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Abstract: The continuous flow alcoholysis of dialkyl H-phosphonates by aliphatic alcohols in the
absence of a catalyst was elaborated using a microwave (MW) reactor equipped with a flow cell.
By the precise control of the reaction conditions, the synthesis could be fine-tuned towards dialkyl
H-phosphonates with two different and with two identical alkyl groups. In contrast to the “traditional”
batch alcoholysis, flow approaches required shorter reaction times, and the products became available
at a larger scale.
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1. Introduction

Flow chemistry induced an inevitable revolution in the field of chemical transformations [1].
In modern chemistry, reactions have to be strictly controlled, which requires more and more precise
synthetic techniques. In contrast to the “traditional” batch reactions, flow approaches create a
significantly different processing environment, which enables a more efficient control of the reaction
conditions (such as the reaction time or temperature). Due to this, flow protocols may be significantly
better with respect to purity, selectivity and yields, as compared to batch approaches [2].

In microwave (MW) chemistry, the continuous flow technique represents a special importance.
Although applications of the MW technique proved to be useful in many chemical transformations,
the scale-up of MW-assisted reactions means a challenge due to the limited geometry of the MW
devices [3–6]. One possibility to solve this problem is the use of continuous flow MW reactors,
where the reaction mixture flows through an irradiated flow cell. The MW unit can be of a similar size
used in batch mode. During the last decade, the advantages of the applications of continuous flow
MW reactors were reported in certain transformations; however, in most cases, the usefulness of the
occasional devices may be questionable, as non-professional MW reactors do not allow reproductions,
and what is more important, the temperatures were not reported [7,8].

Esters represent a fundamental family among organic compounds. Esters of carboxylic acids may
be important intermediates, solvents or products in organic chemistry [9].

The most common preparations of simple carboxylic esters comprise the acid-catalyzed reaction
of a carboxylic acid with alcohol (Fischer esterification) and the reaction of an ester with alcohol
(alcoholysis) [10]. Continuous flow Fischer esterifications may be carried out in systems containing
a packed catalyst bed [11–20] or a heated coil [21,22], as well as in microreactors [23]. In a few
cases, the esterifications were performed in continuous flow MW systems based on professional MW
reactors [24–26] or in household MW ovens [27,28]. The continuous flow alcoholysis of carboxylic
esters may also be performed in reactors equipped with a catalyst bed [29] or a heated coil [21,30].
The alcoholysis is also of great importance in biodiesel production, the area of which was recently
summarized by Lee and co-workers [31].
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Organophosphorus esters are also of great importance [32]. Dialkyl esters of phosphorous
acid (dialkyl H-phosphonates) are widely applied building blocks in syntheses [33]. They are
important starting materials of the Kabachnik–Fields condensations and the aza-Pudovik reactions [34]
(towards α-aminophosphonates), the Pudovik reactions [35] (resulting in the formation of
α-hydroxyphosphonates) and further organophosphorus transformations, such as the Hirao
reaction [36] and the phospha-Michael addition [37]. Dialkyl H-phosphonates bearing different
alkoxy groups on the phosphorus atom are valuable intermediates for P-chiral organophosphorus
derivatives [38,39].

The industrial synthesis of dialkyl H-phosphonates is comprised of the reaction of phosphorus
trichloride with alcohols (Scheme 1) [40–45]. Although this transformation is convenient, efficient and
may be scaled up, it requires a solvent, and the liberating HCl decreases the atom efficiency. It is also a
disadvantage that the synthesis of derivatives with different alkyl groups is not possible.
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Scheme 1. Synthesis of dialkyl H-phosphonates from phosphorus trichloride.

Another possibility for the preparation of dialkyl H-phosphonates is alcoholysis (Scheme 2),
which provides the products in good yields [46–54]. The only by-product is the leaving alcohol.
The relatively high temperature and the need for the high excess of the alcohol mean disadvantages.
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Scheme 2. Synthesis of dialkyl H-phosphonates by alcoholysis.

Besides the two main routes mentioned above, there are a few less important methods for
the synthesis of dialkyl H-phosphonates. Such protocols are the oxidative reaction of elemental
phosphorus with alcohols (Scheme 3a) [55–60] and the Ni-catalyzed oxidation of hypophosphorous
esters (Scheme 3b) [61].
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Table 1. Synthetic methods for the preparation of dialkyl H-phosphonates bearing two different alkyl groups.

