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Abstract: Discovery and identification of three bioactive compounds affecting endothelial function in
Ginkgo biloba Extract (GBE) based on chromatogram-bioactivity correlation analysis. Three portions
were separated from GBE via D101 macroporous resin and then re-combined to prepare nine GBE
samples. 21 compounds in GBE samples were identified through UFLC-DAD-Q-TOF-MS/MS.
Correlation analysis between compounds differences and endothelin-1 (ET-1) in vivo in nine GBE
samples was conducted. The analysis results indicated that three bioactive compounds had
close relevance to ET-1: Kaempferol-3-O-α-L-glucoside, 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-
β-D-glucosyl}-α-rhamnosyl} Quercetin isomers, and 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-
β-D-glucosyl}-α-rhamnosyl} Kaempferide. The discovery of bioactive compounds could provide
references for the quality control and novel pharmaceuticals development of GRE. The present work
proposes a feasible chromatogram-bioactivity correlation based approach to discover the compounds
and define their bioactivities for the complex multi-component systems.

Keywords: Ginkgo biloba Extract (GBE); chromatogram-bioactivity correlation; bioactive compounds;
endothelial function

1. Introduction

Ginkgo biloba Extract (GBE), extracted from Ginkgo biloba leaves, is mainly composed of terpene
trilactones, flavonoid heterosides, ginkgolic acids, phenolic acids, proanthocyanidins, etc. [1,2].
GBE can significantly decrease serum ET-1 to reverse endothelial dysfunction [3–5]. Nowadays,
chromatographic fingerprint plays a vital role in the quality control of GBE, including for authenticity
determination and chemical information analyses. However, existing GBE studies with fingerprint tech
mainly focus on the chemical characteristics, but do not elaborate the correlation between compounds
and their bioactive effects. Based on the hypothesis that bioactive effects varied with differences
between compounds, chromatographic fingerprint and bioactive tests of nine re-combined GBE
samples were conducted, and their correlations were further analyzed (Figure 1). Other than the
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usual methods of isolation, purification, and then biotests, this study provided a feasible approach for
exploring the bioactive compounds in complex systems.
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2. Results

2.1. GBE HPLC Fingerprint and Identification of Components

With optimized HPLC conditions, the standard GBE HPLC fingerprint (Figure 2) was established,
and 21 compounds were identified or characterized through the HPLC-DAD-ELSD-MS/MS technique
in our previous work [6] (Table 1). According to the retention time, UV spectra, and MS spectra of the
reference standards, Protocatechuic acid (P4), Rutin (P12), Ginkgolide A (P24), Ginkgolide B (P25), and
Bilobalide (P26) were identified unambiguously. The other compounds were characterized according
to MS fragmentation pattern, UV spectra, and the reported literature.
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Table 1. Identification of 21 compounds in GBE HPLC fingerprint by UFLC-DAD-Q-TOF-MS/MS.

Peaks Retention Time Major Fragment Ions (MS/MS) Identified Compounds

P1 2.520 -
P2 3.840 -
P3 5.670 -

P4 6.960
137.0235 [M + H-H2O]+,
109.028 [M + H-H2O-CO]+,
93.0348 [M + H-H2O-CO2]+

Protocatechuic acid a

P5 9.403 -

P6 10.617 -

P7 14.367
611.1586 [M + H-rha]+,
465.1014 [M + H-2rha]+,
303.0496 [M + H-2rha-glu]+

3-O-[2-O,6-O-double(α-L-rhamnosyl)-β-D-glucosyl] Quercetin

P8 15.207 319.0444 [M + H-rha-glu]+ 3-O-[6-O-(α-L-rhamnosyl)-β-D-glucosyl] Myricetin

P9 15.607 319.0454 [M + H-glu]+ 3-O-[β-D-glucosyl] Myricetin

P10 16.420
595.1643 [M + H-rha]+,
449.1073 [M + H-2rha]+,
287.0552 [M + H-2rha-glu]+

3-O-[2-O,6-O-double(α-L-rhamnosyl)-β-D-glucosyl] Kaempferide

P11 16.613
625.174 [M + H-rha]+,
479.1167 [M + H-2rha]+,
317.0650 [M + H-2rha-glu]+,

