Next Article in Journal
Discovering Structural Motifs in miRNA Precursors from the Viridiplantae Kingdom
Next Article in Special Issue
Histopathology of the Liver, Kidney, and Spleen of Mice Exposed to Gold Nanoparticles
Previous Article in Journal
Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis
Previous Article in Special Issue
Plate-Focusing Based on a Meta-Molecule of Dendritic Structure in the Visible Frequency
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Bactericidal Properties of Plants-Derived Metal and Metal Oxide Nanoparticles (NPs)

1
Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
2
Anatomical Pathology Department, Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
3
Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
*
Author to whom correspondence should be addressed.
Molecules 2018, 23(6), 1366; https://doi.org/10.3390/molecules23061366
Submission received: 27 April 2018 / Revised: 12 May 2018 / Accepted: 15 May 2018 / Published: 6 June 2018

Abstract

:
Nanoparticles (NPs) are nano-sized particles (generally 1–100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.

1. Nanoparticles and Green Technology

Nanoparticles (NPs), also known as nanomaterials, are small on a molecular scale and have various physical and chemical properties. Some examples of NPs are made up of metals ions such as Au, Ag, Pd, Pt, Zn, Fe, and Cu, and metal oxides such as Ag2O, NiO, ZnO, CuO, FeO, and CeO2. The advancement of nanotechnology has also given rise to the development of various nanocomposites, which are multiphase solid materials consisting of multiple types of NPs and polymers to improve single-metal biological effects and overcome structure-function related issues [1]. Multiple biological actions of the NPs such as antibacterial [2,3], antioxidant [2,4], anticancer [5,6], antifungal [5,7], antiviral [8,9], antiparasitic [10,11] and anti-inflammatory activities [12,13] have been associated with their highly diverse chemistry-rich characteristics [14]. There are myriad ways of synthesizing NPs, including physical (e.g., vapor deposition [15], sputter deposition [16], electric arc deposition [17], ion beam technique [18], molecular beam epitaxy [19], melt mixing [20]), chemical (e.g., co-precipitation [21], sol-gel [22], microemulsions [23], sonochemical synthesis [24] UV-initiated photoreduction [25]), and biological (e.g., synthesis using plant extracts [26], microorganisms [26], algae [27], fungi [28], animals [29] or agricultural waste [30], enzymes [31]) methods as well as hybrid methods [32] (Figure 1). There are advantages and limitations for each synthetic method, and the choice of method is selected based on the downstream applications.
Due to their small size and improved cell-penetrating features, NPs are extremely useful in various biomedical applications including sensing [33,34], imaging [33,35], diagnostics [36,37], drug/compound delivery system [38,39], bioconjugation [40,41], hyperthermia [42,43], and biological therapies [33,36] (Figure 1). In the past few years, NPs have been widely used to improve sensing and imaging techniques mainly due to their remarkable localization capability [33]. Some other additional advantages using NPs include flexibility in surface modification of NP [44], easy control of size [45], and production of highly degradable NPs in vivo [46]. Moreover, NPs are widely used in bio-conjugation and combination with drugs and compounds as well as in facilitating their delivery to target [47]. In a review paper authored by Werengowska-Ciećwier et al., bioconjugation of various drugs and NPs as well as their detailed chemistry have been described [47]. The same review also discussed the application of NPs in drug delivery system for targeted therapies. The potential use of NPs in hyperthermia mainly in cancer cell killing have been extensively explored [48,49]. The use of magnetic hyperthermia is one of the hot approaches [48,50]. Using magnetic NPs, heat generation can be controlled and specifically target and kill cancer cells while limiting damage to the surrounding normal tissue [50,51]. As chemo- and radiotherapies are standard cancer treatments, it is anticipated that the use of NPs in combination with current treatments could enhance the treatment outcome while reducing side effects of chemo-and radio-therapies [51]. Similarly, NPs have also been shown to be effective against other infectious diseases such as Pseudomonas aeruginosa [52] and Escherichia coli [53] infections in addition to cancers. This highlights the important role of NPs in medical and biomedical application in short future.
Generally, synthesis of NPs by biological routes has several advantages over both physical and chemical methods. First, the process is relatively simple, easy to scale up, efficient, and it consumes lesser energy [26]. Second, green technology is environmentally friendly as it uses lesser toxic chemicals and generating safer products and byproducts [54]. The green method is suitable and applicable for production of food, pharmaceuticals, and cosmetics [55]. Comparatively, the green method produces NPs that are generally less toxic, the end products being more suitable for a wide range of biomedical applications [26,56]. Chemical and physical methods can be very costly and usually involve the use of toxic and hazardous chemicals which tend to be more toxic to human cells. Additionally, the green method does not strictly require high temperature, pressure, and energy [57]. However, several parameters such as pH, chemical concentration, reaction time and reaction temperature are critical to consistently produce biologically functional NPs [58,59,60,61]. Furthermore, unlike using microbial system, generation of NPs from plants do not have to maintain microbial culture hence reducing the costs for microorganism isolation and culture media preparation [54]. The NPs generated from plants generally have size ranging from 1 to 100 nm (Table 1). There are also relatively large NPs that have sizes ranging from 100 to 500 nm [2,62,63]. NPs generated by all type of methods result in impurities that mainly cause toxicity to the human cells. These impurities can be removed by dialysis and filtering. The plant-derived NPs are less toxic, as shown from toxicity testing across several mammalian cell lines such as NIH3T3 [4], HEK293 [3], and primary cells such as peripheral blood mononuclear cells (PBMCs) [63] and rat aortic vascular smooth muscle cells (VSMCs) [4].
There is an extensive list of NPs possessing various biological actions as mentioned above. However, the focus of this review emphasizes the NPs’ antibacterial activities. This short review provides updates on the recent NPs with promising antibacterial activity synthesized by green technology using whole plant or other extracts of plants such as leaves [5,63], fruits [64,65], roots [66,67], barks [62,68], seeds [69,70], rhizomes [71,72], peels [73,74], flowers [75], and callus [76,77]. Here, we also discuss the challenges of adopting NPs for clinical applications.

2. Bactericidal Properties and Synergistic Enhancement of Common Antibiotics

NPs derived from plants that show promising antibacterial activities have high potential to be developed into future antibacterials mainly due to their low toxic effects [143]. NPs have been previously reported to inhibit gram-positive bacteria such as Staphylococcus spp. [4,5], Streptococcus spp. [113,124], and Bacillus spp. [114,120], and gram-negative bacteria such as Escherichia spp. [97,122], Pseudomonas spp. [6,68], Salmonella spp. [68,104], Shigella spp. [97,129], Proteus spp. [75,136], and Vibrio spp. [101,129]. More promisingly, NPs have also been shown to inhibit antibiotic-resistant bacteria such as Methicillin-resistant S. aureus (MRSA) [81,130] and drug-resistant E. coli [123]. Table 1 summaries the antibacterial action of NPs reported in PubMed-indexed journals in the past two years (2016–2017). A total of 107 articles was obtained from Pub-Med search engine through National Center for Biotechnology Information (NCBI) website using four keywords (nanoparticles, green synthesis, plant, and antibacterial) [144]. Out of the 107, 17 articles have been excluded as they do not contain relevant information for this review. These articles included retracted papers, review papers, and other non-plant-derived NP research papers. The remaining 90 articles are reviewed, and the information is tabulated in Table 1 and categorized based on the type of NPs. Since there are various synthetic methods to generate NPs as mentioned in Section 1, the protocol of constructing the NPs tabulated in Table 1 is different from one to another even though they are derived from the same part of extracts. Overall, the most reported NPs are Ag-NPs, Au-NPs, followed by other metal/metal oxide-based NPs and nanocomposites. Most of the NPs have size of less than 100 nm except for a few NPs as shown in Table 1 [2,62,63,81]. From Table 1, it is also shown that most of the NPs were produced from the plant’s leaves rather than other parts of the plants, regardless of type of NPs.
Table 2 shows both gram-positive and gram-negative bacterial species that have been targeted by various NPs, and the frequency of bacterial species being studied is tabulated. Gram-negative species that have been targeted the most are E. coli followed by P. aeruginosa, whereas gram-positive species that are mostly targeted are S. aureus followed by B. subtilis and B. cereus. Comparatively, the type and total number of gram-negative bacterial species that are being targeted are more than gram-positive species. This highlights the potential of NPs as antibacterial agents since they could effectively permeate and kill gram-negative bacterial species which are notorious of their difficult-to-penetrate multilayer membranes [145]. This notion can be further supported by recent finding by Acharya et al. which showed a potent killing of AgNPs towards K. pneumonia [146]. FE-SEM analysis demonstrated that the NPs overlaid with K. pneumonia with damaged cell surfaces and disrupted cells due to the interaction with NPs. Similarly, it has also been shown by SEM that AgNPs damaged E. coli by causing a large leakage on cell membrane and the bacteria were disorganized to several parts [147]. The potent antibacterial killings of NPs demonstrate their potential to be developed into antibacterials against gut-related bacteria (e.g., E. coli, P. aeruginosa, B. cereus, K. pneumoniae, S. flexneri, and S. typhi) and skin infection–related bacteria (S. aureus). The collective findings from Table 2 also show that Ag-NPs are the most bactericidal NPs against the gut bacteria such as E. coli, P. aeruginosa, B. cereus, K. pneumoniae, S. flexneri, S. pyogenes, S. typhi) and skin-related bacteria such as S. aureus and S. epidermidis. Followed by Ag-NPs, Au-NPs were reported to be effective in killing E. coli and S. aureus. Interestingly, Table 2 shows that some specific types of NPs were more effective against a particular bacterial type compared to others. For example, ZnO-NPs was effective against P. aeruginosa while Pd-NPs was effective against S. aureus.
In addition to exhibiting antibacterial effects, NPs derived from plants can also serve as carriers to deliver antibacterial molecules or drugs to the target cells either via conjugation or nanoemulsions, hence synergistically enhance the antibacterial effect [97,139]. For example, Kalita and coworkers demonstrated that a gold NP was able to enhance the bacterial killing effects of Amoxicillin against both gram-positive (Staphylococcus spp. and Bacillus spp.) and gram-negative bacteria (E. coli) [139]. Patra and colleagues reported the potential of silver NP synthesized from corn leaves of Zea mays in foodborne pathogenic bacterial killings when used in combination with Kanamycin and Rifampicin [97]. More interestingly, the NP was able to reverse the development of antibiotics resistance by killing MRSA clinical isolates in vitro and in vivo using murine MRSA infection models [148]. The exact mechanism of NPs’ synergism with antibiotics remains exploratory. It could be due to (a) generation of additional bactericidal Ag+ ions by NPs [149], (b) generation of bactericidal hydroxyl radicals by NPs [150], and (c) effective blocking of the efflux pump for drug-resistant bacterial killing [143]. This synergistic effect could ultimately help in reducing the dosage of antibacterials that may potentially toxic to host system.
The exact mechanisms of NPs against various bacteria remain unknown. There have been several studies supporting the possible mechanisms of bactericidal effects including (a) attachment of large number of NPs on bacterial surface that interrupts respiration and other permeability-dependent functions [97], (b) generation of electrostatic attraction between negatively charged bacterial cells and the positively charged NPs [151], (c) inactivation and degradation of bacterial essential proteins [152], and (d) breakage or damage of bacterial genes following the efficient penetration of NPs [153]. For example, it has been shown that silver NPs permeated into bacterial cells and resulted in significant DNA damages by interacting with sulphur- and phosphorus-containing compounds [154,155]. Similarly, it has also been shown that silver NPs released highly reactive Ag+ ions and radicals for the antibacterial effects [156]. These ions have also been reported to interact with sulphur-containing proteins in the bacterial cell wall that caused multiple functionality impairs [152]. Raffi and colleagues also showed that the silver NPs could inactivate the bacterial enzymes and generate toxic hydrogen peroxide leading to bacterial cell death [157].