Entry Reaction Average Yield (%) Flow Compatible Ref.

1
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Phosphites with different alkyl groups may be synthesized by the partial alcoholysis of dialkyl
H-phosphonates (Table 1, Entry 1). The reaction conditions must be controlled strictly to avoid
complete transesterification.

Dialkyl H-phosphonates with two different alkyl groups may be obtained by the controlled O–C
cleavage of dialkyl H-phosphonates (Table 2, Entries 2 and 3). In the first step of the first method,
a phosphite-ammonium salt is prepared, which is then alkylated with alkyl iodides (Table 2, Entry 2),
or with alcohols in the presence of pivaloyl chloride and pyridine (Table 2 entry 3) to furnish the target
compounds selectively. A serious drawback of these transformations is the low atom efficiency.

Table 2. Alcoholysis of dialkyl H-phosphonates in a batch microwave (MW) reactor [33].
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Entry R1 R2 R2OH (equiv) T (◦C) t (min)
Composition (%) a

A B C

1 Me Et 25 100 120 22 56 22
2 Me Et 50 175 40 0 4 96
3 Me nBu 25 125 60 0 40 60
4 Me nBu 50 150 60 0 0 96
5 Et Me 25 125 120 49 38 13
6 Et Me 50 175 40 0 21 79
7 Et iPr 25 125 60 26 57 17
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9 Et nBu 25 125 60 25 54 21
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11 Et nPent 25 125 60 3 52 45
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Dialkyl H-phosphonates bearing different alkoxy groups can also be obtained in the reaction of
alkyl dichlorophosphites and alcohols. The primarily formed trialkyl phosphite is cleaved by a part of
the hydrochloric acid formed (Table 2, Entry 4).

From these synthetic methods, the alcoholysis may be flow compatible. This solvolytic reaction
may be carried out without any catalyst by fine-tuning the reaction conditions, to afford mixed or
fully-transesterified dialkyl phosphites as the predominant component.

The alcoholysis of dialkyl H-phosphonates in a batch MW reactor was investigated by us
previously (Table 2) [52]. The reaction of dialkyl H-phosphonates (A) with aliphatic alcohols under
mild conditions (lower alcohol excess and lower temperature) afforded the derivatives with different
alkyl groups (B) as the main products, while in the case of applying higher excess of alcohol and higher
temperature, the fully-transesterified dialkyl H-phosphonates (C) predominated in the mixture.

In this paper, we aimed at elaborating an MW-assisted continuous flow method for the alcoholysis
of dialkyl H-phosphonates. Our purpose was to find the optimum conditions for the formation of
dialkyl H-phosphonates bearing different alkyl groups and for the fully-transesterified phosphites in a
flow MW reactor. Furthermore, we wished to prepare new dialkyl H-phosphonates with two different
alkyl groups, which may be valuable building blocks of chiral organophosphorus compounds.
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2. Results and Discussion