3-O-[2-O,6-O-double(α-L-rhamnosyl)-β-D-glucosyl] Isorhamnetin

P12 18.233 465.1012 [M + H-rha]+

303.0496 [M + H-rha-glu]+, 3-O-[6-O-(α-L-rhamnosyl)-β-D-glucosyl] Quercetin (rutin) a

P13 18.813 495.1122 [M + H-rha]+,
333.0600 [M + H-glu-rha]+ 3-O-[6-O-(α-L-rhamnosyl)-D-glucosyl] Queretagetin

P14 19.720 303.0501 [M + H-glu]+ Quercetin-3-O-β-D-glucoside

P15 20.807 303.0501 [M + H-rha-glu]+ 3-O-[2-O-(β-D-glucosyl)-α-L-rhamnosyl] Quercetin

P16 21.173 287.0546 [M + H-rha-glu]+ 3-O-[6-O-(β-D-glucosyl)-α-L-rhamnosyl] Kaempferide

P17 21.693 479.1176 [M + H-rha]+,
317.0658 [M + H-rha-glu]+ 3-O-[6-O-(β-D-glucosyl)-α-L-rhamnosyl] Isorhamnetin

P18 22.790 287.055 [M + H-glu]+ Kaempferol-3-O-α-L-glucoside

P19 23.057 347.0761 [M + H-rha-glu] + 3-O-[6-O-(α-L-rhamnosyl)-β-D-glucosyl] Syringetin

P20 23.487 347.0767 [M + H-rha-glu] + 3-O-[2-O-(α-L-rhamnosyl)-β-D-glucosyl] Syringetin

P21 23.867 287.0569 [M + H-rha-glu]+ 3-O-[2-O-(β-D-glucosyl)-α-L-rhamnosyl] Kaempferide

P22 26.527 449.101 [M + H-rha-glu]+, 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-β-D-glucosyl}-α-rhamnosyl}
Quercetin isomers

P23 29.233 433.1063 [M + H-rha-glu]+, 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-β-D-glucosyl}-α-rhamnosyl}
Kaempferide

P24 34.379
391.1396 [M + H-H2O]+;
373.1075 [M + H-2H2O]+,
345.13 [M + H-2H2O-CO]+,

Ginkgolide A a

P25 35.195
407.1368 [M + H-H2O]+,
389.1262 [M + H-2H2O]+,
361.1304 [M + H-2H2O-CO]+,

Ginkgolide B a

P26 22.296 309.3054 [M + H-H2O]+ Bilobalide a

a Identification in comparison with reference standards.
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Figure 2. The HPLC fingerprint of GBE with UV (A) and ELSD (B,C).

2.2. Three Portions Separated from GBE and Nine Re-Combined GBE Samples

Portion A, portion B, and portion C were separated from GBE via D101 macroporous resin.
They were re-combined with different compositions to get the nine GBE samples (Figure 3).
In accordance with the optimized HPLC conditions, the HPLC fingerprints of the nine GBE samples
(S1–S9) were constructed (Figure 4). 26 peak areas in nine GBE samples are shown in Table 2.
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Figure 3. The HPLC fingerprints of three portions separated from GBE via D101 macroporous resin.
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Figure 4. The HPLC fingerprints of nine GBE samples with UV (A) and ELSD (B,C).
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Table 2. The 26 peak areas of the nine GBE samples.

Samples P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

S1 1.2622 1.3788 2.1911 12.1766 2.8357 3.524 6.5859 2.0551 1.4858 8.3926 5.1951 28.4887 7.0591
S2 3.1069 3.3891 5.7438 26.3239 2.0025 3.6599 3.8695 1.1924 0.801 4.7887 3.0219 17.4548 4.1193
S3 5.1957 5.5726 9.7592 42.5976 1.0266 3.213 0 0 0 0 0 4.356 1.0038
S4 0 0 0 9.8952 3.9214 4.981 9.2285 2.8734 2.0094 11.422 6.9621 37.5392 8.7436
S5 3.2118 3.5892 5.5843 27.3079 2.991 4.6368 5.9836 1.8489 1.3209 7.3954 4.4638 24.571 5.7354
S6 7.4305 6.3609 10.8327 48.0321 1.7808 4.3221 0 0 0 0 0 8.5261 1.9302
S7 0 0 0 6.0996 5.5958 5.3295 12.8322 4.5302 3.3714 17.5349 10.0728 52.8165 12.5493
S8 3.5617 3.7739 6.3758 28.8564 4.426 5.4215 9.0171 3.2387 2.2417 11.871 6.9002 36.2443 8.6628
S9 9.3721 7.5017 13.1006 57.1505 3.0606 5.2422 4.1496 1.4944 1.0327 5.3503 3.1294 15.863 3.8046