3. Plant-derived Nanoparticles as Future Antibacterials

To date, numerous NPs have been approved by either Food and Drug Administration (FDA) in United States, or European Medicines Agency (EMA) in the European Union for various clinical applications including imaging (e.g., Resovist), iron-replacement therapy for anaemia treatment (e.g., Vifor), delivery of anticancer drugs (e.g., Onivyde and MEPACT) [158,159], vaccines for viral diseases (e.g., Epaval against hepatitis A and Inflexal V against influenza) [160,161], fungal infection (e.g., AmBisome) [162], and so on. However, none of the currently approved NPs are used for controlling bacterial infection [163]. The only liposomal NP formulations that is undergoing clinical trial is CAL02, which has been designed for bacterial pneumonia management [163]. In this section, we discuss the potential challenges of developing NPs into clinically approved antimicrobial agents. Table 3 summaries some of the limitations and challenges of using plant-derived NPs for antimicrobials development. Undoubtedly, the nano-scale size of NPs has facilitated the cell-penetrating capacity including crossing blood-brain barrier (BBB) [164,165], hence improving the target specificity and biological activity. However, the small size may be one of the challenges in the clinical trials. It has been reported that NPs have poor stability and bioavailability under physiological conditions when they are administered into host system [166]. Studies have shown that NPs have been targeted and degraded by various enzymes and proteins from human blood before reaching to target sites [167,168]. These significantly reduced the biological functions of NPs. To overcome this limitation, several modification methods have been adopted such as conjugation with stabilizer (e.g., serum albumin) [169,170], synthesis of stable nanoemulsions [169,170], modification of surface chemistry and functionalization [171], and development of composite NPs [172]. In addition to size, it has also been reported that the NPs’ shape and morphology could determine their biological actions and toxicity profile [172,173,174]. Some NPs have high tendency to form aggregates as a result of the particle surface chemistry. This may cause unwanted toxicity and drastically limit the access of NPs into the target cells [175]. Toxicity is also attributed to several characteristics of NPs (e.g., chemistry, retention rate, biodistribution, stability, and specificity), mode of administration, and target sites [176].
There are numerous limitations for NPs productions for biomedical application (summarized in Table 3). As the biological functions of NPs highly depend on their shape, size, permeability, and physicochemical properties, manufacturing NPs in industrial scale must strictly adhere to the tight-controlled, consistent, and reproducible standard operating procedure (SOP) and Good Manufacturing Practice (GMP). Another challenge is the heterogeneity of diseases in human. The clinical effect of NPs on infected humans could be very complicated as different individuals present varied profiles (mainly due to the individual’s immunity) even though they have been infected from the same source. This will require detailed and organized planning to validate the clinical value of NPs. Following the increase of potential NPs, the experimental design that requires high throughput setup for biological screening is also increasingly demanding. This is also closely linked with automation that allows cost-effective NPs production and, computing and modelling technology that would predict NPs’ efficacies or toxicities on target cells. The improvement in high throughput screening and computation will surely boost the development of nanotechnology in biomedical applications.
From an industrial point of view, the chosen synthesis method of NPs-based antibacterials must be compatible for large-scale production. As most NPs possess complex chemical make-up and arrangement of components, retaining these key characteristics in the process of scaling up remains a huge challenge in the manufacturing field. Secondly, the production method has to consistently produce high quality (e.g., size, uniformity, and physicochemical properties) of NPs. The formulation process must be recorded meticulously to ensure high-level of reproducibility. The advancement of modern technology contributed from large high-tech companies and academia will continuously support the production of high-quality NPs in a consistent and timely fashion.

4. Conclusions and Future Perspectives

This mini-review provides a recent update on the NPs derived from plants that possess promising antibacterial action. Antibacterial NPs produced from green technology have great potential to be developed into future antibacterials and are able to synergistically enhance the efficacy of antibiotics. While the exact mechanisms remain unknown, a great effort is currently underway to produce a highly potent and robust NPs for clinical use. Understanding the bactericidal mechanism of NPs is also important to control and overcome the emerging issue of bacterial resistance to NPs [177]. As highlighted above, the limitations and potential challenges need to be overcome to maximize the use of NPs to clinical applications. Uniformity, stability, specificity, and toxicity of NPs are the main biological properties in deciding the fate of NPs in clinical application. From an industrial perspective, the development of sustainable process and modern instrumentation is crucial to produce a practical amount of NPs for clinical use [178]. The advancement of nanotechnology and biotechnology are anticipated to boost the use of NPs in biomedical applications in the future.

Author Contributions

All authors participated in the literature search, interpretation of the articles reviewed, and review of manuscript. All authors have read and approved the paper.

