Supplementary material

Nickel Sulfides Decorated SiC-foam for the Low Temperature Conversion of H₂S into Elemental Sulfur

Cuong Duong-Viet,^{1,2,*} Lam Nguyen-Dinh,³ Yuefeng Liu,^{1,4,*} Giulia Tuci,⁵ Giuliano Giambastiani ^{1,5,6,*} and Cuong Pham-Huu,^{1,*}

¹ Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-University of Strasbourg (UdS), 25, rue Becquerel, 67087 Strasbourg Cedex 02, France; <u>cuong.pham-huu@unistra.fr</u> (C. P.-H.)

² Ha-Noi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem, Ha-Noi, Vietnam; <u>duongvietcuong@humg.edu.vn</u> (C. D.-V.)

³ The University of Da-Nang, University of Science and Technology, 54, Nguyen Luong Bang, Da-Nang, VietNam

⁴ Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, 116023 Dalian, China; <u>yuefeng.liu@dicp.ac.cn</u> (Y. L.)

⁵ Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR Via Madonna del Piano, 10 – 50019, Sesto F.no, Florence, Italy; <u>giuliano.giambastiani@iccom.cnr.it</u> (G. G.)

⁶ Kazan Federal University, 420008 Kazan, Russian Federation

Figure S1. Schematic illustration of a desulfurization apparatus for testing NiS2-decorated SiC samples

Table S1. Specific surface area (SSA) and pore size distribution of pristine SiC^{foam} and its composites. SSA values and total pore volume of SiCring and SiCextr have been also reported for the sake of completeness.

	SSA ^a	Total pore volume	Average pore size
	(m²/g)	$(cm^{3}/g)^{b}$	(nm)
SiC ^{foam}	30	0.17	25
NiO/SiC ^{foam}	35	0.12	18
NiS ₂ /SiC ^{foam}	31	0.13	16
SiC ^{ring}	26	0.14	23

Supplementary material

51C 25 0.17 20	SiCextr	25	0.17	26
----------------	---------	----	------	----

^{*a*} Brunauer-Emmett-Teller (BET) specific surface area (SSA) measured at T = 77 K. ^{*b*}Total pore volume determined by using the adsorption branch of N₂ isotherm at $p/p_0 = 0.98$.

Figure S2. Nitrogen adsorption–desorption isotherm linear plots (BET) of **SiC**^{foam} (-0-), **SiC**^{extr} (-0-) and **SiC**^{ring} (-0-) recorded at 77 K.

Figure S3. PXRD analysis of freshly prepared NiOon SiC^{foam}, SiC^{extr} and SiC^{ring}.

Figure S4. Representative TEM micrographs of NiO nanoparticles prepared following the procedure outlined in the manuscript for SiC supports decoration. A finely powder SiC support has been selected for the preparation of Ni-based composites to be employed for TEM characterization analysis. All images show a relatively well dispersed NiO NPs with size distribution between 5 and 8 nm.

Figure S5. Sulfur selectivity on NiS₂/SiC^{foam} catalyst in the desulfurization process at variable temperatures. Reaction conditions: $[H_2S] = 1 \text{ vol.}\%$, $[O_2] = 2.5 \text{ vol.}\%$, O_2 -to-H₂S ratio = 2.5, $[H_2O] = 30 \text{ vol.}\%$, balance helium, reaction temperature = 40, 60 and 80°C, GHSV (STP) = 1200 h⁻¹.