Samples P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26

S1 9.4772 8.1063 23.5872 35.2178 3.0655 0.6415 1.9176 8.2878 25.8635 15.4303 4.9291 1.8927 18.2607
S2 6.4263 5.2957 16.7922 24.4355 2.3935 0.4798 1.5539 5.2362 19.9002 12.9111 3.7011 1.1571 13.0276
S3 2.6031 1.9266 8.5073 11.4559 1.587 0 1.0682 3.2834 14.0843 10.6601 5.6539 1.8087 7.1442
S4 11.5354 10.171 27.3343 41.7826 3.0651 0.5678 1.9455 8.7336 25.4447 14.135 2.9817 0.4018 19.4095
S5 7.8271 6.8175 18.9692 28.6363 2.2589 0.4425 1.4746 5.2605 17.9486 10.0593 2.0966 0.1254 10.8716
S6 3.2396 2.6844 8.7539 12.6152 1.2919 0 0 2.8117 10.7481 7.2251 0 0 6.5011
S7 15.3825 13.8241 33.6609 52.7184 3.4513 0.7236 2.1981 9.7774 25.1843 10.9571 2.0016 0.3504 23.2875
S8 10.5258 9.4589 22.7495 35.6553 2.3213 0.5586 1.443 5.3602 16.1803 5.931 0.7501 0.3917 14.6142
S9 4.4374 4.0615 9.2461 14.7265 0 0 0 2.0158 5.1178 1.4163 0 0 5.2694
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2.3. Cluster Analysis of Nine GBE Samples

Based on the data of the 26 peak areas, Cluster analysis was performed in SPSS 19.0. The clustering
method was Nearest Neighbor. The distance calculation method was Euclidean Distance. The rescaled
distance cluster combine was defined as 5. Nine GBE samples could be divided into seven categories
(Figure 5): S2 and S5 belonged to a class, S3 and S6 belonged to a class, and the remaining samples
respectively represented a class each. Cluster analysis results indicated that the nine GBE samples had
chemical differences in their compounds.
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2.4. ET-1 Biotests of Nine GBE Samples

Plasma ET-1 in vivo was detected in the 11 treatment groups (Table 3). Compared with the normal
group, plasma ET-1 content significantly increased in the model group. Compared with the model
group, plasma ET-1 content significantly decreased in the S1, S2, S3, S4, S5, S6, S8, and S9 groups, but
not for the S7 group. Biotest results indicated that nine GBE samples showed biological differences
for ET-1.

Table 3. The content of ET-1 in plasma.

Group ET-1 (ng/L)

Normal 93.07 ± 5.45
Model 107.07 ± 8.50 ##

S1 96.15 ± 11.45 *
S2 95.72 ± 8.88 *
S3 97.40 ± 15.21 *
S4 96.30 ± 9.68 *
S5 93.89 ± 6.76 **
S6 94.16 ± 8.49 **
S7 99.37 ± 12.65
S8 90.82 ± 10.19 **
S9 88.31 ± 7.19 *

## p < 0.01 when compared with normal. * p < 0.05 and ** p < 0.01 when compared with model.
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2.5. CA between Compound Differences and Biological Differences

Dimensionless data of the peak areas of 26 compounds and their ET-1 values are shown in Table S1.
The Pearson correlation coefficients (PCC) are shown in Table 4. The results indicated that P18, P22,
and P23 had a significantly positive relation with ET-1, but that P1, P2, P3, P4, and P6 were negatively
correlated to ET-1.

Table 4. PCCs between 26 components and ET-1.

Variables PCC Variables PCC Variables PCC

P1 −0.598 P10 0.209 P19 0.406
P2 −0.658 P11 0.214 P20 0.647
P3 −0.651 P12 0.277 P21 0.635
P4 −0.658 P13 0.273 P22 0.731 *
P5 0.046 P14 0.365 P23 0.806 **
P6 −0.414 P15 0.332 P24 0.652
P7 0.198 P16 0.461 P25 0.474
P8 0.167 P17 0.424 P26 0.577
P9 0.198 P18 0.727 *

Note: * p < 0.05 and ** p < 0.01.