Acknowledgments

We would like to thank Sunway Internal Research Grant 2018 (INT-2018-SHMS-SIHD-01) from Sunway University and National Cancer Council Malaysia (MAKNA) Cancer Research Award (CRA) 2016 (EXT-SIDS-SIHD-MAKNA-2017-01) for partly supporting this work. We also thank Sunway Research Grant 2018 (SRC/002/2017/FR and SRC/003/2017/FR) from Sunway Medical Centre for partly supporting this work. Hooi-Yeen Yap is a recipient of Sunway University Master’s Degree by Research Scholarship.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zare, Y.; Shabani, I. Polymer/metal nanocomposites for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 60, 195–203. [Google Scholar] [CrossRef] [PubMed]
  2. Shriniwas, P.P.; Subhash, T.K. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem. Biophys. Rep. 2017, 10, 76–81. [Google Scholar]
  3. Okafor, F.; Janen, A.; Kukhtareva, T.; Edwards, V.; Curley, M. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int. J. Environ. Res. Public Health 2013, 10, 5221–5238. [Google Scholar] [CrossRef] [PubMed]
  4. Jiménez Pérez, Z.E.; Mathiyalagan, R.; Markus, J.; Kim, Y.; Kang, H.M.; Abbai, R.; Seo, K.H.; Wang, D.; Soshnikova, V.; Yang, D.C. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. Int. J. Nanomed. 2017, 12, 709–723. [Google Scholar] [CrossRef] [PubMed]
  5. Kelkawi, A.H.A.; Abbasi Kajani, A.; Bordbar, A.K. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnol. 2017, 11, 370–376. [Google Scholar] [CrossRef] [PubMed]
  6. Naraginti, S.; Li, Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. J. Photochem. Photobiol. B Biol. 2017, 170, 225–234. [Google Scholar] [CrossRef] [PubMed]
  7. Ahmad, T.; Wani, I.A.; Lone, I.H.; Ganguly, A.; Manzoor, N.; Ahmad, A.; Ahmed, J.; Al-Shihri, A.S. Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater. Res. Bull. 2013, 48, 12–20. [Google Scholar] [CrossRef]
  8. Cagno, V.; Andreozzi, P.; D’Alicarnasso, M.; Silva, P.J.; Mueller, M.; Galloux, M.; Goffic, R.L.; Jones, S.T.; Vallino, M.; Hodek, J.; et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 2018, 17, 195–203. [Google Scholar] [CrossRef] [PubMed]
  9. Park, S.; Park, H.H.; Kim, S.Y.; Kim, S.J.; Woo, K.; Ko, G. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl. Environ. Microbiol. 2014, 80, 2343–2350. [Google Scholar] [CrossRef] [PubMed]
  10. Soflaei, S.; Dalimi, A.; Ghaffarifar, F.; Shakibaie, M.; Shahverdi, A.R.; Shafiepour, M. In vitro antiparasitic and apoptotic effects of antimony sulfide nanoparticles on Leishmania infantum. J. Parasitol. Res. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [PubMed]
  11. Rahul, S.; Chandrashekhar, P.; Hemant, B.; Bipinchandra, S.; Mouray, E.; Grellier, P.; Satish, P. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol. Int. 2015, 64, 353–356. [Google Scholar] [CrossRef] [PubMed]
  12. De Araújo Júnior, R.F.; de Araújo, A.A.; Pessoa, J.B.; Freire Neto, F.P.; da Silva, G.R.; Leitão Oliveira, A.L.; de Carvalho, T.G.; Silva, H.F.; Eugênio, M.; Sant’Anna, C.; et al. Anti-inflammatory, analgesic and anti-tumor properties of gold nanoparticles. Pharmacol. Rep. 2017, 69, 119–129. [Google Scholar] [CrossRef] [PubMed]
  13. Laroui, H.; Sitaraman, S.V.; Merlin, D. Gastrointestinal delivery of anti-inflammatory nanoparticles. Methods Enzymol. 2012, 509, 101–125. [Google Scholar] [PubMed]
  14. Wang, E.C.; Wang, A.Z. Nanoparticles and their applications in cell and molecular biology. Integr. Biol. Quant. Biosci. Nano Macro 2014, 6, 9–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Raula, J.; Kuivanen, A.; Lähde, A.; Jiang, H.; Antopolsky, M.; Kansikas, J.; Kauppinen, E.I. Synthesis of L-leucine nanoparticles via physical vapor deposition at varying saturation conditions. J. Aerosol Sci. 2007, 38, 1172–1184. [Google Scholar] [CrossRef]
  16. Ayyub, P.; Chandra, R.; Taneja, P.; Sharma, A.K.; Pinto, R. Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl. Phys. A 2001, 73, 67–73. [Google Scholar] [CrossRef]
  17. Sharma, R.; Sharma, A.K.; Sharma, V. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng. 2015, 2, 1094017. [Google Scholar] [CrossRef]
  18. Perez-Rodriguez, A.; Garrido, B.; Bonafos, C.; Lopez, M.; Gonzalez-Varona, O.; Monrante, J.R.; Montserrat, J.; Rodriguez, R. Ion beam synthesis of compound nanoparticles in SiO2. J. Mater. Sci. Mater. Electron. 1999, 10, 385–391. [Google Scholar] [CrossRef]
  19. Wang, H.-C.; Liao, C.-H.; Chueh, Y.-L.; Lai, C.-C.; Chen, L.-H.; Tsiang, R.C.-C. Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy. Opt. Mater. Express 2013, 3, 237–247. [Google Scholar] [CrossRef]
  20. Bikiaris, D.N.; Papageorgiou, G.Z.; Pavlidou, E.; Vouroutzis, N.; Palatzoglou, P.; Karayannidis, G.P. Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J. Appl. Polym. Sci. 2006, 100, 2684–2696. [Google Scholar] [CrossRef]
  21. Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177, 421–427. [Google Scholar] [CrossRef]
  22. Sui, R.; Charpentier, P. Synthesis of metal oxide nanostructures by direct Sol–Gel chemistry in supercritical fluids. Chem. Rev. 2012, 112, 3057–3082. [Google Scholar] [CrossRef] [PubMed]
  23. Malik, M.A.; Wani, M.Y.; Hashim, M.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab. J. Chem. 2012, 5, 397–417. [Google Scholar] [CrossRef]
  24. Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Omrani, A.A.; Taghavinia, N. Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers. Appl. Surf. Sci. 2012, 258, 2373–2377. [Google Scholar] [CrossRef] [Green Version]
  26. Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
  27. Castro, L.; Blázquez, M.L.; Muñoz, J.A.; González, F.; Ballester, A. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol. 2013, 7, 109–116. [Google Scholar] [CrossRef] [PubMed]
  28. Zielonka, A.; Klimek-Ochab, M. Fungal synthesis of size-defined nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 043001. [Google Scholar] [CrossRef] [Green Version]
  29. Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 2017, 2, 18. [Google Scholar] [CrossRef]
  30. Ghosh, P.R.; Fawcett, D.; Sharma, S.B.; Poinern, G.E.J. Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials 2017, 10, 852. [Google Scholar] [CrossRef] [PubMed]
  31. Pundir, C.S. Enzyme Nanoparticles: Preparation, Characterisation, Properties and Application, 1st ed.; William Andrew: Waltham, MA, USA, 2015; ISBN 978-0-323-38913-6. [Google Scholar]
  32. Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar] [PubMed]
  33. Bogart, L.K.; Pourroy, G.; Murphy, C.J.; Puntes, V.; Pellegrino, T.; Rosenblum, D.; Peer, D.; Lévy, R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 2014, 8, 3107–3122. [Google Scholar] [CrossRef] [PubMed]
  34. Charbgoo, F.; Ramezani, M.; Darroudi, M. Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages. Biosens. Bioelectron. 2017, 96, 33–43. [Google Scholar] [CrossRef] [PubMed]
  35. Nune, S.K.; Gunda, P.; Thallapally, P.K.; Lin, Y.Y.; Forrest, M.L.; Berkland, C.J. Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv. 2009, 6, 1175–1194. [Google Scholar] [CrossRef] [PubMed]
  36. Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 2015, 88, 20150207. [Google Scholar] [CrossRef] [PubMed]
  37. Fortina, P.; Kricka, L.J.; Graves, D.J.; Park, J.; Hyslop, T.; Tam, F.; Halas, N.; Surrey, S.; Waldman, S.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol. 2007, 25, 145–152. [Google Scholar] [CrossRef] [PubMed]
  38. De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef]
  39. Singh, R.; Lillard, J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  40. Couto, C.; Vitorino, R.; Daniel-da-Silva, A.L. Gold nanoparticles and bioconjugation: A pathway for proteomic applications. Crit. Rev. Biotechnol. 2017, 37, 238–250. [Google Scholar] [CrossRef] [PubMed]
  41. Chen, L. Surface Functionalization and Bioconjugation of Nanoparticles for Biomedical Applications. Ph.D. Dissertation, University of Western Ontario, London, ON, Canada, 2013. [Google Scholar]
  42. Thiesen, B.; Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 2008, 24, 467–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Beik, J.; Abed, Z.; Ghoreishi, F.S.; Hosseini-Nami, S.; Mehrzadi, S.; Shakeri-Zadeh, A.; Kamrava, S.K. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J. Control Release 2016, 235, 205–221. [Google Scholar] [CrossRef] [PubMed]
