Next Article in Journal
New Records of Potent In-Vitro Antidiabetic Properties of Dalbergia tonkinensis Heartwood and the Bioactivity-Guided Isolation of Active Compounds
Previous Article in Journal
The Mechanism for siRNA Transmembrane Assisted by PMAL
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Chemical Structures and Biological Activities of Limonoids from the Genus Swietenia (Meliaceae)

1
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
2
Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China
3
Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
4
Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
*
Authors to whom correspondence should be addressed.
Molecules 2018, 23(7), 1588; https://doi.org/10.3390/molecules23071588
Submission received: 29 May 2018 / Revised: 20 June 2018 / Accepted: 26 June 2018 / Published: 29 June 2018

Abstract

:
Swietenia is a genus in the plant family Meliaceae. This genus contains seven to eight known species, found in the tropical and subtropical regions of the Americas and West Africa. Thus far, more than 160 limonoids have been isolated from four species of the genus Swietenia. Limonoids are rich in structure type and biological activity, and these compounds are the main active components in the Swietenia species. This paper will give a comprehensive overview of the recent phytochemical and pharmacological research on the terpenes from Swietenia plants and encourage further drug discovery research.

1. Introduction

The genus Swietenia (Meliaceae) includes 7–8 species, which are mainly distributed in the tropical and subtropical regions of the Americas. These plants have gradually been introduced and cultivated in Indonesia, Vietnam, and Yunnan, Gansu, and other regions of China, and have grown well. The species Swietenia mahagoni J. acq, Swietenia macrophylla King and Swietenia humilis Zucc are timber species widely used in traditional medicine. In addition, Swietenia aubrevilleana, a hybrid of S. mahagoni and S. macrophylla, has been increasingly studied [1]. Prior reports have validated some of the traditional uses or found promising bioactivities in the laboratory, such as antidiabetic [2,3,4], antimicrobial [5,6,7], antioxidant [8,9], anti-inflammatory [10], antitumor [11,12], and acaricidal properties [13]. Previous phytochemical studies revealed that various types of limonoids have been isolated from Swietenia species, along with smaller amounts of steroids, coumarins, phytosterols [14], lignans [15], polyphenols [16], and essential oils [17] also found.
Limonoids, classified as tetranortriterpenoids, are formed by the loss of four terminal carbons from a side chain on an apotirucallane or apoeuphane skeleton with cyclization to form a 17β-furan ring [18]. Limonoids are found mainly as important secondary metabolites in the fruits of Rutaceae and Meliaceae plants. Their extensive biological effects, such as anti-malarial [19], antifeedant [20], insecticidal [21], and antitumor properties [22], have attracted the attention of many researchers. Structurally, most limonoids found in the genus Swietenia are classified as mexicanolide- and phragmalin-type, but the structural types are abundant and varied.

2. Chemical Components

2.1. Azadirone-Type and Evodulon-Type Limonoids

Azadirone-type limonoids are characterized by a 3-oxo-Δ1,2 pattern and C-7 oxygenation. Mahonin (1) was first isolated from the cotyledons of S. mahagoni in 1989 [23] and republished by the same author in 1990 [24,25]. The structures of swieteliacates A and B (2 and 3), which contain a lactone ring rather than the more common furan ring at C-17, were first reported in 2018 [26]. Swimacronoid A (4), an evodulon-type limonoid, was obtained from S. macrophylla in 2013 [27] (Figure 1).

2.2. Gedunin-Type Limonoids

Gedunin-type limonoids with a δ-lactone in ring D are derived from the azadirone class via a Baeyer-Villiger type ring expansion. 7-Deacetoxy-7-oxogedunin (5) was obtained from S. mahagoni, together with 6α-acetoxygedunin (6) [24]. Compound 5 was also isolated from S. macrophylla [28] and S. aubrevilleana [1]. In 2009, compounds 813 were isolated from the fruits of S. mahagoni [29] (Figure 2, Table 1).

2.3. Andirobin-Type Limonoids

Andirobin-type limonoids are characterized by cleavages between C-7/8 and C-16/17 as well as the formation of a Δ8,30 exocyclic double bond and δ-lactone D ring. Secomahoganin (18) was first isolated from S. mahagoni in 1989 [23,24], and later from S. macrophylla in 2015 [33]. Multiple new andirobin-class limonoids, including deacetylsecomahoganin (19) [30], swiemahogin A (20) [34], and swietmanin J (21) [29], were obtained from S. macrophylla (Figure 3, Table 2).

2.4. Mexicanolide-Type Limonoids

A total of 77 mexicanolide-type limonoids, 2298, have been reported from Swietenia species, and most were isolated from S. mahagoni and S. macrophylla. In a few reports, mexicanolide-type limonoids have also been found in S. humilis, for example, humilin B (88) [38], humilinolides A–H (8990, 5052, 91, 61, 98) [39,40,41,42], and 2-hydroxy-destigloyl-6-deoxyswietenine acetate (60) [42]. Swietenolide (23), 6-O-acetylswietenolide (25), and 3,6-O,O-diacetylswietenolide (27) were also obtained from S. aubrevilleana [1]. Other related interesting structures have been found in Swietenia species. Kadota et al. discovered a novel dimeric limonoid, mahagonin (77), from an oily fraction of the ether extract of S. mahagoni [43]. In addition, compound 78 was extracted from the seeds of S. macrophylla. The crystal structure contains 0.25 molecules of water and is stabilized by O–H···O and weak C–H···O hydrogen bonds [44] (Figure 4, Table 3).

2.5. Phragmalin-Type Limonoids

Totally, 55 phragmalin-type limonoids, 99153, have been reported from S. mahagoni and S. macrophylla. Among them, 27 novel phragmalin-type limonoids, swietenitins A–X (99103, 106107, 114116, 121125, 127134), 2,11-diacetoxyswietenialide D (108), 11-deoxyswietenialide D (109), 2-acetoxyswietenialide D (110), together with a known compound, epoxyfebrinin B (126), were published successively in 2009 [63] and 2011 [64]. Moreover, swietephragmins A–F (135141) were obtained from S. mahagoni [30] and swietephragmins H–J (149151) were found in S. macrophylla [65]. In 2008, compounds 142147 were isolated from S. macrophylla [66]. Thereafter, compounds 148 and 153 with similar structures have been reported [14,31] (Figure 5, Table 4).

2.6. Polyoxyphragmalin-Type Limonoids

Currently, only 11 polyoxyphragmalin-type limonoids have been isolated from Swietenia species. Among them, seven known compounds, khayanolide E (154), 1-O-acetylkhayanolide B (155), 1-O-deacetylkhayanolide E (156), khayanolide B (157), khayalactone (158), 1-O-acetylkhayanolide A (159) and khayanolide A (160), were isolated from S. macrophylla [37]. The structure of swietemahalactone (161), an example of a novel rearranged polyoxyphragmalin-type limonoid, was confirmed by X-ray crystallographic analysis [67]. Similarly, a rearrangement of the lactone ring occurred in the structure of 162 [34]. Compounds 163 and 164 were discovered from S. macrophylla in 2012 and 2009 (Figure 6, Table 5).

3. Biological Activities

3.1. Antifeedant Activity

Table 6 lists the 50% antifeedant index concentration (DC50), minimum antifeedant concentration (MAC), and antifeedant index (AI, mean ± SEM) values of the antifeedant activity in studies using Meliaceous limonoids and Spodoptera insects. At 20 μg/leaf-cm2 (1000 ppm), swietemahonin G (85) strongly inhibited the larval feeding of Spodoptera littoralis and swietephragmins 135141 showed moderate activity [30]. Swietenialides A–E (111113, 117, 118) showed antifeedant activity at 1000 ppm concentration against the third-instar larvae of S. littoralis (Boisduval) [36]. Swietenolide (23), 6-O-acetylswietenolide (25), 3,6-O,O-diacetylswietenolide (27), swietenine (42), 2-hydroxyswietenine (55) and swietemahonin F (84) were evaluated at concentrations of 1000 ppm against the final instar larvae of Spodoptera frugiperda [1]. Among these five limonoids from S. macrophylla and S. aubrevilleana, swietenine (42) showed the greatest potency with a DC50 value of 2.49 ± 1.44 (mg/L). These limonoids also inhibit larval growth inhibition activity against Helicoverpa zea, Heliothis virescens and Manduca sexta insect species [68].