The scores of the extracted C1 and C2 were used as the new independent variables (Table 5).
The strict regression equation between C1, C2 and ET-1 was established as follows: ET-1 = 94.68 +
0.678 × C1 + 2.626 × C2 (R = 0.801, Sig. < 0.05).

Table 5. The scores of two components C1 and C2.

Samples C1 C2

S1 0.055 1.411
S2 −0.501 0.768
S3 −1.484 0.772
S4 0.828 0.533
S5 0.055 −0.118
S6 −1.011 −0.770
S7 1.739 0.011
S8 0.775 −0.787
S9 −0.456 −1.820

In accordance with the rotated component matrix (Table S3), C1 and C2 were replaced by the 26
original independent variables (P1–P26). Regression coefficients (RC) of P1–P26 are shown in Table 6.
The results were in accordance with the PC analysis, indicating that P18, P20, P22, P23, and P24 had a
highly positive relation with ET-1, but that P1, P2, P3, P4, and P6 showed a negative correlation.

Table 6. RC between 26 components and ET-1 (Model Sig. < 0.05).

Variables RC Variables RC Variables RC

P1 −2.297 P10 0.777 P19 1.779
P2 −2.127 P11 0.851 P20 2.292
P3 −2.127 P12 0.902 P21 2.019
P4 −2.202 P13 0.921 P22 2.445
P5 0.127 P14 1.196 P23 2.637
P6 −1.362 P15 1.081 P24 2.259
P7 0.822 P16 1.522 P25 1.913
P8 0.649 P17 1.395 P26 1.860
P9 0.675 P18 2.291
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3. Discussion

Current research methods for natural medicine mainly fall into two directions. The first is to
separate single components or the active part and then assess the biological effects in vivo or in vitro;
the second is to match up the compounds and bio-effects in the whole herb using computational
modelling. It is understood that separating and assessing each compound one by one is almost
impossible. Numerous existing studies of GBE focus on the chemical identification and the biological
effects, separately, but not the correlation between them. ET-1 is a potent vasoconstrictor peptide
released from endothelial cells [7]. Several studies have demonstrated that exposure to cold is
associated with raised plasma ET-1 [8,9]. Thus, a rat model combined with subcutaneous injection of
adrenaline and ice-bath was established, and similar data was observed in the present study.

GBE’s main bioactive constituents include flavonoid glycosides and terpene trilactones. Flavonoid
glycosides were detected by HPLC-UV [10–12]. Terpene trilactones were detected by Evaporative Light
Scattering Detector (ELSD) due to their poor UV absorption property. Thus, GBE’s chromatographic
fingerprint was established by HPLC-UV-ELSD, in which 21 compounds were identified or
characterized through the UFLC-DAD-Q-TOF-MS/MS technique. To prepare appropriate GBE samples
with varying compounds, three portions were separated from GBE using D101 macroporous resin, and
then re-combined to get nine GBE samples. The different ratios of the three portions were designed
using a four-factor, nine-level Uniform Design (UD) method, which has been successfully applied to
prepare different Chinese medicine samples [13,14]. To guarantee the differences of the GBE samples,
cluster analysis was conducted that nine GBE samples could be divided into seven categories.