  44. Schrittwieser, S.; Reichinger, D.; Schotter, J. Applications, surface modification and functionalization of nickel nanorods. Materials 2017, 11, 45. [Google Scholar] [CrossRef] [PubMed]
  45. Kang, S.; Shi, S.; Nikles, D.E.; Harrell, J.W. Easy control of the size and composition of FePt nanoparticles with improved synthesis. J. Appl. Phys. 2008, 103, 07D503. [Google Scholar] [CrossRef]
  46. Guerrero-Cázares, H.; Tzeng, S.Y.; Young, N.P.; Abutaleb, A.O.; Quiñones-Hinojosa, A.; Green, J.J. Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastoma in vitro and in vivo. ACS Nano 2014, 8, 5141–5153. [Google Scholar] [CrossRef] [PubMed]
  47. Werengowska-Ciećwierz, K.; Wiśniewski, M.; Terzyk, A.P.; Furmaniak, S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv. Condens. Matter Phys. 2015, 2015. [Google Scholar] [CrossRef]
  48. Williams, H.M. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. Biosci. Horiz. Int. J. Stud. Res. 2017, 10, hzx009. [Google Scholar] [CrossRef]
  49. Chatterjee, D.K.; Diagaradjane, P.; Krishnan, S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2011, 2, 1001–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Bañobre-López, M.; Teijeiro, A.; Rivas, J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother. 2013, 18, 397–400. [Google Scholar] [CrossRef] [PubMed]
  51. Shetake, N.G.; Balla, M.M.S.; Kumar, A.; Pandey, B.N. Magnetic hyperthermia therapy: An emerging modality of cancer treatment in combination with radiotherapy. J. Radiat. Cancer Res. 2016, 7, 13–17. [Google Scholar]
  52. Park, H.; Park, H.; Kim, J.A.; Lee, S.H.; Kim, J.H.; Yoon, J.; Park, T.H. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods 2011, 84, 41–45. [Google Scholar] [CrossRef] [PubMed]
  53. Singh, S.; Barick, K.C.; Bahadur, D. Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4–ZnO nanocomposite. Powder Technol. 2015, 269, 513–519. [Google Scholar] [CrossRef]
  54. Parveen, K.; Banse, V.; Ledwani, L. Green synthesis of nanoparticles: Their advantages and disadvantages. AIP Conf. Proc. 2016, 1724, 020048. [Google Scholar]
  55. Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2016, 24, 473–484. [Google Scholar] [CrossRef] [PubMed]
  56. Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. ‘Green’ nanotechnologies: Synthesis of metal nanoparticle using plants. Acta Nat. 2014, 6, 35–44. [Google Scholar]
  57. Sabri, M.A.; Umer, A.; Awan, G.H.; Hassan, M.F.; Hasnain, A. Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater. Nanotechnol. 2016, 6, 29. [Google Scholar] [CrossRef]
  58. Amin, G.; Asif, M.H.; Zainelabdin, A.; Zaman, S.; Nur, O.; Willander, M. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater. 2011, 2011, 5. [Google Scholar] [CrossRef]
  59. Kumari, M.; Mishra, A.; Pandey, S.; Singh, S.P.; Chaudhry, V.; Mudiam, M.K.R.; Shukla, S.; Kakkar, P.; Nautiyal, C.S. Physico-chemical condition cptimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci. Rep. 2016, 6, 27575. [Google Scholar] [CrossRef] [PubMed]
  60. Liu, H.; Zhang, H.; Wang, J.; Wei, J. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arab. J. Chem. 2017. [Google Scholar] [CrossRef]
  61. Mansouri, S.S.; Ghader, S. Experimental study on effect of different parameters on size and shape of triangular silver nanoparticles prepared by a simple and rapid method in aqueous solution. Arab. J. Chem. 2009, 2, 47–53. [Google Scholar] [CrossRef]
  62. Thatoi, P.; Kerry, R.G.; Gouda, S.; Das, G.; Pramanik, K.; Thatoi, H.; Patra, J.K. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B Biol. 2016, 163, 311–318. [Google Scholar] [CrossRef] [PubMed]
  63. Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 2016, 4, e2589. [Google Scholar] [CrossRef] [PubMed]
  64. Khan, A.U.; Yuan, Q.; Wei, Y.; Khan, G.M.; Khan, Z.U.H.; Khan, S.; Ali, F.; Tahir, K.; Ahmad, A.; Khan, F.U. Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 162, 273–277. [Google Scholar] [CrossRef] [PubMed]
  65. Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 296–302. [Google Scholar] [CrossRef] [PubMed]
  66. Arokiyaraj, S.; Vincent, S.; Saravanan, M.; Lee, Y.; Oh, Y.K.; Kim, K.H. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol. 2017, 45, 372–379. [Google Scholar] [CrossRef] [PubMed]
  67. Rashmi, V.; Sanjay, K.R. Green synthesis, characterization and bioactivity of plant-mediated silver nanoparticles using Decalepis hamiltonii root extract. IET Nanobiotechnol. 2017, 11, 247–254. [Google Scholar] [CrossRef] [PubMed]
  68. Kanjikar, A.P.; Hugar, A.L.; Londonkar, R.L. Characterization of phyto-nanoparticles from Ficus krishnae for their antibacterial and anticancer activities. Drug Dev. Ind. Pharm. 2018, 44, 377–384. [Google Scholar] [CrossRef] [PubMed]
  69. Alsalhi, M.S.; Devanesan, S.; Alfuraydi, A.A.; Vishnubalaji, R.; Munusamy, M.A.; Murugan, K.; Nicoletti, M.; Benelli, G. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: Antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. Int. J. Nanomed. 2016, 11, 4439–4449. [Google Scholar] [CrossRef] [PubMed]
  70. Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 36–43. [Google Scholar] [CrossRef] [PubMed]
  71. Chitra, K.; Manikandan, A.; Antony, S.A. Effect of poloxamer on Zingiber officinale extracted green synthesis and antibacterial studies of silver nanoparticles. J. Nanosci. Nanotechnol. 2016, 16, 758–764. [Google Scholar] [CrossRef] [PubMed]
  72. Lee, J.H.; Lim, J.M.; Velmurugan, P.; Park, Y.J.; Park, Y.J.; Bang, K.S.; Oh, B.T. Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. J. Photochem. Photobiol. B Biol. 2016, 162, 93–99. [Google Scholar] [CrossRef] [PubMed]
  73. Surendra, T.V.; Roopan, S.M.; Arasu, M.V.; Al-Dhabi, N.A.; Rayalu, G.M. RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J. Photochem. Photobiol. B Biol. 2016, 162, 550–557. [Google Scholar] [CrossRef] [PubMed]
  74. Surendra, T.V.; Roopan, S.M. Photocatalytic and antibacterial properties of photosynthesized CeO2 NPs using Moringa oleifera peel extract. J. Photochem. Photobiol. B Biol. 2016, 161, 122–128. [Google Scholar] [CrossRef] [PubMed]
  75. Rajakumar, G.; Gomathi, T.; Thiruvengadam, M.; Devi Rajeswari, V.; Kalpana, V.N.; Chung, I.M. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microb. Pathog. 2017, 103, 123–128. [Google Scholar] [CrossRef] [PubMed]
  76. Xia, Q.H.; Ma, Y.J.; Wang, J.W. Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials 2016, 6, 160. [Google Scholar] [CrossRef] [PubMed]
  77. Xia, Q.H.; Zheng, L.P.; Zhao, P.F.; Wang, J.W. Biosynthesis of silver nanoparticles using Artemisia annua callus for inhibiting stem-end bacteria in cut carnation flowers. IET Nanobiotechnol. 2017, 11, 185–192. [Google Scholar] [CrossRef] [PubMed]
  78. Vilas, V.; Philip, D.; Mathew, J. Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 429–436. [Google Scholar] [CrossRef] [PubMed]
  79. Verma, D.K.; Hasan, S.H.; Banik, R.M. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J. Photochem. Photobiol. B Biol. 2016, 155, 51–59. [Google Scholar] [CrossRef] [PubMed]
  80. Krishnaraj, C.; Ji, B.J.; Harper, S.L.; Yun, S.I. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens. Bioprocess Biosyst. Eng. 2016, 39, 759–772. [Google Scholar] [CrossRef] [PubMed]
  81. Jadhav, K.; Dhamecha, D.; Bhattacharya, D.; Patil, M. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J. Photochem. Photobiol. B Biol. 2016, 155, 109–115. [Google Scholar] [CrossRef] [PubMed]
  82. Govarthanan, M.; Seo, Y.S.; Lee, K.J.; Jung, I.B.; Ju, H.J.; Kim, J.S.; Cho, M.; Kamala-Kannan, S.; Oh, B.T. Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1878–1882. [Google Scholar] [CrossRef] [PubMed]
  83. Parlinska-Wojtan, M.; Kus-Liskiewicz, M.; Depciuch, J.; Sadik, O. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using chamomile terpenoids as a combined reducing and capping agent. Bioprocess Biosyst. Eng. 2016, 39, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
  84. Miri, A.; Dorani, N.; Darroudi, M.; Sarani, M. Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity. Cell. Mol. Biol. 2016, 62, 46–50. [Google Scholar] [PubMed]