In the first case, the alcoholysis of dimethyl H-phosphonate (DMP) (1) with n-butanol was
investigated in the absence of any catalyst, in a CEM® (Matthews, NC, USA) MW reactor equipped
with a commercially available CEM® continuous flow cell (Figures 1 and 2). The mixture of DMP
(1) and a 25-fold excess of n-butanol was fed into the reactor by an HPLC pump at a flow rate of
0.1–1.4 mL/min (corresponding to residence times of 60–5 min, respectively). The temperature was
monitored and controlled by an IR sensor. The mixture leaving the reactor was cooled down using a
spiral-like cooler and was passed through a back pressure regulator operating at 250 psi. Consecutive
fractions of the leaving mixture were analyzed by GC measurements in order to determine the
composition and to identify the stationary operation.
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The reaction conditions and the results are summarized in Table 3. To find the optimum conditions
for the formation of n-butyl methyl H-phosphonate (nBMP) (2a) and n-dibutyl H-phosphonate (DnBP)
(3a), the alcoholysis was carried out applying different temperatures and residence times. Performing
the reaction at 100 ◦C, at a flow rate of 1.4 mL/min (with a residence time of 5 min), the conversion
was only 26%, and the proportion of nBMP (2a) was 25%, along with 1% of DnBP (3a) (Table 3, Entry 1).
Using a flow rate of 0.45 mL/min (with a residence time of 15 min), the starting DMP (1) was still
the main component of the leaving mixture; however, the proportion of nBMP (2a) was 44% (Table 3,
Entry 2). Increasing the residence time to 30 min (by decreasing the flow rate to 0.25 mL/min), the ratio
of mixed H-phosphonate (2a) was 9% higher (53%) (Table 3, Entry 3). Applying a longer residence time
of 45 or 60 min (flow rate of 0.15 or 0.10 mL/min), the proportion of phosphite 2a was somewhat lower
(50% or 47%), and the ratio of DnBP (3a) increased to 26% or 35%, respectively (Table 3, Entries 4 and 5).
The maximum proportion of nBMP (2a) (53%) was obtained applying a reaction time of 30 min at
100 ◦C (Table 3, Entry 3). Increasing or decreasing the residence time at the same temperature resulted
in lower ratio of product 2a (Table 3, Entries 1, 2 and 4, 5, respectively). In a comparative thermal
experiment at 100 ◦C at a residence time of 30 min, the conversion was only 15% (Table 3, Entry 6).
Next, the effect of the reaction temperature was investigated at a residence time of 30 min (Table 3,
Entries 6–8) (Figure 3). At 125 ◦C, the mixture was comprised of 7% of DMP (1), 43% of nBMP (2a) and
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50% of DnBP (3a) (Table 3, Entry 7). Increasing the temperature to 150 ◦C, the conversion was complete,
and the fully-transesterified product (3a) predominated in a proportion of 78% (Table 3, Entry 8).
Performing the alcoholysis at 175 ◦C, the ratio of DnBP (3a) was 91% (Table 3, Entry 9). Carrying
out the reaction at a longer residence time (45 min) and/or higher excess of the nBuOH (50 equiv),
the composition did not change. Applying common heating at 175 ◦C, the reaction was not complete,
and the ratio of product 3a was 8% lower, than under MW conditions (Table 3, Entry 10). It can
be observed that the difference between MW-assisted and conventionally-heated experiments was
significant at 100 ◦C, while significantly smaller at 175 ◦C. After column chromatography, nBMP (2a)
was obtained in a yield of 48%, while DnBP (3a) was isolated in a yield of 88% (Table 3, Entries 3 and 9).

Table 3. Continuous flow alcoholysis of DMP with nBuOH.
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Entry Mode of
Heating

Power
(W)

T
(◦C) a

Flow Rate τ

(min)
Conversion

(%)

Composition (%) c
Yield
(%) d(mL/min) b 1 2a 3a

1 MW 22 100 1.4 5 26 74 25 1 -
2 MW 14 100 0.45 15 52 48 44 8 -
3 MW 10 100 0.25 30 65 35 53 12 48 (2a)
4 MW 8 100 0.15 45 76 24 50 26 -
5 MW 5 100 0.10 60 83 18 47 35 -
6 ∆ - 100 0.25 30 15 85 15 0 -
7 MW 18 125 0.25 30 93 7 43 50 -
8 MW 38 150 0.25 30 100 0 22 78 -
9 MW 59 175 0.25 30 100 0 9 91 e,f 88 (3a)
10 ∆ - 175 0.25 30 98 2 15 83 -
a The pressure was 17 bar; b Based on the HPLC pump; c the mixtures from the stationary operation were analyzed
by GC; d after column chromatography; e No change on longer residence time (45 min); f No change on higher
excess (50 equiv) of nBuOH. Bold numbers indicate the target compounds in the reactions.
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Figure 3. Composition of the reaction mixtures of the MW-assisted alcoholysis of DMP with nBuOH at
different temperatures at a residence time of 30 min (Table 3 entries 3 and 7–9).

Comparative batch experiments were also carried out in the DMP (1)—nBuOH model reaction at
100 ◦C. The alcohol excess (25 equiv) and the reaction time range studied (5–60 min) were the same
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as in the flow approaches. The batch results are listed in Table 4. Similarly to the flow experiments,
the composition was highly reaction time-dependent.