Correlation analysis was applied to discover and predict the compounds with bioactivities in our
previous work [15,16]. The discovery of bioactive compounds was based on the hypothesis that the
effect varies based on differences in the compounds. If a compound varies a little, while showing a big
difference in the effect, the compound will be considered to have a close relevance; in the opposite case,
the compound will be considered to have no effect contribution. In the cluster analysis, although S2
and S5, S3 and S6 belonged to a class, there were still relatively large differences among the discovered
bioactive compounds, and this might be the reason behind the differences in effect among them.
In this work, the Pearson Correlation and Multiple Linear Regression methods were used to evaluate
the effect contribution of each compound, and the analysis results of the two methods were highly
consistent. The connections between the identified compounds and ET-1 are presented dynamically in
the electronic supplementary material (Compound-effect bubble chart). Kaempferol-3-O-α-L-glucoside
(P18), 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-β-D-glucosyl}-α-rhamnosyl} Quercetin isomers (P22),
and 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-β-D-glucosyl}-α-rhamnosyl} Kaempferide (P23) were
significantly correlated to ET-1 (Figure 6). Numerous preclinical studies provide support for flavonoids
exhibiting protective effects on endothelial dysfunction [17]. Quercetin, modified from quercetin
flavonoid during metabolism, inhibits the overproduction and gene expression of ET-1 in vitro [18,19].
Kaempferol can improve the endothelial damage [20], but there is no direct evidence for either
Kaempferol and Kaempferide on regulating ET-1. In GBE, not all the flavonoid glycosides have strong
inhibitory activity on ET-1 release. As for terpene trilactones in GBE, Ginkgolide A and Ginkgolide B
had a highly positive correlation, which also contributed to the effects. Moreover, P1, P2, P3, P4, and
P6 from portion A were negatively correlated with ET-1. Despite having no statistical meaning, the
results suggested that water-soluble constituents might induce endothelial dysfunction, but this needs
further experiments to confirm.
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4. Materials and Methods

4.1. Animals and Materials

Sprague-Dawley male rats, Specific pathogen-free, 250–300 g, were purchased from Guangdong
Medical Laboratory Animal Center (SCXK-(Yue) 2013-0002). Rats were fed on standard laboratory diet
and water and kept in environmentally controlled quarters with temperature maintained at 25 ◦C and
a 12 h dark-light cycle for a week before use. Experiments were approved by the Animal Care and
Use Committee of Sun Yat-sen University (2015062529) and performed in accordance with guidelines
of Institutional Animal Care and Use Committee for U.S. institutions. GBE was manufactured by
INDENA S.P.A (batch: 15271). GBE Injection, the sterile solution of GBE, was purchased from
Yue Kang Pharmaceutical Group Co., Ltd. (batch: 05121108) (Beijing, China). Adrenalin (Adr)
Hydrochloride Injection was purchased from Yuanda Medical (Harbin, China) Co., Ltd. (batch:
150412). 1,2-propanediol and absolute ethyl alcohol was purchased from Tianjin Fuyu Chemical Co.,
Ltd. (batch: 20141026) (Tianjin, China). Rat ET-1 Elisa Assay Kit was purchased from Nanjing Jiancheng
Bioengineering Institute. D101 macroporous resin was purchased from Xi’an Butian Adsorption
Materials Co., Ltd. (batch: 20140918) (Xi’an, China).

4.2. Preparation of GBE Samples

GBE (315 mg) was separated into three portions via D101 macroporous resin (20 g), with the
eluent of 550 mL purified water (Portion A); 100 mL ethanol (40%, v/v, Portion B), and 100 mL absolute
ethyl alcohol (Portion C). Each portion was evaporated with a rotary evaporator and dissolved in
1,2-propanediol (25%, g/mL) to 30 mL for HPLC analysis. According to a four-factor, nine-level UD
(Table 7), three portions were re-combined to get nine GBE samples. GBE Samples were stored at 4 ◦C
before use.

Table 7. Volumes and percentage of three portions in nine GBE samples.

Sample Portion A mL (% a) Portion B mL (%) Portion C mL (%)

S1 2.50 (50) 7.50 (150) 10.00 (200)
S2 6.25 (125) 3.75 (75) 8.75 (175)
S3 10.00 (200) 0 (0) 7.50 (150)
S4 1.25 (25) 8.75 (175) 6.25 (125)
S5 5.00 (100) 5.00 (100) 5.00 (100)
S6 8.75 (175) 1.25 (25) 3.75 (75)
S7 0 (0) 10.00 (200) 2.50 (50)
S8 3.75 (175) 6.25 (125) 1.25 (25)
S9 7.50 (150) 2.50 (50) 0 (0)

Note: a % represents the nine levels (0, 25%, 50%, 75%, 100%, 125%, 150%, 175%, 200%) of each portion A, B, C, and
the sequence was designed according to a four-factor, nine-level UD method.
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4.3. HPLC Fingerprint and Cluster Analysis