  85. Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M.; et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog. 2016, 101, 1–11. [Google Scholar] [CrossRef] [PubMed]
  86. Paul, B.; Bhuyan, B.; Purkayastha, D.D.; Dhar, S.S. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J. Photochem. Photobiol. B Biol. 2016, 154, 1–7. [Google Scholar] [CrossRef] [PubMed]
  87. Pugazhendhi, S.; Sathya, P.; Palanisamy, P.K.; Gopalakrishnan, R. Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior. J. Photochem. Photobiol. B Biol. 2016, 159, 155–160. [Google Scholar] [CrossRef] [PubMed]
  88. Chowdhury, N.R.; MacGregor-Ramiasa, M.; Zilm, P.; Majewski, P.; Vasilev, K. Chocolate’ silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. J. Colloid Interface Sci. 2016, 482, 151–158. [Google Scholar] [CrossRef] [PubMed]
  89. Latha, M.; Priyanka, M.; Rajasekar, P.; Manikandan, R.; Prabhu, N.M. Biocompatibility and antibacterial activity of the Adathoda vasica Linn extract mediated silver nanoparticles. Microb. Pathog. 2016, 93, 88–94. [Google Scholar] [CrossRef] [PubMed]
  90. Abbai, R.; Mathiyalagn, R.; Markus, J.; Kim, Y.; Wang, C.; Singh, P.; Ahn, S.; Farh, M.E.; Yang, D.C. Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. Int. J. Nanomed. 2016, 11, 3131–3143. [Google Scholar] [Green Version]
  91. Otunola, G.A.; Afolayan, A.J.; Ajayi, E.O.; Odeyemi, S.W. Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officianale, and Capsicum frutscens. Pharmacogn. Mag. 2017, 13, S201–S208. [Google Scholar] [CrossRef] [PubMed]
  92. Shaik, M.R.; Albalawi, G.H.; Khan, S.T.; Khan, M.; Adil, S.F.; Kuniyil, M.; Al-Warthan, A.; Siddiqui, M.R.; Alkhathlan, H.Z.; Khan, M. “Miswak” based green synthesis of silver nanoparticles: Evaluation and comparison of their microbicidal activities with the chemical synthesis. Molecules 2016, 21, E1478. [Google Scholar] [CrossRef] [PubMed]
  93. El-Sherbiny, I.M.; El-Shibiny, A.; Salih, E. Photo-induced green synthesis and antimicrobial efficacy of poly (ε-caprolactone)/curcumin/grape leaf extract-silver hybrid nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 160, 355–363. [Google Scholar] [CrossRef] [PubMed]
  94. Beg, M.; Maji, A.; Mandal, A.K.; Das, S.; Aktara, M.N.; Jha, P.K.; Hossain, M. Green synthesis of silver nanoparticles using Pongamia pinnata seed: Characterization, antibacterial property, and spectroscopic investigation of interaction with human serum albumin. J. Mol. Recognit. 2016, 30. [Google Scholar] [CrossRef] [PubMed]
  95. Nakkala, J.R.; Mata, R.; Sandras, S.R. Green synthesized nano silver: Synthesis, physiochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J. Colloid Interface Sci. 2017, 499, 33–45. [Google Scholar] [CrossRef] [PubMed]
  96. Du, J.; Singh, H.; Yi, T.H. Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract. Bioprocess Biosyst. Eng. 2016, 39, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
  97. Patra, J.K.; Baek, K.H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front. Microbiol. 2017, 8, 167. [Google Scholar] [CrossRef] [PubMed]
  98. Shankar, S.; Tanomrod, N.; Rawdkuen, S.; Rhim, J.W. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int. J. Biol. Macromol. 2016, 92, 842–849. [Google Scholar] [CrossRef] [PubMed]
  99. Sathishkumar, P.; Preethi, J.; Vijayan, R.; Mohd Yusoff, A.R.; Ameen, F.; Suresh, S.; Balagurunathan, R.; Palvannan, T. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesized silver nanoparticles using Coriandrum sativum leaf extract. J. Photochem. Photobiol. B Biol. 2016, 163, 69–76. [Google Scholar] [CrossRef] [PubMed]
  100. Baghbani-Arani, F.; Movagharnia, R.; Sharifian, A.; Salehi, S.; Shandiz, S.A.S. Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from Artemisia tournefortiana Rchb extract. J. Photochem. Photobiol. B Biol. 2017, 173, 640–649. [Google Scholar] [CrossRef] [PubMed]
  101. Kumar, V.A.; Ammani, K.; Jobina, R.; Subhaswaraj, P.; Siddhardha, B. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. J. Photochem. Photobiol. B Biol. 2017, 171, 1–8. [Google Scholar] [CrossRef] [PubMed]
  102. Li, X.; Xu, H.; Chen, Z.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 2011. [Google Scholar] [CrossRef]
  103. Morales-Luckie, R.A.; Lopezfuentes-Ruiz, A.A.; Olea-Mejia, O.F.; Liliana, A.F.; Sanchez-Mendieta, V.; Brostow, W.; Hinestroza, J.P. Synthesis of silver nanoparticles using aqueous extracts of Heterotheca inuloides as reducing agent and natural fibers as templates: Agave lechuguilla and silk. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 429–436. [Google Scholar] [CrossRef] [PubMed]
  104. Zia, M.; Gul, S.; Akhtar, J.; Haq, I.U.; Abbasi, B.H.; Hussain, A.; Naz, S.; Chaudhary, M.F. Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET Nanobiotechnol. 2017, 11, 193–199. [Google Scholar] [CrossRef] [PubMed]
  105. Ali, S.G.; Ansari, M.A.; Khan, H.M.; Jalal, M.; Mahdi, A.A.; Cameotra, S.S. Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. J. Basic Microbiol. 2017, 57, 193–203. [Google Scholar] [CrossRef] [PubMed]
  106. Jayaprakash, N.; Vijaya, J.J.; Kaviyarasu, K.; Kombaiah, K.; Kennedy, L.J.; Ramalingam, R.J.; Munusamy, M.A.; Al-Lohedan, H.A. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J. Photochem. Photobiol. B Biol. 2017, 169, 178–185. [Google Scholar] [CrossRef] [PubMed]
  107. Shkryl, Y.N.; Veremeichik, G.N.; Kamenev, D.G.; Gorpenchenko, T.Y.; Yugay, Y.A.; Mashtalyar, D.V.; Nepomnyaschiy, A.V.; Avramenko, T.V.; Karabtsov, A.A.; Ivanov, V.V.; et al. Green synthesis of silver nanoparticles using transgenic Nicotiana tabacum callus culture expressing silicatein gene from marine sponge Latrunculia oparinae. Artif. Cells Nanomed. Biotechnol. 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
  108. Osibe, D.A.; Chiejina, N.V.; Ogawa, K.; Aoyagi, H. Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus. Artif. Cells Nanomed. Biotechnol. 2017, 1–8. [Google Scholar] [CrossRef] [PubMed]
  109. Hamedi, S.; Shojaosadati, S.A.; Mohammadi, A. Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. J. Photochem. Photobiol. B Biol. 2017, 167, 36–44. [Google Scholar] [CrossRef] [PubMed]
  110. Rasheed, T.; Bilal, M.; Iqbal, H.M.N.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces 2017, 158, 408–415. [Google Scholar] [CrossRef] [PubMed]
  111. Elemike, E.E.; Fayemi, O.E.; Ekennia, A.C.; Onwudiwe, D.C.; Ebenso, E.E. Silver nanoparticles mediated by Costus afer leaf extract: Synthesis, antibacterial, antioxidant and electrochemical properties. Molecules 2017, 22, E701. [Google Scholar] [CrossRef] [PubMed]
  112. Bhuvaneswari, R.; Xavier, R.J.; Arumugam, M. Facile synthesis of multifunctional silver nanoparticles using mangrove plant Excoecaria agallocha L. for its antibacterial, antioxidant and cytotoxic effects. J. Parasit. Dis. Off. Organ Indian Soci. Parasitol. 2017, 41, 180–187. [Google Scholar] [CrossRef] [PubMed]
  113. Dehghanizade, S.; Arasteh, J.; Mirzaie, A. Green synthesis of silver nanoparticles using Anthemis atropatana extract: Characterization and in vitro biological activities. Artif. Cell Nanomed. Biotechnol. 2018, 46, 160–168. [Google Scholar] [CrossRef] [PubMed]
  114. Skandalis, N.; Dimopoulou, A.; Georgopoulou, A.; Gallios, N.; Papadopoulos, D.; Tsipas, D.; Theologidis, I.; Michailidis, N.; Chatzinikolaidou, M. The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo on their antibacterial efficacy. Nanomaterials 2017, 7, E178. [Google Scholar] [CrossRef] [PubMed]
  115. Arya, G.; Sharma, N.; Ahmed, J.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Degradation of anthropogenic pollutant and organic dyes by biosynthesized silver nanocatalyst from Cicer arietinum leaves. J. Photochem. Photobiol. B Biol. 2017, 174, 90–96. [Google Scholar] [CrossRef] [PubMed]
  116. Saratale, R.G.; Benelli, G.; Kumar, G.; Kim, D.S.; Saratale, G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. Int. 2018, 25, 10392–10406. [Google Scholar] [CrossRef] [PubMed]
  117. Jinu, U.; Gomathi, M.; Saiqa, I.; Geetha, N.; Benelli, G.; Venkatachalam, P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis crineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb. Pathog. 2017, 105, 86–95. [Google Scholar] [CrossRef] [PubMed]
