Comparison Between Tetrel Bonded Complexes Stabilized by σ and π Hole Interactions

Wiktor Zierkiewicz 1,*, Mariusz Michalczyk 1 and Steve Scheiner 2,*

- ¹ Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50370, Poland; mariusz.michalczyk@pwr.edu.pl
- ² Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, United States
- * Correspondence: wiktor.zierkiewicz@pwr.edu.pl (W.Z.); steve.scheiner@usu.edu (S.S.); Tel.: +48-071-320-3455 (W.Z.); +1-435-797-7419 (S.S.)

Academic Editor: Steve Scheiner Received: 30 May 2018; Accepted: 09 June 2018; Published: date

TABLE S1. NBO values of sum of the E(2) for LP(N)→σ*(T-X), (T= Si, Ge or Sn and X=H or F) orbital interaction and total charge transfer (CT) from NH₃ to TH_{2-n}F_n in σ-hole bonded complexes obtained at the BLYP-D3(BJ)/def2-TVZPP level.

Lewis acida	ΣE(2)	CT
Lewis acid	[kcal/mol]	[me]
SiH4	3.30	19
GeH ₄	3.66	17
SnH ₄	6.41	30
SiH ₃ F(a)	15.14	83
SiH ₃ F(b)	3.44	20
GeH ₃ F(a)	17.07	78
GeH ₃ F(b)	4.21	19
SnH ₃ F(a)	22.75	93
SnH ₃ F(b)	16.94	69
SiH ₂ F ₂ (a)	24.40	107
SiH ₂ F ₂ (b)	6.65	33
GeH ₂ F ₂ (a)	26.30	96
GeH ₂ F ₂ (b)	38.62	123
SnH ₂ F ₂ (a)	34.82	117
SnH ₂ F ₂ (b)	54.87	168

^a NBO analysis	performed using D	FT functional	for the MP2 of	ptimized geometries.
				8

GeH₄

Figure S1. AIM diagrams showing the bond critical points (green dots) in Ge-containing complexes stabilized by σ -hole tetrel bonds.

/				
NH_3 system	interaction	ρ	$ abla^2 ho$	Н
SiH ₄	Si····N	0.008	0.025	0.51
GeH ₄	Ge…N	0.007	0.023	0.53
SnH ₄	Sn⋯N	0.011	0.033	0.40
SiH ₃ F(a)	Si····N	0.023	0.055	-2.12
Sill.E(b)	Si····N	0.009	0.028	0.46
SIH3F(0)	F···N	0.010	0.049	0.95
GeH ₃ F(a)	Ge…N	0.024	0.077	-0.24
$C_{a}U_{a}E(\mathbf{b})$	Ge…N	0.009	0.028	0.53
$Gen_3r(0)$	F∙∙∙Н	0.013	0.053	0.40
SnH ₃ F(a)	Sn⋯N	0.027	0.089	-0.55
SpU.E(b)	Sn⋯N	0.021	0.063	-0.21
511136(0)	F···N	0.016	0.072	0.85
$SiH_2F_2(a)$	Si····N	0.032	0.055	-5.07
	F···N	0.013	0.046	0.36
$SiH_2F_2(b)$	F···N	0.013	0.047	0.33
	$H \cdots N$	0.014	0.037	0.12
GeH ₂ F ₂ (a)	Ge…N	0.033	0.099	-2.14
$GeH_2F_2(b)$	Ge…N	0.041	0.114	-4.42
$SnH_2F_2(a)$	Sn·…N	0.037	0.123	-1.52
$SnH_2F_2(b)$	Sn····N	0.050	0.182	-2.83

TABLE S2. AIM data for σ -hole bonded complexes. Bond critical point (BCP) properties: electron density ρ , Laplacian of electron density $\nabla^2 \rho$ (both in atomic units) and total electron energy (H, kcal mol⁻¹). Calculations were performed at the MP2/aug-cc-pVDZ-PP level.

TABLE S3. NBO values of sum of the E(2) for LP(N)→σ*(T-X), (T= Si, Ge or Sn and X=H or F) orbital interaction and total charge transfer (CT) from NH₃ to TH_{2-n}F_n=CH₂ in π-hole bonded complexes obtained at the BLYP-D3(BJ)/def2-TVZPP level.

Lewis acid	ΣE(2) [kcal/mol]	CT [me]
SiH ₂ =CH ₂	53.54 (42.89)	163
GeH ₂ =CH ₂	32.81 (27.70)	118
SnH ₂ =CH ₂	31.45 (23.88)	113
SiHF=CH ₂	68.53 (44.69)	194
GeHF=CH ₂	61.43 (37.38)	175
SnHF=CH ₂	55.89 (26.78)	171
SiF ₂ =CH ₂	75.96 (47.14)	197
GeF ₂ =CH ₂	38.35 (24.04)	193
SnF ₂ =CH ₂	63.06 (26.16)	179

Figure S2. Bond critical points (green dots) in several Ge-containing complexes stabilized by π -hole tetrel bond.

TABLE S4. AIM data for π -hole bonded complexes. Bond critical point (BCP) properties: electron density ρ , Laplacian of electron density $\nabla^2 \rho$ (both in atomic units) and total electron energy (H, kcal mol⁻¹). Calculations were performed at the MP2/aug-cc-pVDZ level.

