

1 *Supporting information for:*

One-dimension diffusion preparation of concentration-gradient Fe₂O₃/SiO₂ aerogel

4 Ting Zhang¹, Haoran Wang¹, Bin Zhou¹, Xiujie Ji¹ and Hongqiang Wang¹, Ai Du^{1,*}

- ¹ Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics
- 6 Science and Engineering, Tongji University, Shanghai 200092, China.

7 * Correspondence: duai@tongji.edu.cn; Tel.: +86 21 6598 6071

8 1. Measurement of molar absorption coefficient k

9 According to Beer's law A=kbc, the concentration of Fe^{2+} at different heights must have three 10 known quantities: absorbance A, molar absorption coefficient k and absorber layer thickness b. The 11 spectrophotometer was used to measure the absorbance A and b=1cm, so the molar absorption 12 coefficient k needs to be calculated. The following method is used to calculate k: dip a completely dark green gel into a small amount of deionized water and the gel turns from the original dark 13 green to transparent and the remaining solution is dark green (Fe²⁺ aqueous solution) after three 14 15 days at room temperature. 3ml dark green solution was placed in a cuvette and its absorption 16 spectrum A₀ was measured with a spectrophotometer (set its concentration to C₀). Continue to 17 dilute the solution and measure its absorbance A1, A2...A6. The following method is used to calculate C₀: take 43ml Fe²⁺ aqueous solution drying, calcining, grinding and then calculated C₀ = 18 19 0.232mol/L. The values were linearly fitted to give A=0.0106+4.82513c, R²=0.99428(Figure S1). So the 20 molar absorption coefficient k = 4.82513. The calcined solute was measured for EDS and XRD. The 21 EDS results show that the average molar ratio of Si/Fe is 3.4% (select five points randomly) and in 22 addition to these it also contains oxygen. From this we infer that the main phase of this is Fe₂O₃. 23 Figure 2 further proves that the calcined solute is Fe_2O_3 . The peak is offset slightly and some peaks 24 are not marked because of the influence of complex silicates, but it can be shown that the main 25 phase is Fe₂O₃.

26

27

28

Figure S1. The calibration curve of Fe²⁺ aqueous solution.

Figure S2. The XRD figure of the calcined solute.

31 **2. Aerogel composition distribution**

(c)

36

37

45 **3.** The average pore diameter of five heights

The following method is used to measure the average pore size of composites: magnify the TEM image of the corresponding height, then use the ImageJ software to measure the size of 30 holes which selected randomly. This software can only measure but not be marked so we don't have dimensioned figures. But we recorded all the data and made it into the following histogram as figure S4.

Molecules 2018, 23, 1502

55 **Figure S4.** Pore size distribution of composites at different heights: (**a**) A; (**b**) B; (**c**) C; (**d**) D; (**e**) E and 56 pore size distribution of (**f**) pure silica aerogel.

58