  118. Kumar, V.; Mohan, S.; Singh, D.K.; Verma, D.K.; Singh, V.K.; Hasan, S.H. Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 1004–1019. [Google Scholar] [CrossRef] [PubMed]
  119. Velmurugan, P.; Shim, J.; Bang, K.S.; Oh, B.T. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity. J. Photochem. Photobiol. B Biol. 2016, 160, 102–109. [Google Scholar] [CrossRef] [PubMed]
  120. Chahardoli, A.; Karimi, N.; Sadeghi, F.; Fattahi, A. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 579–588. [Google Scholar] [CrossRef] [PubMed]
  121. Karthik, R.; Chen, S.M.; Elangovan, A.; Muthukrishnan, P.; Shanmugam, R.; Lou, B.S. Phyto mediated biogenic synthesis of gold nanoparticles using Cerasus serrulata and its utility in detecting hydrazine, microbial activity and DFT studies. J. Colloid Interface Sci. 2016, 468, 163–175. [Google Scholar] [CrossRef] [PubMed]
  122. Yuan, C.G.; Huo, C.; Gui, B.; Cao, W.P. Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. IET Nanobiotechnol. 2017, 11, 523–530. [Google Scholar] [CrossRef] [PubMed]
  123. Khan, F.U.; Chen, Y.; Khan, N.U.; Ahmad, A.; Tahir, K.; Khan, Z.U.; Khan, A.U.; Khan, S.U.; Raza, M.; Wan, P. Visible light inactivation of E. coli, cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb. Pathog. 2017, 107, 419–424. [Google Scholar] [CrossRef] [PubMed]
  124. Manikandan, V.; Velmurugan, P.; Park, J.H.; Chang, W.S.; Park, Y.J.; Jayanthi, P.; Cho, M.; Oh, B.T. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed]
  125. Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Maaza, M.; Ayeshamariam, A.; Kennedy, L.J. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B Biol. 2016, 164, 352–360. [Google Scholar] [CrossRef] [PubMed]
  126. Saleem, S.; Ahmed, B.; Khan, M.S.; Al-Shaeri, M.; Musarrat, J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb. Pathog. 2017, 111, 375–387. [Google Scholar] [CrossRef] [PubMed]
  127. Velmurugan, P.; Park, J.H.; Lee, S.M.; Yi, Y.J.; Cho, M.; Jang, J.S.; Myung, H.; Bang, K.S.; Oh, B.T. Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
  128. Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Shobiya, M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomed. Pharmacother. 2016, 84, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
  129. Banumathi, B.; Vaseeharan, B.; Ishwarya, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol. Res. 2017, 116, 1637–1651. [Google Scholar] [CrossRef] [PubMed]
  130. Azizi, S.; Mohamad, R.; Mahdavi Shahri, M. Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis L. schrad: Characterization and biomedical applications. Molecules 2017, 22, E301. [Google Scholar] [CrossRef] [PubMed]
  131. Muthulakshmi, L.; Rajini, N.; Nellaiah, H.; Kathiresan, T.; Jawaid, M.; Rajulu, A.V. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int. J. Biol. Macromol. 2017, 95, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
  132. Rezaie, A.B.; Montazer, M.; Rad, M.M. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles. J. Photochem. Photobiol. B Biol. 2017, 176, 100–111. [Google Scholar] [CrossRef] [PubMed]
  133. Tahir, K.; Nazir, S.; Ahmad, A.; Li, B.; Khan, A.U.; Khan, Z.U.H.; Khan, F.U.; Khan, Q.U.; Khan, A.; Rahman, A.U. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J. Photochem. Photobiol. B Biol. 2017, 166, 246–251. [Google Scholar] [CrossRef] [PubMed]
  134. Irshad, R.; Tahir, K.; Li, B.; Ahmad, A.; Siddiqui, R.A.; Nazir, S. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B Biol. 2017, 170, 241–246. [Google Scholar] [CrossRef] [PubMed]
  135. Tahir, K.; Nazir, S.; Li, B.; Ahmad, A.; Nasir, T.; Khan, A.U.; Shah, S.A.; Khan, Z.U.; Yasin, G.; Hameed, M.U. Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities. J. Photochem. Photobiol. B Biol. 2016, 164, 164–173. [Google Scholar] [CrossRef] [PubMed]
  136. Dinesh, M.; Roopan, S.M.; Selvaraj, C.I.; Arunachalam, P. Phyllanthus emblica seed extract mediated synthesis of PdNPs against antibacterial, haemolytic and cytotoxic studies. J. Photochem. Photobiol. B Biol. 2017, 167, 64–71. [Google Scholar] [CrossRef] [PubMed]
  137. Maqbool, Q.; Nazar, M.; Naz, S.; Hussain, T.; Jabeen, N.; Kausar, R.; Anwaar, S.; Abbas, F.; Jan, T. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int. J. Nanomed. 2016, 11, 5015–5025. [Google Scholar] [CrossRef] [PubMed]
  138. Nadaroglu, H.; Onem, H.; Alayli Gungor, A. Green synthesis of Ce2O3 NPs and determination of its antioxidant activity. IET Nanobiotechnol. 2017, 11, 411–419. [Google Scholar] [CrossRef] [PubMed]
  139. Elemike, E.E.; Onwudiwe, D.C.; Ekennia, A.C.; Sonde, C.U.; Ehiri, R.C. Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activities. Molecules 2017, 22, E674. [Google Scholar] [CrossRef] [PubMed]
  140. El-Sherbiny, I.; Salih, E.; Reicha, F. New trimethyl chitosan-based composite nanoparticles as promising antibacterial agents. Drug Dev. Ind. Pharm. 2016, 42, 720–729. [Google Scholar] [CrossRef] [PubMed]
  141. Senthikumar, R.P.; Bhuvaneshwari, V.; Ranjithkumar, R.; Sathiyavimal, S.; Malayaman, V.; Chandarshekar, B. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials. Int. J. Biol. Macromol. 2017, 104, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
  142. Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [PubMed]
  143. Gupta, A.; Saleh, N.M.; Das, R.; Landis, R.F.; Bigdeli, A.; Motamedchaboki, K.; Campos, A.R.; Pomeroy, K.; Mahmoudi, M.; Rotello, V.M. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures 2017, 1, 015004. [Google Scholar] [CrossRef] [Green Version]
  144. National Center for Biotechnology Information (NCBI). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 20 April 2018).
  145. Zgurskaya, H.I.; Lӧpez, C.A.; Gnanakaran, S. Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis. 2015, 1, 512–522. [Google Scholar] [CrossRef] [PubMed]
  146. Acharya, D.; Singha, K.M.; Pandey, P.; Mohanta, B.; Rajkumari, J.; Singha, L.P. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci. Rep. 2018, 8, 201. [Google Scholar] [CrossRef] [PubMed]
  147. Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 2017, 10, 862–876. [Google Scholar] [CrossRef] [Green Version]
  148. Kalita, S.; Kandimalla, R.; Sharma, K.K.; Kataki, A.C.; Deka, M.; Kotoky, J. Amoxicilin functionalized gold nanoparticles reverts MRSA resistance. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 720–727. [Google Scholar] [CrossRef] [PubMed]
  149. Deng, H.; McShan, D.; Zhang, Y.; Sinha, S.S.; Arslan, Z.; Ray, P.C.; Yu, H. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ. Sci. Technol. 2016, 50, 8840–8848. [Google Scholar] [CrossRef] [PubMed]
  150. Hwang, I.S.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 2012, 61, 1719–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  151. Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
  152. Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [PubMed]
  153. Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 37–45. [Google Scholar] [CrossRef] [PubMed]
  154. Swamy, M.K.; Sudipta, K.M.; Jayanta, K.; Balasubramanya, S. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulate leaf extract. Appl. Nanosci. 2015, 5, 73–81. [Google Scholar] [CrossRef]
  155. Ramseh, P.S.; Kokola, T.; Geetha, D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochimica Acta A Mol. Biomol. Spectrosc. 2015, 142, 339–343. [Google Scholar] [CrossRef] [PubMed]
  156. Ovington, L.G. The truth about silver. Ostomy/Wound Manag. 2004, 50, 1S–10S. [Google Scholar]
  157. Raffi, M.; Hussain, F.; Bhatti, T.M.; Akhter, J.I.; Hameed, A.; Hasan, M.M. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 2008, 24, 192–196. [Google Scholar]
  158. Carnevale, J.; Ko, A.H. MM-398 (nanoliposomal irinotecan): Emergence of a novel therapy for the treatment of advanced pancreatic cancer. Future Oncol. 2016, 12, 453–464. [Google Scholar] [CrossRef] [PubMed]
  159. Ando, K.; Mori, K.; Corradini, N.; Redini, F.; Heymann, D. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin. Pharmacother. 2011, 12, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  160. Bovier, P.A. Epaxal: A virosomal vaccine to prevent hepatitis A infection. Expert Rev. Vaccines 2008, 7, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