Lewis acid	ρ	$\nabla^2 \rho$	Н
SiH ₂ =CH ₂	0.046	0.123	-8.03
GeH ₂ =CH ₂	0.035	0.092	-2.67
SnH ₂ =CH ₂	0.033	0.102	-1.42
SiHF=CH ₂	0.057	0.226	-7.65
GeHF=CH ₂	0.060	0.172	-10.17
SnHF=CH ₂	0.052	0.194	-2.96
SiF ₂ =CH ₂	0.064	0.279	-7.90
GeF ₂ =CH ₂	0.074	0.225	-14.07
$SnF_2 = CH_2$	0.059	0.230	-3.87

Table S5.	Geometry a	and energetic	s for d	complexes
-	2	0		

Lewis acid	Eint	$E_{\text{def}}A$	$E_{\text{def}}B$	$R(N \cdots T)$	∠F-T…N	R(N…H1)	∠T-H1…N	R(N···H2)	∠C-H2…N	∠ C–T-H1
SiHF=CH ₂	-2.50	0.32	0.00	3.394	165.1	2.892	96.8	2.724	118.9	132.9
GeHF=CH ₂	-4.23	1.02	0.00	3.058	169.2	2.808	84.5	2.662	108.7	143.4
SnHF=CH ₂	-8.88	2.53	0.00	2.759	172.2	2.864	76.1	2.745	99.2	156.5

Figure S3. AIM molecular diagram of $THF=CH_2/NH_3$ d dimers wherein the base occupies the d maximum of the MEP of the acid.

Lewis acid	E(2)	CT
Lewis acid	[kcal/mol]	[me]
SiHF=CH ₂	1.35 (0.92) ^a	11
GeHF=CH ₂	5.09 (3.75)	30
SnHF=CH ₂	14.59 (7.77)	73

Table S6. NBO properties of d complexes

^athe largest value of the contribution in this donation

Table S7. AIM parameters of d complexes

Lewis acid	interaction	ρ	$ abla^2 ho$	Н
SHE-CH.	H···N	0.007	0.025	0.60
	H···N	0.008	0.026	0.72
GeHF=CH ₂	Ge···N	0.012	0.035	0.56
SnHF=CH ₂	Sn⋯N	0.023	0.073	-0.25

Table S8. EDA/BLYP-D3(BJ)/ZORA/TZ2P decomposition of the interaction energy of π -hole bonded complexes d into Pauli repulsion (E_{Pauli}), electrostatic (E_{elec}), orbital interaction (E_{oi}) and dispersion (E_{disp}) terms. All energies in kcal/mol. The relative values in percent express the contribution of each to the sum of all attractive terms.

Lewis acid	Eint	E_{Pauli}	E_{elec}	%	Eoi	%	E_{disp}	%
SiHF=CH ₂	-2.92	5.48	-4.38	52	-1.77	21	-2.25	27
GeHF=CH ₂	-4.55	11.16	-9.22	59	-3.67	23	-2.81	18
SnHF=CH ₂	-8.67	28.32	-23.49	64	-10.06	27	-3.43	9

Table S9. Secondary minima for dimers of NH_3 with σ -hole donors. Data obtained at the MP2/aug-cc-pVDZ-PP level of theory. E_{int} corrected for BSSE (in kcal/mol). Distances are in Å.

TH _n F _n System	Eint	$R(N \cdots X)$	structure
SiH4 (b)	-0.50	3.600	
SiH4 (c)	-0.06	3.078	
GeH4 (b)	-0.46	3.610	
GeH4 (c)	-0.08	2.940	
SiH ₃ F(c)	-1.00	3.307	
SnH ₃ F(c)	-1.76	3.169	

SiH ₂ F ₂ (c)	-0.95	3.404	Ż
GeH ₂ F ₂ (c)	-1.32	3.337	3
GeH ₂ F ₂ (d)	-1.72	2.590	<u>.</u>
SnH ₂ F ₂ (c)	-1.90	3.249	
SnH ₂ F ₂ (d)	-1.73	2.596	

Table S10. Secondary minima for dimers of NH₃ with π -hole donors. Data obtained at the MP2/aug-cc-pVDZ-PP level of theory. E_{int} corrected for BSSE (in kcal/mol). Distances are in Å.

TH _n F _n System	E_{int}	$R(N \cdots X)$	structure
SiH ₂ =CH ₂ (b)	-1.65	2.500	کی میں جو
GeH ₂ =CH ₂ (b)	-1.16	2.473	
SiHF=CH ₂ (e)	-2.10	2.648	
GeHF=CH ₂ (e)	-2.98	2.549	
GeHF=CH ₂ (f)	-1.27	3.263	رچر رچه-ور
SnHF=CH ₂ (e)	-3.79	2.554	
SnHF=CH ₂ (f)	-1.93	3.155	

SiF ₂ =CH ₂ (b)	-1.88	2.405	
SiF ₂ =CH ₂ (c)	-2.32	2.612	*
GeF ₂ =CH ₂ (b)	-3.64	2.600	