3.2. Antimicrobial Activity

Eleven limonoids from Swietenia species were tested for antifungal activity against the groundnut rust Puccinia arachidis. Activity was calculated as the percent reduction in the numbers of rust pustules on treated groundnut leaflets compared with untreated control leaflets. Among these compounds, 6-acetylswietenine (48), 6-acetyl-3-tigloylswietenolide (26), 2,3-dihydroxy-3-deoxy-mexicanolide (37), 3β-hydroxymexicanolide (30), 3β-acetoxymexicanolide (33) and mexicanolide (22) showed the highest activity, causing 80–95% reduction at 10 µg/cm2 leaflet area, while 3,6-O,O-diacetylswietenolide (27) and swietenolide (23) exhibited moderate activity, causing over 60% reduction at the same concentration. Surprisingly, swietenine (42) increased the disease severity considerably at lower concentrations relative to control [46]. The antifungal effects of ten limonoids were determined by a radial growth technique. At a concentration of 1500 mg/L, deacetoxy-7-oxogedunin (5) inhibited Botrytis cinerea growth by 60.8%. This value was comparable with those found with swietenine (42) at 1000 mg/L (57.5%) and 3-O-acetylswietenolide (24) at 1500 mg/L (63.1%) [70]. 2-Hydroxy-3-O-tigloylswietenolide (31) and swietenolide (23) were tested against eight multiple-drug-resistant bacterial strains using the conventional agar disc diffusion assay. The former compound exhibited more potent antimicrobial activity than the latter compound against all tested fungi (Group A β haemolytic Streptococcus aureus, Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, and Salmonella paratyphi) Vancomycin (10 µg/disc) was used as the positive control. [47]. Thirty limonoids from S. mahagoni were inactive in antimicrobial testing against 11 microbes (seven bacteria and four fungi) in vitro. However, 2-hydroxy-3-O-isobutyrylproceranolide (34) and 2-hydroxyfissinolide (36) exhibited activity against Micrococcus luteus ATCC 9341 with MIC values of 50 and 12.5 μg/mL, respectively, in a broth dilution test. Ofloxacin was used as the positive control [29].

3.3. Hypoglycemic Activity

When assayed for effects on peripheral glucose utilization employing an isolated rat hemidiaphragm method, swietenine (42) exhibited significant (p < 0.01) activity comparable with that of human insulin (p < 0.01) [71]. In the same year, the same compound was also found to exhibit significant dose-dependent hypoglycemic and hypolipidemic activity in type 2 diabetic rats when given by oral administration at 25 and 50 mg/kg body weight per day [72]. Dewanjee et al. obtained similar conclusions in 2011 [73]. Compounds 60, 54 and 88 were active (3.16–31.6 mg/kg, bw) when tested as hypoglycemic agents in normal and NA–STZ-hyperglycemic mice [42]. Three S. macrophylla bioactive compounds, 6-O-acetylswietenolide (25), 3,6-O,O-diacetylswietenolide (27), and swietenine (42), induced uptake of glucose by muscle cells by increasing the translocation of GLUT4 to the plasma membrane. The limonoids exhibited a good potential for anti-diabetic activity, however, with a minimal side effect of weight gain [33].

3.4. Anti-PAF Activity

Kadota et al. published the first example of limonoids having antagonistic effects on PAF, finding the following rank order of inhibition at 100 μg/mL: swietemahonin A (79), 97.4%; swietemahonin E (83), 91.7%; 3-O-acetylswietenolide (24), 91.6%; swietenolide (23), 35.2% [52]. In other examples, swietemahonins A, D, E, G (79, 8182, 85), 3-O-acetylswietenolide (24) and 6-O-acetylswietenolide (25), strongly inhibited PAF-induced aggregation of rabbit platelets in vitro, giving IC50 values of 40.2, 40.3, 51.2, 42.6, 52.9, 80.4 and 55.6 μg/mL. The same study reported that swietemahonin E (83) reduced PAF-induced mortality in mice [51].

3.5. Anti-Inflammatory Activities

6-O-Acetyl-3′-demethylswietephragmin E (148), 3,6-O,O-diacetylswietenolide (27), 3-O-tigloyl-swietenolide (28), 3-O-tigloyl-6-O-acetylswietenolide (26), swietemahonin E (83), methyl 3β-tigloyloxy-2-hydroxy-8α,30α-epoxy-l-oxomeliacate (95), and 6-O-acetylswietemahonin G (96) inhibited formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP)-induced superoxide anion generation with IC50 values of 27.6–48.7 μM. The assay was based on the superoxide dismutaste (SOD)-inhibitable reduction of ferricytochrome c and used ibuprofen as the positive control. Among all tested compounds, 96 was the most potent against O 2 · generation. A 8α, 30α-epoxy group was beneficial, and acetyl substitution at C-6 was preferable to hydroxy or no substitution [14]. In addition, swietemacrophin (97) and humilinolide F (91) exhibited moderate activity with IC50 values of 45.44 and 27.13 μg/mL [56].

3.6. Other Activities

Limonoids 7, 15, 23, 48, and 92 were tested for their in vitro half-maximal effective concentration against dengue virus 2 and showed inhibitory activity in the concentration range of 3.5 to 12.5 μM. Among the five limonoids, 92 exhibited significant antiviral activity (EC50 = 7.2 ± 1.33 μM) with a selectivity index (CC50/EC50) value greater than 27.7 [35]. Swieteliacate B (3) was moderately active against HL-60 and SW-480 with IC50 values of 30.59 and 32.68 μM [26]. 7-Deacetoxy-7-oxogedunin (5) was cytotoxic toward Hep-G2 cells with an IC50 value of 16.17 μM [74]. Humilinolides A–D (8990, 5051) showed weak cytotoxic activity against three human tumor cell lines (A-549, MCF-7 and HT-29), and generally produced high mortality rates against larvae of Ostrinia nubilalis [40]. Similarly, when tested against the growth of O. nubilalis, humilinolide E (52) and methyl-2-hydroxy-3β-isobutyroxy-1-oxomeliac-8(30)-enate (53) showed comparable effects to those of the positive control, toosendandin, in terms of reduction of % pupation and % adult emergence, while humilin B (88) and swietenine C were effective only for adult emergence [41]. Five limonoids, swietenolide (23), 3,6-O,O-diacetylswietenolide (27), swietenine (42), swietemahonin G (85), and 2-hydroxyswietenine (55), isolated from S. macrophylla and S. aubrevilleana, were tested in the Artemia salina lethality assay. Only 85 showed weak activity (LC50 220.1 ppm); however, certain semi-synthetic structural modifications led to increased toxicity. The addition of acyl groups, particularly benzoyl groups, was quite effective; for example, 6-O-benzoylswietenolide (LC50 4.3 ppm) and 6-O-benzoylswietenine (LC50 7.5 ppm) were significantly more active than the non-acylated parent compounds 23 and 42, respectively (LC50 > 500 ppm) [75]. Humilinolide A (89) can cause intestinal spasmogenic and uterotonic action [61]. Swietephragmin H (149) and swietephragmin I (150) possessed low anti-oxidative effects (17.12 ± 0.49% and 13.43 ± 0.28%, respectively) at the highest concentration (320 μg/mL) tested. These two compounds lack H-atom donating ability and electron delocalised potential, which are important structural features for significant antioxidant potency [65]. Local injection of mexicanolide (22) (0.5–3.5 mg) led to concentration-dependent antihyperalgesic action in NA-STZ hyperglycemic mice [76].

4. Conclusions

Swietenia is a genus in the subfamily mahogany (Meliaceae), which is generally considered to contain 7 to 8 species. Among them, the seeds and bark of S. mahagoni, S. macrophylla and S. humilis are used in folk medicines for the treatment of hypertension, diabetes, malaria, and epilepsy in Indonesia, India and Mexico [2,76,77]. Based on the data available, this paper summarizes five types of limonoids and describes various bioactive activities, such as antifeedant, hypoglycemic, antimicrobial, anti-PAF, anti-inflammatory, antitumor, insecticidal, anti-oxidative and antihyperalgesic. Although most of the limonoids isolated from Swietenia species do not show significant antiproliferative effects against cancer cell lines, some structurally similar limonoids isolated from Melia azedarach exhibit good antitumor activity. The best known compound is toosendanin (165), which strong inhibits multiple tumor cell lines; its IC50 values were 0.005, 0.009 and 0.0054 μM against HL60, AZ521 and U937, respectively [78,79]. In addition, meliarachin C (166), 12-dehydro-29-exo-neoazedarachin D (167), and 1-O-cinnamoyltrichilinin (168) exhibited IC50 values ranging from 0.65 to 9.1 μM against HL60 [79]. Erythrocarpine A (169), isolated from Chisocheton erythrocarpus, showed cytotoxicity against P388 murine leukemia cells with IC50 value of 2.0 μg/mL [80] (Figure 7). Its structure differs from that of seenganolide A (67) only by the presence of a benzoyl ester rather than hydroxy group. Therefore, limonoids from the genus Swietenia still have great potential for biological activity and may be modified structurally to improve their activity.
Furthermore, the published research on Swietenia has been focused mostly on the seeds and their limonoid components; however, but other plant parts and other compound types may also have rich pharmacological activities. Therefore, it is extremely urgent to expand the scope of research on Swietenia and discover or develop additional biologically active constituents of this plant genus.