  161. Herzog, C.; Hartmann, K.; Künzi, V.; Kürsteiner, O.; Mischler, R.; Lazar, H.; Glück, R. Eleven years of inflexal V—A virosomal adjuvanted influenza vaccine. Vaccine 2009, 27, 4381–4387. [Google Scholar] [CrossRef] [PubMed]
  162. Boswell, G.W.; Buell, D.; Bekersky, I. AmBisome (liposomal amphotericin B): A comparative review. J. Clin. Pharmacol. 1998, 38, 583–592. [Google Scholar] [CrossRef] [PubMed]
  163. Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef] [PubMed]
  164. Grabrucker, A.M.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Forni, F.; Vandelli, M.A.; Tosi, G. Nanoparticle transport across the blood brain barrier. Tissue Barriers 2016, 4, e1153568. [Google Scholar] [CrossRef] [PubMed]
  165. Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control Rel. 2016, 235, 34–47. [Google Scholar] [CrossRef] [PubMed]
  166. Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  167. Sanfins, E.; Augustsson, C.; Dahlbäck, B.; Linse, S.; Cedervall, T. Size-dependent effects of nanoparticles on enzymes in the blood coagulation cascade. Nano Lett. 2014, 14, 4736–4744. [Google Scholar] [CrossRef] [PubMed]
  168. Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
  169. Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
  170. Jaiswa, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef] [PubMed]
  171. Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  172. Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
  173. Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 2015. [Google Scholar] [CrossRef] [Green Version]
  174. Moreno-Vega, A.; Gómez-Quintero, T.; Nuñez-Anita, R.; Acosta-Torres, L.; Castaño, V. Polymeric and ceramic nanoparticles in biomedical applications. J. Nanotechnol. 2012, 2012. [Google Scholar] [CrossRef]
  175. Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B.F.; Tuśnio, K.; Slomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 2017, 28, 92. [Google Scholar] [CrossRef] [PubMed]
  176. Yildrimer, L.; Thanh, N.T.; Loizidou, M.; Seifalian, A.M. Toxicology and clinical potential of nanoparticles. Nano Today 2011, 6, 585–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  177. Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; Zbořil, R. Bacterial resistance to silver nanoparticles and how to overcome it. Nanotechnology 2018, 13, 65–71. [Google Scholar] [CrossRef] [PubMed]
  178. Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Current synthetic methods of nanoparticles (NPs) and their biomedical applications. The core methods used for NPs construction are divided into physical, chemical, and biological methods. The generated NPs can be utilized in various biomedical applications including imaging, biosensors, diagnostics, biological therapies, drug delivery, bioconjugation, and hyperthermia.
Figure 1. Current synthetic methods of nanoparticles (NPs) and their biomedical applications. The core methods used for NPs construction are divided into physical, chemical, and biological methods. The generated NPs can be utilized in various biomedical applications including imaging, biosensors, diagnostics, biological therapies, drug delivery, bioconjugation, and hyperthermia.
Molecules 23 01366 g001
Table 1. Antibacterial effects of nanoparticles synthesized by green method using plants against various bacteria reported in PubMed-indexed publications from 2016 to 2017.
Table 1. Antibacterial effects of nanoparticles synthesized by green method using plants against various bacteria reported in PubMed-indexed publications from 2016 to 2017.
NanoparticlesSize (nm)SourceScientific NameCommon NameTarget BacteriaReferences
Ag-NPs26–28LeavesColeus aromaticusCuban oreganoEscherichia coli (E. coli), Staphylococcus aureus (S. aureus)[78]
12.46LeavesSalvinia molestaKariba weedE. coli, S. aureus[79]
70.7–192.02LeavesAloe veraAloePseudomonas aeruginosa (P. aeruginosa), Streptococcus epidermidis (S. epidermidis)[63]
5–50LeavesMentha pulegiumPennyroyalE. coli, S. aureus, Streptococcus pyogenes (S. pyogenes)[5]
5–40LeavesCucurbita pepoSummer squashE. coli, S. aureus, Bacillus cereus (B. cereus), Listeria monocytogenes (L. monocytogenes), Salmonella typhi (S. typhi), Salmonella enterica (S. enterica)[80]
112.6CrudeAmmania bacciferaMonarch redstemS. aureus, P. aeruginosa, MRSA[81]
10–70Oil cakeCocos nuciferaCoconutAeromonas sp., Acinetobacter sp., Citrobacter sp.[82]
3.2–16SeedsPimpinella anisumAniseedK. pneumonia, P. aeruginosa, S. typhi
Streptococcus pyogenes (S. pyogenes), Acinetobacter baumannii (A. baumannii)
[69]
2–25CrudeMatricaria camomiliaCamomileE. coli, S. aureus, Bacillus subtilis (B. subtilis), P. aeruginosa[83]
50CrudeSalvadora persica L.Toothbrush treeE. coli, S. aureus[84]
25RhizomesZingiber officinaleGingerE. coli, S. aureus, K. pneumonia[71]
20LeavesGloriosa superbaFlame lilyE. coli, B. subtilis[85]
5–25LeavesParkia roxburghiiTree beanE. coli, S. aureus[86]
10–20TubersDioscorea alataYamsE. coli, Staphylococcus auricularis (S. auricularis)[87]
35–42.5PowderTheobroma cacaoCacaoE. coli, S. aureus, Staphylococcus epidermidis (S. epidermidis), P. aeruginosa[88]
10–50LeavesAdathoda vasica LinnVasakaVibrio parahaemolyticus (V. parahaemolyticus)[89]
14.63CrudeEleutherococcus senticosusSiberian ginsengE. coli, S. aureus, V. parahaemolyticus
Bacillus anthracis (B. anthracis)
[90]
20–30SeedsCoffea arabicaArabian coffeeE. coli, S. aureus[70]
20–100LeavesSonneratia apetalaSonneratia mangroveShigella flexneri (S. flexneri), E. coli, S. aureus, Vibrio cholera (V. cholera), S. epidermidis, B. subtilis[62]
50–400BarkHeritiera fomesSundariE. coli, S. aureus, V. cholera, S. epidermidis, B. subtilis[62]
3–6CrudeAllium sativum L.GarlicE. coli, E. faecalis, Bacillus cereus (B. cereus), S. flexneri[91]
3–22CrudeZingiber officinale Rosc.GingerE. coli, E. faecalis, B. cereus, S. flexneri[91]
3–18CrudeCapsicum frutescens L.Cayenne pepperE. coli, E. faecalis, B. cereus, S. flexneri[91]
10–20RootsSalvadora persica L.Toothbrush treeE. coli, S. aureus, P. aeruginosa, Micrococcus luteus (M. luteus)[92]
5–30CrudeRumex dentatusToothed dockP. aeruginosa, Bacillus thuringiensis (B. thuringiensis)[93]
49FlowersMillettia pinnataKaranjaE. coli, P. aeruginosa, Proteus vulgaris (P. vulgaris), S. aureus, K. pneumonia[75]
16.4SeedsPongamia pinnataSeashore MempariE. coli[94]
5–60RhizomesDryopteris crassirhizomaJapanese fernP. aeruginosa, B. cereus[72]
1–69LeavesFicus religiosaPeepul treeE. coli, B. subtilis, S. typhi, Pseudomonas fluorescens (P. fluorescens)[95]
12–38PowderStyrax benzoinBenzoin gumE. coli, P. aeruginosa, S. aureus[96]
6.4–27.2CallusTaxus yunnanensisHimalayan yewE. coli, S. aureus, S. paratyphi, B. subtilis[76]
10–20Ginseng berryPanax ginsengMeyer berriesE. coli, S. aureus[4]
45.26Corn leavesZea mays L.MaizeE. coli, S. aureus, S. typhimurium, L. monocytogenes, B. cereus[97]
20–80Shoot tipCaesalpinia mimosoides Lam.Mimosa thornE. coli, L. monocytogenes[98]
37LeavesCoriandrum sativumCorianderPropionibacterium acnes (P. acnes)[99]
22.89Aerial partsArtemisia tournefortiana-E. coli, B. subtilis, S. pyogenes, P. aeruginosa[100]
20LeavesDerris trifoliataCommon derrisE. coli, S. aureus, S. enterica, Vibrio parahaemolyticus (V. parahaemolyticus)[101]
121RootsRheum palmatumChinese RhubarbS. aureus, P. aeruginosa[66]
12.46LeavesSalvinia molestaGiant salviniaE. coli, S. aureus[102]
32.5RootsDecalepis hamiltoniiIndian SarsaparillaE. coli, S. aureus, P. aeruginosa, B. cereus, B. licheniformis[67]
16CrudeHeterotheca inuloidesMexican arnicaE. coli, S. aureus[103]
10–30Fruit juicesVitis vinifera and Solanum lycopersicumGrape and tomatoPseudomonas septica (P. septica), S. aureus, M. luteus, Enterobacter aerogenes (E. aerogenes), B. subtilis, S. typhi[104]
2.1–45.2CallusArtemisia annuaSweet wormwoodArthrobacter arilaitensis (A. arilaitensis), Staphylococcus equorum (S. equorum), Microbacterium oxydans (M. oxydans)[77]
15.2BarkCrataeva nurvalaAyurvedaP. aeruginosa[105]
6–8FruitTamarindus indicaTamarindP. aeruginosa, S. aureus, M. luteus,
Enterobacter aerogenes (E. aerogenes)
B. subtilis, B. cereus, S. typhi
[106]
12–80CallusNicotiana tabacumTobaccoE. coli, Agrobacterium rhizogenes (A. rhizogenes)[107]
410–450LeavesLantana camaraVerbanaceaeE. coli, S. aureus, P. aeruginosa[2]