Table 4. Comparative experiments for the alcoholysis of dimethyl H-phosphonate (DMP) with nBuOH
in a batch MW reactor.
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Entry t (min) Conversion (%)
Composition (%) a

1 2a 3a

1 5 24 76 20 4
2 15 46 54 37 9
3 30 59 41 47 12
4 45 67 33 49 18
5 60 73 26 45 29

a Based on GC.

Comparing the conversions of the flow and batch processes, the two plots show a similar shape;
however, after a reaction time of 15 min, the batch conversions were 5–10% lower than the flow results
(Figure 4).
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Figure 4. Reaction/residence time-dependence of the conversion of the alcoholysis of DMP with
nBuOH at 100 ◦C.

A more significant difference may be observed if the ratio of product 2a is examined separately
(Figure 5). Maximum points are present on both curves: at 30 min and 53% in the flow experiments
and at 45 min 49% in the case of the batch approaches. Based on the comparison, the flow reaction
reaches the optimum point of phosphite 2a under a shorter time, with a higher ratio.
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Figure 5. Reaction/residence time-dependence of the product 2a ratio in the alcoholysis of DMP with
nBuOH at 100 ◦C.

Based on the experiences above, the alcoholysis of DMP (1) was also carried out with n-propanol,
i-butanol, as well as n-pentanol at 100 ◦C and 175 ◦C with a residence time of 30 min. In all cases, a mixture
containing DMP (1) and 25 equivalents of the corresponding alcohol was passed through the continuous
flow system. The data shown in Table 4 are concerned to the stationary operation. In the reaction of DMP
(1) with nPrOH at 100 ◦C, the leaving mixture contained 45% of unreacted DMP (1), 46% of n-propyl
methyl H-phosphonate (PrMP) (2b) and 9% of n-dipropyl H-phosphonate (DPrP) (3b) (Table 5, Entry 1).
At a higher temperature of 175 ◦C, the fully-transesterified product (3b) was the major component (90%)
(Table 5, Entry 2). The outcome of the alcoholysis of DMP (1) with iBuOH and nPentOH was similar
(Table 5, Entries 3–6) However, in the case of the experiments carried out at 100 ◦C, the ratio of i-butyl
methyl H-phosphonate (iBMP) (2c) and n-pentyl methyl H-phosphonate (PeMP) (2d) was above 50%
(Table 5, Entries 3 and 5). After column chromatography, the corresponding mixed phosphonates (2b,
2c and 2d) were obtained in yields of 42–51% (Table 5, Entries 1, 3 and 5), and the fully-transesterified
products (3b, 3c and 3d) were isolated in yields of 85–88% (Table 5, Entries 2, 4 and 6).

Table 5. Continuous flow alcoholysis of DMP with various alcohols.
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Entry R Power (W) T (◦C) a
Composition (%) b

Yield (%) c
1 2 3

1 nPr
10 100 45 46 9 42 (2b)

2 57 175 0 10 90 85 (3b)

3 iBu
10 100 38 51 11 46 (2c)

4 71 175 0 10 90 86 (3c)

5 nPent
10 100 32 55 13 51 (2d)

6 55 175 0 8 92 88 (3d)
a The pressure was 17 bar; b the mixtures from the stationary operation were analyzed by GC; c after column
chromatography. Bold numbers indicate the target compounds in the reactions.