GBE analyses were performed on an UltiMate 3000 series Dual-Gradient Analytical LC System
(Dionex, Thermo Fisher Scientific Inc., Waltham, MA, USA), equipped with DAD and ELSD.
The HPLC-DAD-ELSD conditions were as follows [6]: Chromatographic separation was carried
out using an Agilent zorbax SB C18 column (4.6 mm × 250 mm, 5 µm) as an analytical column and a
Dionex Acclaim Polar Advantage C18 column (3.0 mm × 50 mm, 3 µm) as a pretreatment column,
and operated at 25 ◦C; Mobile phase consisted of acetonitrile (A), tetrahydrofuran (B), formic acid
(C, 0.1%, v/v) with a multi-step gradient elution (A: 0–27 min: 10%→28%, 27–27.1 min: 28%→1%,
27.1–40 min: 1%→25%; B: 0–27 min: 0%→0%, 27–27.1 min: 0%→15%, 27.1–40 min: 15%→15%; C: 0–27
min: 90%→78%, 27–27.1 min: 72%→84%, 27.1–40 min: 84%→60%) at a flow rate of 1.0 mL/min; Drift
tube temperature of ELSD was set at 50 ◦C, and the nebulizing gas pressure was 3.5 bar with a gain
value of 11; Sample volume was set at 10 µL. Data were controlled by Chromeleon 6.8 chromatography
data system. 26 peak areas in the HPLC fingerprint were used for Cluster Analysis in SPSS 19.0 (IBM,
Armonk, NY, USA). The clustering method was Nearest Neighbor, and the distance calculation method
was Euclidean Distance. The rescaled distance cluster combine was set at 5.

4.4. Modelling and ET-1 Assay

Rats were randomly divided into eleven groups of normal (normal saline: NS, 7.2 mL/kg, n = 10)
as blank, model (NS, 7.2 mL/kg, n = 10) as negative control, and nine GBE samples (7.2 mL/kg, n = 10),
receiving intraperitoneal injection once daily for 7 consecutive days. After the 7th administration, the
rats—except those in normal group—were subcutaneously injected with Adr (0.8 mg/kg). After 2 h,
rats were kept in ice-water (0–2 ◦C) for 4 min, and 2 h later were subcutaneously re-injected with Adr
(0.8 mg/kg). All the rats were fasted for 12 h. Blood was collected through abdominal aortic. Plasma
ET-1 was detected by Elisa kit.

4.5. Correlation Analysis between Compound Difference and Bioactivity Difference

Pearson Correlation. 26 Peak areas were regarded as independent variables (P1–P26). Average ET-1
value was regarded as a dependent variable. Every value of the peak areas and ET-1 in Table 2 was
divided by the average of each column to get dimensionless data (Table S1). Pearson Correlation was
used to analyze the correlation among P1–P26 and ET-1. Multiple Linear Regression. 26 independent
variables (P1–P26) were recombined into two mutual independent principal components, which were
regarded as new independent variables (C1 and C2, contributing to 96.388% of the total variance,
Table S2). The regression equation between two components (C1 and C2) and ET-1 parameter was
constructed by a stepwise regression analysis approach. Once a strict regression equation was
established (p < 0.05), C1 and C2 would be replaced by the 26 original independent variables (P1–P26)
according to the rotated component matrix (Table S3). Then, the regression coefficients of P1–P26 were
used to evaluate the effect contribution.

4.6. Statistical Analysis

Experimental data were presented as mean ± standard deviation and analyzed by One-Way
Analysis of Variance. p-values less than 0.05 or 0.01 were considered statistically significant.

5. Conclusions

Kaempferol-3-O-α-L-glucoside, 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-β-D-glucosyl}-α-rhamnosyl}
Quercetin isomers, and 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-β-D-glucosyl}-α-rhamnosyl}
Kaempferide were discovered to have the closest relevance to ET-1, which has not been reported so far
and could provide further reference for the quality control and novel pharmaceutical development of
GRE. Moreover, this work proposes a feasible approach for the discovery and prediction of compounds
and their bioactivities in complex systems, especially for traditional Chinese medicine. The specific
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process is as follows: prepare the samples by the re-combination of different parts; establish the HPLC
fingerprints; evaluate the bio-effects in vivo; regard the compound differences and effect differences as
mathematical variables; analyze the relevance between the variables to find key bioactive compounds.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/5/1071/
s1, Table S1: The dimensionless data of 26 peak areas and parameter ET-1 values; Table S2: The total variance
explained of two Components; Table S3: The rotated component matrix; Compound-effect bubble chart.
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