25–40CrudeActinidia deliciosaKiwi fruitP. aeruginosa[6]
15–28Stem barkFicus krishnaeKrishna figE. coli, S. aureus, S. typhimurium[68]
2–15CallusCatharanthhus roseusMadagascar periwinkleE. coli[108]
28LeavesConvolvulus arvensisField bindweedE. coli[109]
25LeavesArtemisia vulgarisCommon wormwoodE. coli, S. aureus, P. aeruginosa, K. pneumonia, Haemophilus influenza (H. influenza)[110]
20LeavesCostus afer-E. coli, S. aureus, P. aeruginosa, K. pneumonia, B. subtilis[111]
23–42LeavesExocoecaria agallochaBlinding treeP. aeruginosa, S. aureus, S typhi, B. cereus[112]
10–80Aerial partsAnthemis atropatana-E. coli, S. aureus, P. aeruginosa, S. pyogenes[113]
40–60LeavesArbutus unedoStrawberry treeE. coli, S. epidermis, B. subtilis, P. aeruginosa[114]
88.8LeavesCicer arietinumChickpeaE. coli, P. aeruginosa[115]
5–30LeavesTaraxacum officinaleDandelionXanthomonas axonopodis (X. axonopodis), Pseudomonas syringae (P. syringae)[116]
20–44.49LeavesProsopis cinerrariaKhejri treeE. coli, K. pneumonia, S. epidermidis[117]
15–25LeavesCroton bonplandianumBantulasiE. coli, S. aureus[118]
Au-NPs5–10Ginseng berryPanax ginsengMeyer berriesE. coli, S. aureus[4]
5–25LeavesParkia roxburghiiTree beanE. coli, S. aureus[71]
10–75LeavesGinkgo biloba LinnGinkgo treeBrevibacterium linens (B. linens)[119]
3–37LeavesNigella arvensisLove-in-a-mistE. coli, S. aureus, P. aeruginosa, Serratia marcescens (S. marcescens), B. subtilis, S. epidermidis[120]
25FruitDimocarpus longanLonganS. aureus, B. subtilis, E. coli[64]
5–25LeavesCerasus serrulataJapanese cherryE. coli, S. aureus[121]
7–20CrudeActinidia deliciosaKiwi fruitP. aeruginosa[6]
8–25PeelCitrus maximaPomeloE. coli, S. aureus[122]
20–30CrudeCoptis chinensisGold threadDrug-resistant E. coli[123]
Ag2O-NPs42.7RootsFicus benghalensisBanyanStreptococcus mutans (S. mutans), Lactobacilli sp.[124]
NiO-NPs9.69CrudeMoringa oleiferaDrumstick treeS. aureus, S. pneumonia, Escherichia hermannii (E. hermannii), E. coli[125]
10–20LeavesEucalyptus globulusBlue glumE. coli, S. aureus, MRSA, P. aeruginosa[126]
ZnO-NPs20.06LeavesPrunus x yedoensis MatsumuraYoshino cherryB. linens, S. epidermidis[127]
400–500LeavesSonneratia apetalaSonneratia mangroveS. flexneri[62]
47.27LeavesLaurus nobilisBay treeS. aureus, P. aeruginosa[128]
50FruitRosa caninaDog roseE. coli, L. monocytogenes, P. aeruginosa[65]
-LeavesLobelia leschenaultianaLobeliaP. aeruginosa, Shigella sonnei (S. sonnei), P. vulgaris, V. parahaemolyticus[129]
27–85Fruit, seed, and pulpCitrullus colocynthis L.SchradMRSA, P. aeruginosa, E. coli, B. subtilis[130]
Cu-NPs21–30LeavesTerminalia catappaTropical almondE. coli[131]
18.9–32.09LeavesProsopis cinerariaKhejri treeE. coli, K. pneumonia, S. epidermidis[117]
CuO-NPs30 –222.5LeavesSeidlitzia rosmarinusKeliabE. coli, S. aureus[132]
Pt-NPs2–7CrudeTaraxacum laevigatumRed-seeded dandelionP. aeruginosa, B. subtilis[133]
FeO-NPs-PeelPunica granatumPomegranateP. aeruginosa[134]
Pd-NPs5LeavesSapium sebiferumChinese tallow treeS. aureus, P. aeruginosa
Bacillus subtilis
[135]
30SeedsPhyllanthus emblicaIndian GooseberryS. aureus, P. aeruginosa, B subtilis
Proteus mirabilis
[136]
27PeelMoringa oleiferaHorseradish treeE. coli, S. aureus[73]
CeO2-NPs45PeelMoringa oleiferaHorseradish treeE. coli, S. aureus[74]
24LeavesOlea europaeaOliveE. coli, S. aureus, K. pneumonia, P. aeruginosa[137]
Ce2O3-NPs8.6–10.5CrudeEuphorbia amygdaloidesWood spurgePediococcus acidilactici (P. acidilactici)[138]
Pectin/Ag-NPs20–80Shoot tipCaesalpinia mimosoides Lam.Mimosa thornE. coli, L. monocytogenes[98]
Ag/Ag2O-NPs8.2–20.5LeavesEupatorium odoratumChristmas bushE. coli, S. typhi, S. aureus, B. subtilis[139]
Ag/Au-NPs10LeavesGloriosa superbaFlame lilyE. coli, B. subtilis[85]
Chitosan/Ag-NPs378–402CrudeRumex dentatusToothed dockP. aeruginosa, B. thuringiensis[140]
Chitosan/CeO2-NPs3.61–24.4LeavesSida acutaCommon wireweedE. coli, B. subtilis[141]
PCL/Cur/GLE-Ag-NPs200LeavesVitis viniferaGrapeE. coli, S. aureus, P. aeruginosa, B. subtilis, S. enterica[93]
GLE-Ag-NPs30LeavesVitis viniferaGrapeE. coli, S. aureus, P. aeruginosa, B. subtilis, S. enterica[93]
Cellulose/Cu-NPs20–40LeavesTerminalia catappaTropical almondE. coli[131]
Ag-MnO2-NPs5–40LeavesCucurbita pepoSummer squashE. coli, S. aureus, B. cereus, L. monocytogenes, S. typhi, S. enterica[142]
Table 2. Gram-negative and gram-positive bacterial species targeted by NPs synthesized from plants via green technology.
Table 2. Gram-negative and gram-positive bacterial species targeted by NPs synthesized from plants via green technology.
Gram-Negative SpeciesAgAuCuPtPdAg2ONiOZnOCuOFeOCeO2Ce2O3
E. coli4662-1-221-2-
Drug-resistant E. coli-1----------
E. hermannii------1-----
P. fluorescens1-----------
P. aeruginosa232-12-14-11-
P. syringae1-----------
P. septica1-----------
K. pneumoniae6-1-------1-
P. vulgaris1------1----
P. mirabilis----1-------
S. flexneri4------1----
S. sonnei-------1----
S. paratyphi1-----------
S. typhi6-----------
S. typhimurium2-----------
S. enterica2-----------
V. parahaemolyticus3------1----
V. cholera2-----------
Aeromonas sp. 1-----------
Acinetobacter sp.1-----------
A. baumannii1-----------
Citrobacter sp.1-----------
E. aerogenes2-----------
A. rhizogenes1-----------
H. influenza1-----------
X. axonopodis1-----------
S. marcescens-1----------
Lactobacilli sp.-----1------
Gram-Positive SpeciesAgAuCuPtPdAg2ONiOZnOCuOFeOCeO2Ce2O3
S. aureus356--3-211-2-
S. epidermidis511----1----
MRSA1-----11----
S. pyogenes4-----------
S. mutans-----1------
S. pneumonia------1-----
B. thuringiensis1-----------
B. cereus9-----------
B. subtilis112-12--1----
B. licheniformis1-----------
B. anthracis1-----------
E. faecalis3-----------
L. monocytogenes3------1----
M. luteus3-----------
P. acnes1-----------
A. arilaitensis1-----------
M. oxydans1-----------
B. linens-1-----1----
P. acidilactici-----------1
Table 3. Challenges of developing nanoparticles into clinically used antibacterial agents.
Table 3. Challenges of developing nanoparticles into clinically used antibacterial agents.
Structural Challenge
SizeSmaller size enhances the cell penetration, but may have decreased stability or bioavailability
ShapeCertain shape of NPs may improve the functionality due to total surface exposure area
AggregateNPs that form aggregate increase the overall particle size, hence limiting the cell permeation and may increase toxicity
Biological Challenge
BiodistributionPoor dispersion due to limited entry (e.g., skin barrier)
BioavailabilityPoor bioavailability results in rapid loss of function
SpecificityHigh specificity results in less off-target effects and more effective
ClearanceHigh retention rate ensures the high efficiency
ToxicityAccumulation of toxic materials may damage the host
Technological Challenge
Heterogeneity of human diseaseVariation within disease may complicate treatment
Scale-upOptimization of NPs synthesis and production with uniform size without aggregates in controlled and consistent fashion
ThroughputSynthesis of NP is multistep and laborious which does not allow high-throughput optimization
Prediction Prediction using computer modelling on NP efficiency is extremely challenging
Industrial Challenge
QuantityLarge scale production may result in inconsistent size and physicochemical properties of NPs
ProcessesReproducible and consistent manufacturing processes requires modern technology and instrumentation
QualityContinuous production of high level uniformity and functionality of NPs

Share and Cite

MDPI and ACS Style

Teow, S.-Y.; Wong, M.M.-T.; Yap, H.-Y.; Peh, S.-C.; Shameli, K. Bactericidal Properties of Plants-Derived Metal and Metal Oxide Nanoparticles (NPs). Molecules 2018, 23, 1366. https://doi.org/10.3390/molecules23061366

AMA Style

Teow S-Y, Wong MM-T, Yap H-Y, Peh S-C, Shameli K. Bactericidal Properties of Plants-Derived Metal and Metal Oxide Nanoparticles (NPs). Molecules. 2018; 23(6):1366. https://doi.org/10.3390/molecules23061366

Chicago/Turabian Style

Teow, Sin-Yeang, Magdelyn Mei-Theng Wong, Hooi-Yeen Yap, Suat-Cheng Peh, and Kamyar Shameli. 2018. "Bactericidal Properties of Plants-Derived Metal and Metal Oxide Nanoparticles (NPs)" Molecules 23, no. 6: 1366. https://doi.org/10.3390/molecules23061366

Article Metrics

Back to TopTop