Funding

Partial support was provided by NIH Grant CA177584 from the National Cancer Institute awarded to K.H.L, National Natural Science Foundation of China (81303220) and Key Research and Development Project of Anhui Province (1704a0802145).

Acknowledgments

We thank the NPRL members who assisted in and supported the review.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Mootoo, B.S.; Ali, A.; Motilal, R.; Pingal, R.; Ramlal, A.; Khan, A.; Reynolds, W.F.; McLean, S. Limonoids from Swietenia macrophylla and S. aubrevilleana. J. Nat. Prod. 1999, 62, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
  2. Panda, S.P.; Haldar, P.K.; Bera, S.; Adhikary, S.; Kandar, C.C. Antidiabetic and antioxidant activity of Swietenia mahagoni in streptozotocin-induced diabetic rats. Pharm. Biol. 2010, 48, 974–979. [Google Scholar] [CrossRef] [PubMed]
  3. Dutta, M.; Biswas, U.K.; Chakraborty, R.; Banerjee, P.; Raychaudhuri, U. Regeneration of pancreatic β-cells on streptozotocin induced diabetic rats under the effect of swietenia macrophylla seeds. Int. J. Green Pharm. 2013, 6, 336–339. [Google Scholar] [CrossRef]
  4. Dutta, M.; Biswas, U.K.; Chakraborty, R.; Banerjee, P.; Maji, D.; Mondal, M.C.; Raychaudhuri, U. Antidiabetic and antioxidant effect of Swietenia macrophylla seeds in experimental type 2 diabetic rats. Int. J. Diabetes Dev. Ctries. 2013, 33, 60–65. [Google Scholar] [CrossRef]
  5. Dewanjee, S.; Kundu, M.; Maiti, A.; Majumdar, R.; Majumdar, A.; Mandel, S.C. In vitro evaluation of antimicrobial activity of crude extract from plants Diospyros peregrina, Coccinia grandis and Swietenia macrophylla. Trop. J. Pharm. Res. 2007, 6, 773–778. [Google Scholar] [CrossRef]
  6. Sahgal, G.; Ramanathan, S.; Sasidharan, S.; Mordi, M.N.; Ismail, S.; Mansor, S.M. Phytochemical and antimicrobial activity of Swietenia mahagoni crude methanolic seed extract. Trop. Biomed. 2009, 26, 274–279. [Google Scholar] [PubMed]
  7. Mohammed, S.B.; Azhari, N.H.; Mashitah, Y.M.; Abdurahman, N.H.; Mazza, A.S. Physicochemical characterization and antimicrobial activity of Swietenia macrophylla King seed oil. Esrsa Publ. 2014, 3, 1787–1792. [Google Scholar]
  8. Sahgal, G.; Ramanathan, S.; Sasidharan, S.; Mordi, M.N.; Ismail, S.; Mansor, S.M. In Vitro antioxidant and xanthine oxidase inhibitory activities of methanolic Swietenia mahagoni seed extracts. Molecules 2009, 14, 4476–4485. [Google Scholar] [CrossRef]
  9. Pamplona, S.; Sã, P.; Lopes, D.; Costa, E.; Yamada, E.; Silva, C.; Arruda, M.; Souza, J.; da Silva, M. In vitro cytoprotective effects and antioxidant capacity of phenolic compounds from the leaves of Swietenia macrophylla. Molecules 2015, 20, 18777–18788. [Google Scholar] [CrossRef] [PubMed]
  10. Maiti, A.; Dewanjee, S.; Mandal, S.C. In vivo evaluation of antidiarrhoeal activity of the seed of Swietenia macrophylla King (Meliaceae). Trop. J. Pharm. Res. 2007, 6, 711–716. [Google Scholar] [CrossRef]
  11. Goh, B.H.; Kadir, H.A. In vitro cytotoxic potential of Swietenia macrophylla King seeds against human carcinoma cell lines. J. Med. Plant. Res. 2011, 5, 1395–1404. [Google Scholar]
  12. Goh, B.H.; Chan, C.K.; Kamarudin, M.N.A.; Kadir, H.A. Swietenia macrophylla King induces mitochondrial-mediated apoptosis through p53 upregulation in HCT116 colorectal carcinoma cells. J. Ethnopharmacol. 2014, 153, 375–385. [Google Scholar] [CrossRef] [PubMed]
  13. Zalabani, S.M.E.; El-Askary, H.I.; Mousa, O.M.; Issa, M.Y.; Zaitoun, A.A.; Abdel-Sattar, E. Acaricidal activity of Swietenia mahogani and Swietenia macrophylla, ethanolic extracts against Varroa destructor in honeybee colonies. Exp. Parasitol. 2012, 130, 166–170. [Google Scholar] [CrossRef] [PubMed]
  14. Chen, J.J.; Huang, S.S.; Liao, C.H.; Wei, W.C.; Sung, P.J.; Wang, T.C.; Cheng, M.J. A new phragmalin-type limonoid and anti-inflammatory constituents from the fruits of Swietenia macrophylla. Food Chem. 2010, 120, 379–384. [Google Scholar] [CrossRef]
  15. Wu, S.F.; Lin, C.K.; Chuang, Y.S.; Chang, F.R.; Tseng, C.K.; Wu, Y.C.; Lee, J.C. Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems. J. Viral Hepat. 2012, 19, 364–370. [Google Scholar] [CrossRef] [PubMed]
  16. Falah, S.; Suzuki, T.; Katayama, T. Chemical constituents from Swietenia macrophylla bark and their antioxidant activity. Pak. J. Biol. Sci. 2008, 11, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
  17. Soares, M.G.; Batista-Pereira, L.G.; Fernandes, J.B.; Corrêa, A.G.; Da, S.M.; Vieira, P.C.; Filho, E.R.; Ohashi, O.S. Electrophysiological responses of female and male Hypsipyla grandella (Zeller) to Swietenia macrophylla essential oils. J. Chem. Ecol. 2003, 29, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
  18. Tan, Q.G.; Luo, X.D. Meliaceous limonoids: Chemistry and biological activities. Chem. Rev. 2011, 111, 7437–7522. [Google Scholar] [CrossRef] [PubMed]
  19. Pereira, T.B.; Silva, L.F.R.E.; Amorim, R.C.; Melo, M.R.; Souza, R.C.Z.D.; Eberlin, M.N.; Lima, E.S.; Vasconcellos, M.C.; Pohlit, A.M. In vitro, and in vivo, anti-malarial activity of limonoids isolated from the residual seed biomass from Carapa guianensis (andiroba) oil production. Malar. J. 2014, 13, 317–324. [Google Scholar] [CrossRef] [PubMed]
  20. Yan, Y.X.; Liu, J.Q.; Wang, H.W.; Chen, J.X.; Chen, J.C.; Chen, L.; Zhou, L.; Qiu, M.H. Identification and antifeedant activities of limonoids from Azadirachta indica. Chem. Biodivers. 2015, 12, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
  21. Ambrozin, A.R.P.; Leite, A.C.; Bueno, F.C.; Vieira, P.C.; Fernandes, J.B.; Bueno, O.C.; Silva, M.F.G.F.; Pagnocca, F.C.; Hebling, M.J.A.; Maurício, B., Jr. Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity. J. Braz. Chem. Soc. 2006, 17, 542–547. [Google Scholar] [CrossRef]
  22. Hu, J.; Song, Y.; Mao, X.; Wang, Z.J.; Zhao, Q.J. Limonoids isolated from Toona sinensis, and their radical scavenging, anti-inflammatory and cytotoxic activities. J. Funct. Foods 2016, 20, 1–9. [Google Scholar] [CrossRef]
