Supporting Information

Cobalt(II) Complexes with *N,N,N*-Scorpionates and Bidentate Ligands: Comparison of Hydrotris(3,5-dimethylpyrazol-1-yl)borate Tp* vs. Phenyltris(4,4-dimethyloxazolin-2-yl)borate To^M to Control the Structural Properties and Reactivities of Cobalt Centers

Toshiki Nishiura, Takahiro Uramoto, Yuichiro Takiyama, Jun Nakazawa * and Shiro Hikichi *

Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan

Figure S1. ¹H-NMR spectra of the CD₃CN (**top**) and CDCl₃ (**bottom**) solutions of [Co^{II}(acac)(Tp*)] (**1**) (600 MHz; measured at ambient temperature).

Figure S2. ¹H-NMR spectra of the CD₃CN (**top**) and CDCl₃ (**bottom**) solutions of [Co^{II}(acac)(To^M)] (**2**) (600 MHz; measured at ambient temperature).

Figure S3. FT/IR spectra of KBr pellets of [Co^{II}(acac)(Tp*)] (1; (a)), [Co^{II}(acac)(To^M)] (2; (b)), [Co^{II}(L^{Ph})(To^M)] (4; (c)) and [Co^{II}(L^{Ph})₂] (5; (d)) measured at room temperature.

Figure S4. UV-vis spectra of the CH₂Cl₂ solutions of $[Co^{II}(To^{M})(L^{Ph})_2]$ (4; green) and $[Co^{II}(L^{Ph})_2]$ (5; purple) measured at room temperature.

Figure S5. Molecular structure of **5**. All hydrogen atoms are omitted for clarity; thermal ellipsoids are set at 30% probability. Selected bond lengths [Å] and angles [°]: Co1-N1 1.997 (8), Co1-N3 1.992 (8), Co1-N5 1.996 (8), Co1-N7 1.994 (8), N1-Co1-N3 95.8 (3), N1-Co1-N5 125.5 (3), N1-Co1-N7 108.2 (3), N3-Co1-N5 109.3 (3), N3-Co1-N7 123.7 (3), N5-Co1-N7 96.9 (3).

Figure S6. Cyclic voltammograms of **1–5**. Measurement conditions: working electrode; Pt disc, counter electrode; Pt wire, reference electrode; Ag/AgCl, amount of cobalt(II) complexes; 5 µmol, solvent; MeCN (for **1**, **2**, **4**, **5**) and CH₂Cl₂ (for **3**), supporting electrolyte; ("Bu₄N)PF₆ 0.1 M, atmosphere; Ar, temperature; ambient temp. scan rate : 100 mV/s.

Figure S7. Time course of cyclohexene oxidation with TBHP mediated by **1–6**, Co^{II}(acac)₂·2H₂O and Co^{II}(OAc)₂·4H₂O.

Figure S7. (continued)

Figure **S7.** (continued)

Figure S8. Products analysis for the cyclohexene oxidation with TBHP by **2** at ambient temperature with or without of the PPh₃ quencher.

Complex	1·MeCN	2 •(pentane) _{0.5}	4	5
Formula	C22H32BC0N7O2	C26H36BC0N3O5•(C5H12)0.5	C36H47B2C0N7O3	C30H36B2C0N8
Formula weight	496.28	576.41	706.35	589.22
Crystal color, habit	Pink, Block	Purple, Block	Purple, Block	Red, Block
Size/mm	0.20, 0.30, 0.40	0.20, 0.20, 0.50	0.05, 0.15, 0.25	0.05, 0.25, 0.35
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	P21/n (#14)	P21/n (#14)	P-1 (#2)	P21/n (#14)
a/Å	11.2775(6)	9.006(3)	11.039(8)	19.87(2)
b/Å	19.0252(9)	22.243(7)	11.658(8)	7.585(9)
c/Å	12.1374(9)	15.742(5)	14.845(11)	21.65(3)
α/deg	90	90	80.14(2)	90
β/deg	100.542(3)	105.644(4)	89.58(2)	100.02(2)
γ/deg	90	90	88.50(3)	90
$V/{ m \AA^3}$	2260.2(2)	3036.6(4)	1881.5(7)	3213(7)
Ζ	4	4	2	4
F(000)	1044	1224	746	1236
$D(\text{calcd})/\text{g}\cdot\text{cm}^{-3}$	1.288	1.261	1.247	1.218
μ (Mo-K α) cm ⁻¹	7.02	6.05	5.00	5.66
Temp./K	113	133	113	113
Unique reflections	5843	6694	7821	6469
Observed reflections $I > 2\sigma(I)$	5291	5746	4858	1160
Parameter refined	311	438	452	376
$2 heta_{\max}/deg$	55.0	55.0	54.6	54.0
$R(I > 2\sigma(I), \text{ all})^{[a]}$	0.0338, 0.0388	0.0314, 0.0374	0.0682, 0.1051	0.120, 0.247
$R_{\rm w}(I > 2\sigma(I), \operatorname{all})^{[a]}$	0.0815, 0.0846	0.0815, 0.0849	0.1684, 0.1992	0.270, 0.365
Goodness of fit S ^[b]	1.061	1.045	1.022	0.784

 Table S1. Crystallographic data and structure refinement parameters for 1, 2, 4 and 5.

[a] $R = \sum ||F_0| - |F_c|| / \sum |F_0|$. $R_w = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2 - F_c^2)^2] / (n-p)\}^{1/2}$, where *n* is the number of reflections and *p* is the total number of parameters refined.