Molecules 2018, 23, 1618 9 of 15

The next model was the continuous flow alcoholysis of diethyl H-phosphonate (DEP) (4) (Table 6).
Based on the experiences from the transesterification of DMP (1), the reactions were carried out using
25 equivalents of the alcohols at a flow rate of 0.25 mL/min (or at a residence time of 30 min). First, the
alcoholysis of DEP (4) by nBuOH was investigated. Performing the reaction at 100 ◦C, the unreacted
DEP (4) was the main component along with 34% of n-butyl ethyl H-phosphonate (nBEP) (5a) and
8% of DBP (3a) (Table 6, Entry 1). At a higher temperature of 125 ◦C, the ratio of nBEP (5a) was 42%,
and after column chromatography, compound 5a could be isolated in a yield of 38% (Table 6, Entry 2).
Increasing the temperature to 150 ◦C and 175 ◦C, the proportion of 5a was decreased, while that
of DBP (3a) increased (Table 6, Entries 3 and 4). In the latter case, the alcoholysis was complete,
and the DBP (3a) was obtained in a yield of 85% (Table 6, Entry 4). The transesterification of DEP
(4) by nPrOH at 125 ◦C took place similarly as the alcoholysis by nBuOH, and the n-propyl ethyl
H-phosphonate (PrEP) (5b) was obtained in a yield of 36% (Table 6, Entries 2 and 5). At 175 ◦C,
the conversion was not complete, and the resulting mixture contained only 74% of DPrP (3b) besides
4% of unreacted DEP (4) and 22% of PrEP (5b) (Table 6, Entry 6). To obtain a higher proportion
of product 3b, the temperature was increased to 200 ◦C. Hence, phosphite 3b was formed in 84%
(Table 6, Entry 7). In the case of iBuOH, the tendency was similar, and the highest amount of mixed
phosphonate (5c) was formed at 125 ◦C, while at 175 and 200 ◦C, the fully-transesterified product (3c)
predominated (Table 6, Entries 8–10). Using PentOH at 125 ◦C, the pentyl ethyl H-phosphonate (PeEP)
(5d) was the main component in the departing mixture, from which it was isolated in a yield of 40%
(Table 6, Entry 11). For the preparation of dipentyl H-phosphonate (DPeP) (3d), the application of
175 ◦C was enough, and compound 3d was obtained in a yield of 80% (Table 6, Entry 12).

Table 6. Continuous flow alcoholysis of DEP with alcohols.
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Entry R Power (W) T (◦C) a
Composition (%) b

Yield (%) c
4 5 3

1

nBu

10 100 58 34 8 -
2 17 125 44 42 14 38 (5a)
3 38 150 7 32 61 -
4 57 175 0 11 89 d,e 85 (3a)

5
nPr

18 125 51 41 8 36 (5b)
6 54 175 4 22 74 –
7 83 200 2 14 84 d,e 78 (3b)

8
iBu

21 125 21 40 39 36 (5c)
9 63 175 3 26 71 –

10 105 200 0 16 84 d,e 77 (3c)

11 nPent
10 125 31 44 25 40 (5d)

12 39 175 2 13 85 d,e 80 (3d)
a The pressure was 17 bar; b the mixtures from the stationary operation were analyzed by GC; c after column
chromatography; d no change upon longer residence time (45 min); e no change upon higher excess (50 equiv) of
nBuOH. Bold numbers indicate the target compounds in the reactions.

The catalyst-free alcoholysis of dialkyl H-phosphonates with various aliphatic alcohols was carried
out efficiently in a continuous flow MW reactor. Applying a residence time of 30 min at different
temperatures, the alcoholysis could be fine-tuned towards the dialkyl H-phosphonates with two
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different or with two identical alkyl groups. In the case of the reaction studied, the dimethyl phosphite
proved to be the more reactive starting material. After almost complete conversions, the (RO)2P(O)H
species formed by transesterification were obtained in yields above 85%. The ratio of (RO)(R’O)P(O)H
derivatives with two different alkyl groups was around 50% in all mixtures, affording the target
compounds in a yield range of ca. 40–50%. By the method developed, a series of mixed dialkyl
H-phosphonates, which are valuable building blocks for the preparation of chiral organophosphorus
derivatives, was synthesized.

3. Materials and Methods

3.1. General

GC measurements were performed on an HP5890 Series 2 GC-FID chromatograph, using a
15 m × 0.18 mm Restek, Rtx-5 column with a film layer of 0.20 µm. The temperature of the column
was initially held at 40 ◦C for 1 min, followed by programming at 25 ◦C/min up to 300 ◦C and a final
period at 300 ◦C (isothermal) for 10 min. The temperature of the injector was 290 ◦C and of the FID
detector was 300 ◦C. The carrier gas was N2.

GC-MS measurements were performed on an Agilent 6890 N-GC-5973 N-MSD chromatograph,
using a 30 m × 0.25 mm Restek, Rtx-5SILMS column with a film layer of 0.25 µm. The initial
temperature of the column was 45 ◦C for 1 min, followed by programming at 10 ◦C/min. up to 310 ◦C
and a final period at 310 ◦C (isothermal) for 17 min. The temperature of the injector was 250 ◦C.
The carrier gas was He, and the operation mode was splitless.

High resolution mass spectrometric measurements were performed using a TripleTOF 5600+ mass
spectrometer in positive electrospray mode.