  23. Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekitomo, H. Mahonin and secomahoganin, new tetranortriterpenoids from Swietenia mahogani (L.) JACQ. Chem. Pharm. Bull. 1989, 37, 1419–1421. [Google Scholar] [CrossRef]
  24. Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekitomo, H. Constituents of the seeds of Swietenia mahagoni Jacq. I. Isolation, structures, and 1H- and 13C-nuclear magnetic resonance signal assignments of new tetranortriterpenoids related to swietenine and swietenolide. Chem. Pharm. Bull. 1990, 38, 639–651. [Google Scholar] [CrossRef]
  25. Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekitomo, H. Constituents of the seeds of Swietenia mahagoni JACQ. III. Structures of mahonin and secomahoganin. Chem. Pharm. Bull. 1990, 38, 1495–1500. [Google Scholar] [CrossRef]
  26. Sun, Y.P.; Zhu, L.L.; Liu, J.S.; Yu, Y.; Zhou, Z.Y.; Wang, G.; Wang, G.K. Limonoids and triterpenoid from fruit of Swietenia macrophylla. Fitoterapia 2018, 125, 141–146. [Google Scholar] [CrossRef] [PubMed]
  27. Zhang, R.; Cao, M.M.; He, H.P.; Zhang, Y.; Di, Y.T.; Hao, X.J. Limonoids from the twigs and leaves of Swietenia macrophylla. Nat. Prod. Res. Dev. 2013, 25, 969–971. [Google Scholar] [CrossRef]
  28. Mi, C.N.; Mei, W.L.; Li, W.; Wang, J.; Cai, C.H.; li, S.P.; Dai, H.F. Chemical Constituents from the Roots of Swietenia macrophylla King. J. Trop. Subtrop. Bot. 2017, 25, 610–616. [Google Scholar] [CrossRef]
  29. Lin, B.D.; Tao, Y.; Zhang, C.R.; Dong, L.; Zhang, B.; Wu, Y.; Yue, J.M. Structurally diverse limonoids from the fruits of Swietenia mahagoni. J. Nat. Prod. 2009, 72, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
  30. Abdelgaleil, S.A.M.; Doe, M.; Morimoto, Y.; Nakatani, M. Rings B,D-seco limonoids from the leaves of Swietenia mahogani. Phytochemistry 2006, 67, 452–458. [Google Scholar] [CrossRef] [PubMed]
  31. Abdelgaleil, S.A.M.; Doe, M.; Nakatani, M. Rings B, D-seco limonoid antifeedants from Swietenia mahogani. Phytochemistry 2013, 96, 312–317. [Google Scholar] [CrossRef] [PubMed]
  32. Liu, J.S.; Zhu, L.L.; Wang, G.; Wang, G.K. Studies on chemical constituents from the fruit of Swietenia macrophylla. J. Chin. Med. Mater. 2016, 7, 1530–1534. [Google Scholar] [CrossRef]
  33. Lau, W.K.; Goh, B.H.; Kadir, H.A.; Shu-Chien, A.C.; Muhammad, T.S.T. Potent PPAR ligands from Swietenia macrophylla are capable of stimulating glucose uptake in muscle cells. Molecules 2015, 20, 22301–22314. [Google Scholar] [CrossRef] [PubMed]
  34. Chen, Y.Y.; Wang, X.N.; Fan, C.Q.; Yin, S.; Yue, J.M. Swiemahogins A and B, two novel limonoids from Swietenia mahogani. Tetrahedron Lett. 2007, 48, 7480–7484. [Google Scholar] [CrossRef]
  35. Cheng, Y.B.; Chien, Y.T.; Lee, J.C.; Tseng, C.K.; Wang, H.C.; Lo, I.W.; Wu, Y.H.; Wang, S.Y.; Wu, Y.C.; Chang, F.R. Limonoids from the seeds of Swietenia macrophylla with inhibitory activity against dengue Virus 2. J. Nat. Prod. 2014, 77, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
  36. Saad, M.M.G.; Iwagawa, T.; Doe, M.; Nakatani, M. Swietenialides, novel ring D opened phragmalin limonoid orthoesters from Swietenia mahogani JACQ. Tetrahedron 2003, 59, 8027–8033. [Google Scholar] [CrossRef]
  37. Liu, J.Q.; Wang, C.F.; Chen, J.C.; Qiu, M.H. Limonoids from the leaves of Swietenia macrophylla. Nat. Prod. Res. 2012, 26, 1887–1891. [Google Scholar] [CrossRef] [PubMed]
  38. Okorie, D.A.; Taylor, D.A.H. Meliaceae: Limonoids from Swietenia humilis. Phytochemistry 1971, 10, 469–470. [Google Scholar] [CrossRef]
  39. Segura-Correa, R.; Mata, R.; Anaya, A.L.; Hernandez-Bautista, B.; Viliena, R.; Soriano-Garcia, M.; Bye, R.; Linares, E. New tetranortriterpenoids from Swietenia humilis. J. Nat. Prod. 1993, 56, 1567–1574. [Google Scholar] [CrossRef]
  40. Jimenez, A.; Mata, R.; Pereda-Miranda, R.; Calderon, J.; Isman, M.B.; Nicol, R.; Arnason, J.T. Insecticidal limonoids from Swietenia humilis, and Cedrela salvadorensis. J. Chem. Ecol. 1997, 23, 1225–1234. [Google Scholar] [CrossRef]
  41. Jimenez, A.; Villarreal, C.; Toscano, R.A.; Cook, M.; Arnason, J.T.; Bye, R.; Mata, R. Limonoids from Swietenia humilis and Guarea grandiflora (Meliaceae). Phytochemistry 1998, 49, 1981–1988. [Google Scholar] [CrossRef]
  42. Ovalle-Magallanes, B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Mata, R. Hypoglycemic and antihyperglycemic effects of phytopreparations and limonoids from Swietenia humilis. Phytochemistry 2015, 110, 111–119. [Google Scholar] [CrossRef] [PubMed]
  43. Kadota, S.; Yanagawa, K.; Kikuchi, T.; Tanaka, K. Mahagonin, a novel dimeric tetranortriterpenoid from, Swietenia mahogan JACQ. Tetrahedron Lett. 1990, 31, 5943–5946. [Google Scholar] [CrossRef]
  44. Fowles, R.G.; Mootoo, B.S.; Ramsewak, R.; Reynolds, W.; Lough, A.J. 3,6-Di-O-acetyl-swietenolide 0.25-hydrate. Acta Crystallogr. 2007, 63, o660–o661. [Google Scholar] [CrossRef]
  45. Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Constituents of the seeds of Swietenia mahagoni JACQ. II. structures of swietemahonin A, B, C, D, E, F, and G and swietemahonolide. Chem. Pharm. Bull. 1990, 38, 894–901. [Google Scholar] [CrossRef]
  46. Govindachari, T.R.; Suresh, G.; Banumathy, B.; Masilamani, S.; Gopalakrishnan, G.; Kumari, G.N.K. Antifungal activity of some B,D-seco limonoids from two Meliaceous plants. J. Chem. Ecol. 1999, 25, 923–933. [Google Scholar] [CrossRef]
  47. Rahman, A.K.M.S.; Chowdhury, A.K.A.; Ali, H.A.; Raihan, S.Z.; Ali, M.S.; Nahar, L.; Sarker, S.D. Antibacterial activity of two limonoids from swietenia mahagoni against multiple-drug-resistant (MDR) bacterial strains. J. Nat. Med. 2009, 63, 41–45. [Google Scholar] [CrossRef] [PubMed]
  48. Ma, Y.Q.; Jiang, K.; Deng, Y.; Guo, L.; Wan, Y.Q.; Tan, C.H. Mexicanolide-type limonoids from the seeds of Swietenia macrophylla. J. Asian Nat. Prod. Res. 2017, 1–7. [Google Scholar] [CrossRef] [PubMed]
