4. Conclusions

IBD is a chronic disease that has an immunization period when the disease is not active.
Hence, most patients need to maintain drug therapy to relieve symptoms and shorten the number
and severity of seizures [78]. Treatment of IBD is minimal, but some drugs can reduce the severity
of inflammation, increase the duration of remission, and reduce the risk of more serious health
problems, such as colorectal cancer. Years of research have demonstrated the suitability of the
colon as an absorption site, especially in GI diseases [79]. Conventional drug-delivery systems rely
primarily on several nonstable parameters in the gastrointestinal tract, such as changes in pH and
local enzyme-induced drug release. New drug-delivery systems, particularly multiparticle systems
such as microspheres and nanoparticles, exhibit higher drug-delivery capability due to their specific
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accumulation, spread and long-term retention in the target inflammatory tissue compared with
conventional single-unit modes [80]. Unfortunately, the problem associated with the nanoparticle
process is it exhibits altered physical and chemical properties and potential risk of causing possible
toxicity compared with its larger counterpart. Abiotic nanoparticle carriers can alter normal cellular
activity and cause cytotoxicity because the particles cause wrinkling to the cell membrane, cytoskeleton
rearrangement, and phagocytosis leading to their entry into phagocytic cells [81]. Thus, biotechnology
systems with fewer side effects may have great potential in future IBD treatments. A highly biological
approach in IBD treatment with a drug-delivery system does not alter normal cellular function.
This may be the best method to achieve satisfactory effects in IBD therapy. Although studies on the
effects of new multiparticle systems in the human gastrointestinal tract during IBD treatment are
limited and need further exploration, we see that these systems will be used in combination with new
biological agents in the near future to achieve maximum targeted drug efficacy at lower drug doses
and side effects due to their superior advantages, such as sustainability and controlled release.
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