The 13C- and 1H-NMR spectra were obtained in CDCl3 solution on a Bruker DRX-500 spectrometer
operating at 125.7 and 500.1 MHz, respectively. The 13C and 1H chemical shifts are referred to TMS.
31P-NMR spectra were obtained on a Bruker AV-300 spectrometer at 121.5 MHz. Chemical shifts are
downfield relative to 85% H3PO4.

3.2. Equipment

The continuous flow reactions were performed in a self-developed continuous flow system
comprising a 300-W CEM® Discover-focused microwave reactor equipped with a CEM® 10-mL Flow
Cell Accessory continuous flow unit (irradiated volume 7 mL), a Gilson 305 HPLC pump, an HPLC
backpressure regulator with a 250-psi (17.2 bar) cartridge and a cooler. Teflon® (Wilmington, DE, USA)
PFA tubes with an outside diameter of 0.125” (3.175 mm) and an inside diameter of 0.064” (1.575 mm)
were used. The exact lengths and volumes of each tube part are shown in Figure 6. All of the tubes,
screws and ferrules applied were fully compatible with a regular HPLC system.
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3.3. General Procedure for the Continuous Flow Alcoholysis of Dialkyl H-Phosphonates

A mixture of 25.0 mmol of the dialkyl H-phosphonate (2.7 mL of dimethyl H-phosphonate, 3.9 mL
of diethyl H-phosphonate) and 25 equivalents, 0.625 mol of alcohol (47 mL of n-propanol, 57 mL of
n-butanol, 58 mL of i-butanol, 68 mL of n-pentanol) was homogenized by stirring for 5 min at 25 ◦C.
The reactor was flushed with 20 mL of the mixture with a flow rate of 10 mL/min at 25 ◦C and 17 bar.
Next, under the same pressure, the flow rate was set to the desired value, and the vessel was irradiated
with a power of 45–300 W for 3–5 min, until the temperature reached the desired value, then the power
was controlled automatically by the software of the MW reactor. The flow rate and the necessary power
at stationary operation can be seen in Tables 3, 5 and 6. The operation was regarded as the steady
state on the basis of the results of the GC measurements. The products were separated by column
chromatography using silica gel as the absorbent and ethyl acetate as the eluent. Yields were calculated
on the basis of the weights obtained after separation and evaporation taking into consideration the
quantity of the dialkyl H-phosphonate fed in during a given time. The 31P-NMR and mass data for the
dialkyl H-phosphonates are listed in Table 7.

3.4. General Procedure for the Comparative Batch Experiments

A mixture of 0.5 mmol (0.05 mL) of dimethyl H-phosphonate and 25 equivalents, 12.5 mmol
(1.1 mL) of n-butanol was heated at 100 ◦C in a vial in the MW reactor for 5–60 min as shown in Table 4.
The volatile components were removed in vacuum, and the residual oil was analyzed by GC.

Methyl propyl H-phosphonate (2b): Yield: 42%; 31P-NMR and HRMS (see Table 7); 13C-NMR (CDCl3)
δ 10.0 (CH3CH2), 23.8 (J = 6.2, CH2), 52.0 (J = 5.8, CH3O), 67.1 (J = 6.0, CH2O); 1H-NMR (CDCl3) δ 0.98
(t, JHH = 7.4, 3H, CH3CH2), 1.65–1.82 (m, 2H, CH2), 3.78, (d, JPH = 11.9, 3H, CH3O) 3.97–4.12 (m, 2H,
CH2O), 6.79 (d, JPH = 695.4, 1H, PH).

i-Butyl methyl H-phosphonate (2c): Yield: 46%; 31P-NMR and HRMS (see Table 7); 13C-NMR (CDCl3)
δ 18.6 (J = 3.1, CH3CH), 29.2 (J = 6.4, CH), 51.9 (J = 5.7, CH3O), 71.8 (J = 6.3, CH2O); 1H-NMR (CDCl3)
δ 0.89 (d, JHH = 6.8, 6H, CH3CH), 1.84–1.96 (m, 1H, CH), 3.71 (d, JPH = 11.9, 3H, CH3O) 3.74–3.83
(m, 2H, CH2O), 6.72 (d, JPH = 695.8, 1H, PH).