  49. Taylor, A.R.H.; Taylor, D.A.H. Limonoid extractives from Swietenia macrophylla. Phytochemistry 1983, 22, 2870–2871. [Google Scholar] [CrossRef]
  50. Chan, K.C.; Tang, T.S.; Toh, H.T. Isolation of swietenolide diacetate from swietenia macrophylla. Phytochemistry 1976, 15, 429–430. [Google Scholar] [CrossRef]
  51. Ekimoto, H.; Irie, Y.; Araki, Y.; Han, G.Q.; Kadota, S.; Kikuchi, T. Platelet aggregation inhibitors from the seeds of Swietenia mahagoni: Inhibition of in vitro and in vivo platelet-activating factor-induced effects of tetranortriterpenoids related to swietenine and swietenolide. Planta Med. 1991, 57, 56–58. [Google Scholar] [CrossRef] [PubMed]
  52. Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Antagonists of platelet activating factor from Swietenia mahogani(L.) JACQ. Tetrahedron Lett. 1989, 30, 1111–1114. [Google Scholar] [CrossRef]
  53. Goh, B.H.; Kadir, H.A.; Malek, S.N.A.; Ng, S.W. (αR,4R,4aR,6aS,7R,8S,10R,11S)-methyl α-acetoxy-4-(3-furanyl)-10-hydroxy-4a,7,9,9-tetramethyl-2,13-dioxo-1, 4,4a,5,6,6a,7,8,9,10,11,12-dodecahydro-7,11-methano-2H-cycloocta[f][2]benzopyran-8-acetate (6-O-acetylswietenolide) from the seeds of Swietenia macrophylla. Acta Cryst. 2010, 66, 2802–2803. [Google Scholar]
  54. Goh, B.H.; Kadir, H.A.; Malek, S.N.A.; Ng, S.W. Swietenolide diacetate from the seeds of swietenia macrophylla. Acta Cryst. 2010, 66, o1396. [Google Scholar] [CrossRef] [Green Version]
  55. Chen, L.C.; Liao, H.R.; Chen, P.Y.; Kuo, W.L.; Chang, T.H.; Sung, P.J.; Wen, Z.H.; Chen, J.J. Limonoids from the seeds of Swietenia macrophylla and their anti-inflammatory activities. Molecules 2015, 20, 18551–18564. [Google Scholar] [CrossRef] [PubMed]
  56. Daily, A.; Seligmann, O.; Lotter, H.; Wagner, H. 2-Hydroxy-swietenin, ein neues limonoid aus Swietenia mahagoni DC./2-Hydroxy-swietenin, a new limonoid from Swietenia mahagoni DC. Z. Naturforsch. C 1985, 40, 519–522. [Google Scholar] [CrossRef]
  57. Solomon, K.A.; Malathi, R.; Rajan, S.S.; Narasimhan, S.; Nethaji, M. Swietenine. Acta Cryst. 2003, 59, o1519–o1521. [Google Scholar] [CrossRef]
  58. Kojima, K.; Isaka, K.; Ogihara, Y. Tetranortriterpenoids from Swietenia macrophylla. Chem. Pharm. Bull. 1998, 46, 523–525. [Google Scholar] [CrossRef]
  59. Govindachari, T.R.; Banumathy, B.; Gopalakrishnan, G.; Suresh, G. 6-Desoxyswietenine, a tetranortriterpenoid from Swietenia mahogani. Fitoterapia 1999, 70, 106–108. [Google Scholar] [CrossRef]
  60. Cheng, Y.B.; Chien, Y.T.; Lee, J.C.; Wu, Y.C.; Chang, F.R. Anti-dengue virus limonoids from the actual seeds of Swietenia macrophylla. Planta Med. 2014, 80, 311–323. [Google Scholar] [CrossRef]
  61. Perusquía, M.; Herńndez, R.; Jiménez, M.A.; Pereda-Miranda, R.; Mata, R. Contractile response induced by a limonoid (humilinolide A) on spontaneous activity of isolated smooth muscle. Phytother. Res. 1997, 11, 354–357. [Google Scholar] [CrossRef]
  62. Saad, M.M.G. Three new mexicanolides from the stem bark of Swietenia mahogani Jacq. Heterocycles 2004, 63, 389–399. [Google Scholar] [CrossRef]
  63. Lin, B.D.; Zhang, C.R.; Yang, S.P.; Wu, Y.; Yue, J.M. D-ring-opened phragmalin-type limonoid orthoesters from the twigs of swietenia macrophylla. J. Natl. Prod. 2009, 72, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
  64. Lin, B.D.; Zhang, C.R.; Yang, S.P.; Wu, Y.; Yue, J.M. Phragmalin-type limonoid orthoesters from the twigs of Swietenia macrophylla. Chem. Pharm. Bull. 2011, 59, 458–465. [Google Scholar] [CrossRef] [PubMed]
  65. Tan, S.K.; Osman, H.; Kengchong, W.; Penglim, B. New phragmalin-type limonoids from Swietenia macrophylla king. Food Chem. 2009, 115, 1279–1285. [Google Scholar] [CrossRef]
  66. Silva, M.N.D.; Arruda, M.S.P.; Castro, K.C.F.; da Silva, M.F.D.G.; Fernandes, J.B.; Vieira, P.C. Limonoids of the phragmalin type from Swietenia macrophylla and their chemotaxonomic significance. J. Nat. Prod. 2008, 71, 1983–1987. [Google Scholar] [CrossRef] [PubMed]
  67. Liu, J.Q.; Peng, X.R.; Zhang, W.M.; Shi, L.; Li, X.Y.; Chen, J.C.; Qiu, M.H. Swietemahalactone, a rearranged phragmalin-type limonoid with anti-bacterial effect, from Swietenia mahagoni. RSC Adv. 2013, 3, 4890–4893. [Google Scholar] [CrossRef]
  68. Fowles, R.; Mootoo, B.; Ramsewak, R.; Khan, A.; Ramsubhag, A.; Reynolds, W.; Nair, M. Identification of new limonoids from Swietenia and their biological activity against insects. Pest Manag. Sci. 2010, 66, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
  69. Omar, S.; Marcotte, M.; Fields, P.; Sanchez, P.E.; Poveda, L.; Mata, R.; Jimenez, A.; Durst, T.; Zhang, J.; MacKinnon, S.; et al. Antifeedant activities of terpenoids isolated from tropical Rutales. J. Stored Prod. Res. 2007, 43, 92–96. [Google Scholar] [CrossRef]
  70. Abdelgaleil, S.A.; Hashinaga, F.; Nakatani, M. Antifungal activity of limonoids from Khaya ivorensis. Pest Manag. Sci. 2005, 61, 186–190. [Google Scholar] [CrossRef] [PubMed]
  71. Maiti, A.; Dewanjee, S.; Sahu, R. Isolation of hypoglycemic phytoconstituent from Swietenia macrophylla seeds. Phytother. Res. 2009, 23, 1731–1733. [Google Scholar] [CrossRef] [PubMed]
  72. Dewanjee, S.; Maiti, A.; Das, A.K.; Mandal, S.C.; Dey, S.P. Swietenine: A potential oral hypoglycemic from Swietenia macrophylla seed. Fitoterapia 2009, 80, 249–251. [Google Scholar] [CrossRef] [PubMed]
  73. Maiti, A. Swietenine, big leaf mahogany (Swietenia macrophylla) seed extract as a hypoglycemic agent. In Nuts and Seeds in Health and Disease Prevention; Elsevier Inc.: New York, NY, USA, 2011; pp. 205–212. [Google Scholar]
  74. Pudhom, K.; Sommit, D.; Nuclear, P.; Ngamrojanavanich, N.; Petsom, A. Protoxylocarpins F−H, protolimonoids from seed kernels of Xylocarpus granatum. J. Nat. Prod. 2009, 72, 2188–2191. [Google Scholar] [CrossRef] [PubMed]
  75. Fowles, R.G.; Mootoo, B.S.; Ramsewak, R.S.; Khan, A. Toxicity-structure activity evaluation of limonoids from Swietenia species on Artemia salina. Pharm. Biol. 2012, 50, 264–267. [Google Scholar] [CrossRef] [PubMed]
  76. Ovallemagallanes, B.; Décigacampos, M.; Mata, R. Antihyperalgesic activity of a mexicanolide isolated from Swietenia humilis extract in nicotinamide-streptozotocin hyperglycemic mice. Biomed. Pharmacother. 2017, 92, 324–330. [Google Scholar] [CrossRef] [PubMed]
  77. Maiti, A.; Dewanjee, S.; Kundu, M.; Mandal, S.C. Evaluation of antidiabetic activity of the seeds of Swietenia macrophylla in diabetic rats. Pharm. Biol. 2009, 47, 132–136. [Google Scholar] [CrossRef]
  78. Zhang, B.; Wang, Z.F.; Tang, M.Z.; Shi, Y.L. Growth inhibition and apoptosis-induced effect on human cancer cells of toosendanin, a triterpenoid derivative from Chinese traditional medicine. Investig. New Drugs 2005, 23, 547–553. [Google Scholar] [CrossRef] [PubMed]
  79. Akihisa, T.; Pan, X.; Nakamura, Y.; Kikuchi, T.; Takahashi, N.; Matsumoto, M.; Ogihara, E.; Fukatsu, M.; Koike, K.; Tokuda, H. Limonoids from the fruits of Melia azedarach and their cytotoxic activities. Phytochemistry 2013, 89, 59–70. [Google Scholar] [CrossRef] [PubMed]
  80. Awang, K.; Chong, S.L.; Mohamad, K.; Morita, H.; Hirasawa, Y.; Takeya, K.; Thoison, O.; Hadi, A.H.A. Erythrocarpines A–E, new cytotoxic limonoids from Chisocheton erythrocarpus. Bioorg. Med. Chem. 2007, 15, 5997–6002. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Chemical structures of azadirone-type and evodulon-type limonoids 14.
Figure 1. Chemical structures of azadirone-type and evodulon-type limonoids 14.
Molecules 23 01588 g001
Figure 2. Chemical structures of gedunin-type limonoids 513.
Figure 2. Chemical structures of gedunin-type limonoids 513.
Molecules 23 01588 g002
Figure 3. Chemical structures of andirobin-type limonoids 1421.
Figure 3. Chemical structures of andirobin-type limonoids 1421.
Molecules 23 01588 g003
Figure 4. Chemical structures of mexicanolide-type limonoids 2298.
Figure 4. Chemical structures of mexicanolide-type limonoids 2298.
Molecules 23 01588 g004
Figure 5. Chemical structures of phragmalin-type limonoids 99153.
Figure 5. Chemical structures of phragmalin-type limonoids 99153.
Molecules 23 01588 g005
Figure 6. Chemical structures of polyoxyphragmalin-type limonoids 154164.
Figure 6. Chemical structures of polyoxyphragmalin-type limonoids 154164.
Molecules 23 01588 g006
Figure 7. Chemical structures of limonoids 165169 from other plants.
Figure 7. Chemical structures of limonoids 165169 from other plants.
Molecules 23 01588 g007
Table 1. Structures and sources of gedunin-type limonoids 513.
Table 1. Structures and sources of gedunin-type limonoids 513.
No.CompoundsSubstitution GroupsSources
57-deacetoxy-7-oxogeduninR1 = H2, R2 = OS. mahagoni [24,29,30,31] S. macrophylla [1,28,32], S. aubrevilleana [1]
66α-acetoxygeduninR1 = R2 = β-H, α-OAcS. mahagoni [24],
77-deacetoxy-7α-hydroxygedunin(deacetylgedunin)R1 = H2, R2 = β-H, α-OHS. macrophylla [28], S. aubrevilleana [1]
83-deacetylkhivorinR1 = OAc, R2 = OAc, R3 = OHS. mahagoni [29]
93,7-dideacetylkhivorinR1 = OAc, R2 = OH, R3 = OHS. mahagoni [29]
101,3,7-trideacetylkhivorinR1 = OH, R2 = OH, R3 = OHS. mahagoni [29]
11khivorinR1 = OAc, R2 = OAc, R3 = OAcS. mahagoni [29]
127-deacetylkhivorinR1 = OAc, R2 = OH, R3 = OAcS. mahagoni [29]
131-deacetylkhivorinR1 = OH, R2 = OAc, R3 = OAcS. mahagoni [29]
Table 2. Structures and sources of andirobin-type limonoids 1421.
Table 2. Structures and sources of andirobin-type limonoids 1421.
No.CompoundSubstitution GroupsSources
14andirobin S. macrophylla [1,35]
15methylangolensateR = HS. mahagoni [24,29,31,36], S. macrophylla [27]
166-hydroxy derivative (methyl 6-hydroxyangolensate)R = OHS. mahagoni [29,30,36,37], S. aubrevilleana [1], S. macrophylla [27]
176-acetoxyangolensateR = OAcS. macrophylla [27]
18secomahoganinR = AcS. mahagoni [23,24,25], S. macrophylla [33]
19deacetylsecomahoganinR = HS. mahagoni [30], S. macrophylla [27]
20swiemahogin A S. mahagoni [34]
21swietmanin J S. mahagoni [29]
Table 3. Structures and sources of mexicanolide-type limonoids 2298.
Table 3. Structures and sources of mexicanolide-type limonoids 2298.
No.CompoundsSubstitution GroupsSources
22mexicanolideR1 = O, R2 = H, R3 = HS. mahagoni [29]
23swietenolideR1 = H, R2 = H, R3 = OHS. mahagoni [24,45,46,47], S. aubrevilleana [1], S. macrophylla [1,32,48,49,50]
243-O-acetylswietenolideR1 = Ac, R2 = H, R3 = OHS. mahagoni [24,46,51,52], S. macrophylla [32,48]
256-O-acetylswietenolideR1 = H, R2 = H, R3 = OAcS. mahagoni [24,51], S. macrophylla [1,48,53], S. aubrevilleana [1]
263-O-tigloyl-6-O-acetylswietenolideR1 = Tig, R2 = H, R3 = OAcS. mahagoni [24,46], S. macrophylla [14,32,48],
273,6-O,O-diacetylswietenolideR1 = Ac, R2 = H, R3 = OAcS. mahagoni [24,46,51], S. macrophylla [1,14,48,50,54], S. aubrevilleana [1]
283-O-tigloylswietenolideR1 = Tig, R2 = H, R3 = OHS. mahagoni [24,46], S. macrophylla [14,48,55],
29khayasin TR1 = Tig, R2 = H, R3 = HS. mahagoni [24,29], S. macrophylla [1,14,48]
30proceranolideR1 = H, R2 = H, R3 = HS. mahagoni [24,48], S. macrophylla [32,33]
312-hydroxy-3-O-tigloylswietenolideR1 = Tig, R2 = OH, R3 = OHS. mahagoni [30,47]
323-O-propionylproceranolideR1 = COEt, R2 = H, R3 = HS. macrophylla [48]
33fissinolideR1 = Ac, R2 = H, R3 = HS. macrophylla [32,33,48], S. mahagoni [29]
342-hydroxy-3-O-isobutyrylproceranolideR1 = iBu, R2 = OH, R3 = HS. mahagoni [29]
352-hydroxy-3-O-benzoylproceranolideR1 = Bz, R2 = OH, R3 = HS. mahagoni [29]
362-hydroxyfissinolideR1 = Ac, R2 = OH, R3 = HS. mahagoni [29]
372,3-dihydroxy-3-deoxymexicanolideR1 = H, R2 = OH, R3 = HS. mahagoni [29]
382-hydroxy-6-deoxyswietenolide tiglateR1 = Tig, R2 = OH, R3 = HS. mahagoni [29]
39augustineolideR1 = Tig, R2 = OH, R3 = OAc, R4 = OiBuS. macrophylla [1]
40swietmanin ER1 = Tig, R2 = H, R3 = OH, R4 = HS. mahagoni [29]