Methyl pentyl H-phosphonate (2d): Yield: 50%; 31P-NMR and HRMS (see Table 7); 13C-NMR (CDCl3)
δ 13.9 (CH3CH2), 22.2 (CH3CH2), 27.6 (CH3CH2CH2), 30.1 (J = 6.2, CH2CH2O), 51.9 (J = 5.7,
CH3O), 67.0 (J = 6.1, CH2O); 1H-NMR (CDCl3) δ 0.91 (t, J = 6.9, 3H, CH3CH2), 1.29–1.44 (m, 4H,
CH2CH2CH3), 1.63–1.78 (m, 2H, CH2CH2O), 3.78, (d, JPH = 11.9, 3H, CH3O) 3.99–4.17 (m, 2H, CH2O),
6.79 (d, JPH = 695.2, 1H, PH).

Ethyl propyl H-phosphonate (5b): Yield: 30%; 31P-NMR and HRMS (see Table 7); 13C-NMR (CDCl3)
δ 10.0 (CH3CH2CH2), 16.3 (J = 6.1, CH3CH2O), 23.8 (J = 6.4, CH3CH2CH2), 61.8 (J = 5.8, CH2CH2O),
67.3 (J = 6.0, CH3CH2O); 1H NMR (CDCl3) δ 0.96 (t, JHH = 7.4, 3H, CH3CH2CH2), 1.35 (t, JHH = 7.1,
3H, CH3CH2O), 1.63–1.78 (m, 2H, CH3CH2CH2), 3.94–4.07, (m, 2H, CH2CH2O) 4.07–4.21 (m, 2H,
CH3CH2O), 6.80 (d, JPH = 692.4, 1H, PH).

i-Butyl ethyl H-phosphonate (5c): Yield: 36%; 31P-NMR and HRMS (see Table 7); 13C-NMR (CDCl3)
δ 16.3 (J = 6.2, CH3CH2), 18.7 (J = 1.7, CH3CH), 29.1 (J = 6.5, CH), 61.8 (J = 5.7, CH3CH2O),
71.6 (J = 6.2, CHCH2O); 1H NMR (CDCl3) δ 0.96 (d, JHH = 6.7, 6H, CH3CH), 1.37 (t, JHH = 7.1,
3H, CH3CH2), 1.89–2.06 (m, 1H, CH), 3.77–3.91, (m, 2H, CHCH2O) 4.09–4.22 (m, 2H, CH3CH2O),
6.82 (d, JPH = 692.7, 1H, PH).
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Table 7. 31P-NMR and mass data for the dialkyl H-phosphonates prepared.

Compound δP (CDCl3) δP [Ref] [M + H]+
found [M + H]+

requires

2a 9.3 (695.0) 9.3 [52] 153.0684 153.0681
2b 9.3 (695.4) - 139.0522 139.0523
2c 6.7 (695.7) - 153.0676 153.0681
2d 6.8 (695.2) - 167.0833 167.0837
3a 7.8 7.9 [66] 195.1153 195.1150
3b 7.9 7.8 [67] 167.0833 167.0837
3c 8.1 8.0 [67] 195.1145 195.1150
3d 7.8 8.1 [68] 223.1462 223.1463
5a 7.6 (693.0) 7.6 [52] 167.0840 167.0837
5b 8.6 (692.4) - 153.0673 153.0681
5c 7.8 (692.8) - 167.0832 167.0837
5d 7.7 (692.1) 7.7 [52] 181.0992 181.0994

4. Conclusions

In summary, a MW-assisted continuous flow method was developed for the catalyst-free
alcoholysis of dialkyl H-phosphonates. By the optimization of the reaction parameters, the alcoholysis
was fine-tuned towards dialkyl H-phosphonates with two different or with two identical alkyl
groups. The selectivity of the reaction was similar in the flow and batch approaches; however,
the continuous protocol offered several advantages. The dialkyl H-phosphonates with two different
alkyl groups can be obtained at a shorter reaction time and in a higher ratio. Furthermore, a somewhat
higher productivity (0.8–1.0 g/h) can be attained by the continuous flow method. Five new dialkyl
H-phosphonates with different alkyl groups were isolated and characterized, which may be valuable
building blocks in the synthesis of chiral organophosphorus compounds.
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