41swietmanin FR1 = Ac, R2 = H, R3 = OH, R4 = HS. mahagoni [29]
42swietenineR1 = Tig, R2 = H, R3 = OHS. mahagoni [24,35,45,46], S. macrophylla [14,33,36,48,49,56,57]
43swietenine BR1 = COEt, R2 = H, R3 = OHS. mahagoni [24]
44swietenine CR1 = iBu, R2 = H, R3 = OHS. mahagoni [24,58], S. humilis [41]
45swietenine DR1 = A, R2 = H, R3 = OHS. mahagoni [24]
46swietenine ER1 = Piv, R2 = H, R3 = OHS. mahagoni [24]
47swietenine FR1 = Bz, R2 = H, R3 = OHS. mahagoni [24]
48swietenine acetate (6-O-acetylswietenine)R1 = Tig, R2 = H, R3 = OAcS. mahagoni [24,46], S. macrophylla [14,33,49]
496-desoxyswietenine (febrifugin)R1 = Tig, R2 = H, R3 = HS. mahagoni [46,59], S. macrophylla [1,14,48]
50humilinolide CR1 = Tig, R2 = OAc, R3 = HS. humilis [39,40,41]
51humilinolide DR1 = Ac, R2 = OH, R3 = OAcS. humilis [39,40,41]
52humilinolide E (6-O-acetyl-2-hydroxyswietenin)R1 = Tig, R2 = OH, R3 = OAcS. humilis [41], S. mahagoni [31,57]
53methyl-2-hydroxy-3-b-isobutyroxy- 1-oxomeliac-8(30)-enateR1 = iBu, R2 = OH, R3 = HS. humilis [38,41]
54methyl-2-hydroxy-3-b-tigloyloxy- 1-oxomeliac-8(30)-enateR1 = Tig, R2 = OH, R3 = HS. humilis [41], S. macrophylla [58], S. mahagoni [31]
552-hydroxyswietenineR1 = Tig, R2 = OH, R3 = OHS. mahagoni [31,36,56], S. macrophylla [1,58]
566-acetoxyhumilinolide CR1 = Tig, R2 = OAc, R3 = OAcS. aubrevilleana [1]
57granatumin HR1 = iBu, R2 = H, R3 = HS. macrophylla [48]
58swieteliacate CR1 = COEt, R2 = H, R3 = HS. macrophylla [26]
596-O-acetylswietenin BR1 = COEt, R2 = H, R3 = OAcS. macrophylla [48]
602-hydroxy-destigloyl-6-deoxyswietenine acetateR1 = Ac, R2 = OH, R3 = HS. humilis [42]
61humilinolide GR1 = iBu, R2 = OAc, R3 = HS. humilis [42]
62swielimonoid AR1 = Tig, R2 = H, R3 = OHS. macrophylla [60]
63swielimonoid BR1 = COEt, R2 = H, R3 = OHS. macrophylla [60]
64swietmanin GR1 = iBu, R2 = OH, R3 = HS. mahagoni [29]
65swietmanin HR1 = Ac, R2 = OH, R3 = HS. mahagoni [29]
66swietmanin IR1 = Tig, R2 = OH, R3 = HS. mahagoni [29]
67seneganolide AR1 = H, R2 = H, R3 = HS. mahagoni [29]
68swietmanin AR1 = iBu, R2 = HS. mahagoni [29]
69swietmanin BR1 = Ac, R2 = HS. mahagoni [29]
70swietmanin CR1 = H, R2 = HS. mahagoni [29]
71swietmanin DR1 = Ac, R2 = OAcS. mahagoni [29]
728α-hydroxycarapinR1 = O, R2 = OH, R3 = HS. mahagoni [29]
733β,6-dihydroxydihydrocarapinR1 = H, R2 = H, R3 = OHS. macrophylla [1], S. aubrevilleana [1]
74swieteliacate ER1 = H, R2 = OH, R3 = OHS. macrophylla [26]
75khayanone S. macrophylla [37]
76swieteliacate D S. macrophylla [26]
77mahagonin S. mahagoni [43], S. macrophylla [26]
783,6-di-O-acetylswietenolide 0.25-hydrate S. macrophylla [44]
79swietemahonin AR1 = COEt, R2 = H, R3 = OHS. mahagoni [24,45,51,52]
80swietemahonin BR1 = COEt, R2 = H, R3 = OAcS. mahagoni [24,45], S. macrophylla [48]
81swietemahonin CR1 = iBu, R2 = H, R3 = OAcS. mahagoni [24,41,45]
82swietemahonin DR1 = Ac, R2 = H, R3 = OHS. mahagoni [24,45,51]
83swietemahonin ER1 = Tig, R2 = H, R3 = OHS. mahagoni [24,45,51,52], S. macrophylla [1,14,33,48]
84swietemahonin FR1 = Tig, R2 = H, R3 = OAcS. mahagoni [24,45], S. macrophylla [1,32,33]
85swietemahonin GR1 = Tig, R2 = OH, R3 = OHS. mahagoni [24,30,31,45,51], S. macrophylla [1]
86swietemahonlideR1 = Tig, R2 = H, R3 = HS. mahagoni [24,45]
87xylocarpinR1 = AC, R2 = H, R3 = HS. mahagoni [45], S. macrophylla [49]
88humilin BR1 = iBu, R2 = OH, R3 = HS. humilis [38], S. mahagoni [41,45], S. macrophylla [49,58]
89humilinolide A(methyl 3β-isobutyryloxy-2,6-dihydroxy-8α,30α-epoxy-l-oxo-meliacate)R1 = iBu, R2 = OH, R3 = OHS. humilis [39,40,41,61], S. macrophylla [58]
90humilinolide BR1 = iBu, R2 = OH, R3 = OAcS. humilis [39,40,41]
91humilinolide FR1 = Tig, R2 = OAc, R3 = OAcS. humilis [41],S. macrophylla [55]
926-deoxyswietemahonin AR1 = COEt, R2 = H, R3 = HS. macrophylla [48]
93swielimonoid CR1 = Piv, R2 = H, R3 = OHS. macrophylla [60]
94methyl 3β-acetoxy-2,6-dihydroxy-8α,30α-epoxy-l-oxo-meliacateR1 = Ac, R2 = OH, R3 = OHS. macrophylla [58]
95methyl 3β-tigloyloxy-2-hvdroxy-8α,30α-epoxy-l-oxo-meliacateR1 = Tig, R2 = OH, R3 = HS. macrophylla [14,58] S. mahagoni [62]
966-O-acetylswietemahonin GR1 = Tig, R2 = OH, R3 = OAcS. macrophylla [14], S. mahagoni [62]
972-acetoxyswietemahonlide (swietemacrophin)R1 = Tig, R2 = OAc, R3 = HS. macrophylla [55]
98humilinolide HR1 = iBu, R2 = OAc, R3 = HS. humilis [42]
Table 4. Structures and sources of phragmalin-type limonoids 99153.
Table 4. Structures and sources of phragmalin-type limonoids 99153.
No.CompoundsSubstitution GroupsSources
99swietenitin AR1 = A1, R2 = Ac, R3 = AcS. macrophylla [63]
100swietenitin BR1 = A2, R2 = Ac, R3 = AcS. macrophylla [63]
101swietenitin CR1 = A1, R2 = Ac, R3 = COEtS. macrophylla [63]
102swietenitin DR1 = A1, R2 = H, R3 = COEtS. macrophylla [63]
103swietenitin ER1 = Tig, R2 = Ac, R3 = COEtS. macrophylla [63]
104swietenitin FR1 = Tig, R2 = H, R3 = iBuS. macrophylla [63]
105swietenialide DR1 = A1, R2 = H, R3 = COEt, R4 = OHS. mahagoni [36]
106swietenitin GR1 = A1, R2 = Ac, R3 = Ac, R4 = OHS. macrophylla [63]
107swietenitin HR1 = Tig, R2 = Ac, R3 = COEt, R4 = OAcS. macrophylla [63]
1082,11-diacetoxyswietenialide DR1 = A1, R2 = Ac, R3 = COEt, R4 = OAcS. macrophylla [63]
10911-deoxyswietenialide DR1 = A1, R2 = H, R3 = COEt, R4 = HS. macrophylla [63]
1102-acetoxyswietenialide DR1 = A1, R2 = Ac, R3 = COEt, R4 = OHS. macrophylla [63]
111swietenialide AR1 = Tig, R2 = Me, R3 = OMe, R4 = H, R5 = OHS. mahagoni [36]
112swietenialide BR1 = Tig, R2 = Et, R3 = OMe, R4 = H, R5 = OHS. mahagoni [36]
113swietenialide CR1 = A1, R2 = Me, R3 = OMe, R4 = H, R5 = OHS. mahagoni [36]
114swietenitin IR1 = A1, R2 = Et, R3 = OMe, R4 = H, R5 = OHS. macrophylla [63]
115swietenitin JR1 = A1, R2 = Et, R3 = OMe, R4 = Ac, R5 = OHS. macrophylla [63]
116swietenitin KR1 = Tig, R2 = Et, R3 = OMe, R4 = Ac, R5 = OHS. macrophylla [63]
117swielimonoid DR1 = A1, R2 = α-Et, R3 = β-OMe, R4 = Ac, R5 = OAcS. macrophylla [60]
118swielimonoid ER1 = A1, R2 = β-Et, R3 = α-OMe, R4 = Ac, R5 = OAcS. macrophylla [60]
119swielimonoid FR1 = A1, R2 = β-Et, R3 = α-OMe, R4 = H, R5 = OAcS. macrophylla [60]
120swielimonoid GR1 = A1, R2 = β-Me, R3 = α-OMe, R4 = Ac, R5 = OAcS. macrophylla [60]
121swietenitin LR1 = A1, R2 = HS. macrophylla [63]
122swietenitin MR1 = A1, R2 = AcS. macrophylla [63]
123swietenitin NR1 = A2, R2 = COEtS. macrophylla [64]
124swietenitin OR1 = A2, R2 = AcS. macrophylla [64]
125swietenitin PR1 = Tig, R2 = COEtS. macrophylla [64]
126epoxyfebrinin BR1 = A1, R2 = AcS. macrophylla [64]
127swietenitin Q S. macrophylla [64]
128swietenitin RR1 = A1, R2 = H, R3 = COEtS. macrophylla [64]
129swietenitin SR1 = Tig, R2 = Ac, R3 = COEtS. macrophylla [64]
130swietenitin TR1 = A1, R2 = H, R3 = COEtS. macrophylla [64]
131swietenitin UR1 = Tig, R2 = H, R3 = AcS. macrophylla [64]
132swietenitin V S. macrophylla [64]
133swietenitin WR = HS. macrophylla [64]
134swietenitin XR = MeS. macrophylla [64]
135swietephragmin AR1 = Tig, R2 = OAc, R3 = H, R4 = iPr, R5 = HS. mahagoni [30]
136swietephragmin BR1 = Tig, R2 = OAc, R3 = H, R4 = A3, R5 = HS. mahagoni [30]
137swietephragmin CR1 = Tig, R2 = OH, R3 = H, R4 = A3, R5 = HS. mahagoni [30]
138swietephragmin DR1 = Tig, R2 = OH, R3 = H, R4 = iPr, R5 = HS. mahagoni [30]
139swietephragmin ER1 = Tig, R2 = OH, R3 = OH, R4 = A3, R5 = HS. mahagoni [30]
140swietephragmin FR1 = Tig, R2 = OH, R3 = H, R4 = Et, R5 = HS. mahagoni [30]
141swietephragmin GR1 = Tig, R2 = OH, R3 = H, R4 = Me, R5 = HS. mahagoni [30]
1426-O-acetylswietephragmin ER1 = Tig, R2 = OH, R3 = OAc, R4 = A3, R5 = HS. macrophylla [66]
14312α-acetoxyswietephragmin CR1 = Tig, R2 = OH, R3 = H, R4 = A3, R5 = OAcS. macrophylla [66]
1443β-O-destigloyl-3β-O-benzoyl-6-O-acetylswietephragmin ER1 = Bz, R2 = OH, R3 = OAc, R4 = A3, R5 = HS. macrophylla [66]
1453β-O-destigloyl-3β-O-benzoyl-12α-acetoxyswietephragmin CR1 = Bz, R2 = OH, R3 = H, R4 = A3, R5 = OAcS. macrophylla [66]
14612α-acetoxyswietephragmin DR1 = Tig, R2 = OH, R3 = H, R4 = iPr, R5 = OAcS. macrophylla [66]
1473β-O-destigloyl-3β-O-benzoyl-12α-acetoxyswietephragmin DR1 = Bz, R2 = OH, R3 = H, R4 = iPr, R5 = OAcS. macrophylla [66]
1486-O-acetyl-3′-demethylswietephragmin ER1 = Tig, R2 = OH, R3 = OAc, R4 = iPr, R5 = HS. macrophylla [66]
149swietephragmin HR1 = Tig, R2 = OAc, R3 = H, R4 = Et, R5 = HS. macrophylla [65]
150swietephragmin IR1 = Tig, R2 = OAc, R3 = H, R4 = Me, R5 = HS. macrophylla [65]
151swietephragmin JR1 = Tig, R2 = OAc, R3 = H, R4 = Et, R5 = OHS. macrophylla [65]
152swietenialide E S. mahagoni [57]
15311-hydroxyswietephragmin B S. mahogani [31]
Table 5. Structures and sources of polyoxyphragmalin-type limonoids 154164.
Table 5. Structures and sources of polyoxyphragmalin-type limonoids 154164.
No.CompoundsSubstitution GroupsSources
154khayanolide ER1 = O, R2 = AcS. macrophylla [37]
1551-O-acetylkhayanolide BR1 = β-OH, α-H, R2 = AcS. macrophylla [37]
1561-O-deacetylkhayanolide ER1 = O, R2 = HS. macrophylla [37]
157khayanolide BR1 = β-OH, α-H, R2 = HS. macrophylla [37]
158khayalactone S. macrophylla [37]
1591-O-acetylkhayanolide AR = AcS. macrophylla [37]
160khayanolide AR = HS. macrophylla [37]
161swietemahalactone S. mahagoni [67]
162swiemahogin B S. mahagoni [34]
163swietenine JR1 = Ac, R2 = H, R3 = H, R4 = HS. macrophylla [37]
164swietemacrophineR1 = Tig, R2 = OTig, R3 = OH, R4 = OAcS. macrophylla [65]
Table 6. Antifeedant effects of limonoids.
Table 6. Antifeedant effects of limonoids.
CompoundsInsect and Antifeedant Activity
swietenolide (23)Spodoptera frugiperda AI = 94.1 ± 2.90 (1000 ppm) [1], DC50 = 80.6 ± 1.1 (mg/L) [68]
6-acetylswietenolide (25)S. frugiperda AI = 72.2 ± 19.60 (1000 ppm) [1]
3,6-O,O-diacetylswietenolide (27)S. frugiperda AI = 72.0 ± 9.38 (1000 ppm) [1]
swietemahonin F (84)S. frugiperda AI = 70.2 ± 8.90 (1000 ppm) [1]
swietenine (42)S. frugiperda DC50 = 2.49 ± 1.44 (mg/L) [68]
2-hydroxyswietenine (55)S. frugiperda DC50 = 65.8 ± 1.2 (mg/L) [68]
swietemahonin G (85)S. frugiperda DC50 = 13.8 ± 1.2 (mg/L) [68], Spodoptera littoralis, MAC values = 300 [31]
3,6-O,O-diacetylswietenolide (27)S. frugiperda, DC50 = 4.65 ± 1.33 (mg/L) [68]
6-O-acetylswietemahonin G (96)S. littoralis, MAC values = 500 [62]
swietenialides A–E (111–113, 117, 118)S. littoralis, MAC values = 1000 [36]
7-deacetoxy-7-oxogedunin (5)S. littoralis, MAC values = 1000 [31]
methyl 6-hydroxyangolensate (16)S. littoralis, MAC values = 500 [31]
6-O-acetyl-2-hydroxyswietenin (52)S. littoralis, MAC values = 500 [31]
2-hydroxy-6-deacetoxyswietenine (54)S. littoralis, MAC values = 500 [31]
2-hydroxyswietenine (55)S. littoralis, MAC values = 500 [31]
swietephragmin H (149)S. littoralis, MAC values = 1000 [31]
swietephragmin I (150)S. littoralis, MAC values = 500 [31]
11-hydroxyswietephragmin B (153)S. littoralis, MAC values = 1000 [31]
humilinolide B (90)Sitophilus oryzae, AI = 79.7 ± 16.7 [69]
humilinolide C (50)S. oryzae, AI = 24.8 ± 1.0 [69]
humilinolide D (51)S. oryzae,AI = 65.2 ± 11.1 [69]

Share and Cite

MDPI and ACS Style

Sun, Y.-P.; Jin, W.-F.; Wang, Y.-Y.; Wang, G.; Morris-Natschke, S.L.; Liu, J.-S.; Wang, G.-K.; Lee, K.-H. Chemical Structures and Biological Activities of Limonoids from the Genus Swietenia (Meliaceae). Molecules 2018, 23, 1588. https://doi.org/10.3390/molecules23071588

AMA Style

Sun Y-P, Jin W-F, Wang Y-Y, Wang G, Morris-Natschke SL, Liu J-S, Wang G-K, Lee K-H. Chemical Structures and Biological Activities of Limonoids from the Genus Swietenia (Meliaceae). Molecules. 2018; 23(7):1588. https://doi.org/10.3390/molecules23071588

Chicago/Turabian Style

Sun, Yun-Peng, Wen-Fang Jin, Yong-Yue Wang, Gang Wang, Susan L. Morris-Natschke, Jin-Song Liu, Guo-Kai Wang, and Kuo-Hsiung Lee. 2018. "Chemical Structures and Biological Activities of Limonoids from the Genus Swietenia (Meliaceae)" Molecules 23, no. 7: 1588. https://doi.org/10.3390/molecules23071588

Article Metrics

Back to TopTop