$\mathrm{KO}^{t}{ }^{t} \mathrm{Bu}$ as a single electron donor? Revisiting the halogenation of alkanes with CBr_{4} and CCl_{4}

Katie J. Emery, Allan Young, J. Norman Arokianathar, Tell Tuttle, and John A. Murphy

SUPPORTING INFORMATION

Computational analysis of the reactivity of methylstyrene 17 in dichloromethane.

Computational modelling of single electron transfer from alkoxides, 14 and 29, to CBr_{4} in dichloromethane or CCl_{4} in tetrachloromethane.

Figure S1. Energy profile for SET from potassium 2-phenylpropan-2-olate 14 (black line) or $\mathrm{KO}^{t} \mathrm{Bu} 29$ (blue line) to $\mathbf{A) ~} \mathrm{CBr}_{4}$ in dichloromethane (left) and B) CCl_{4} in CCl_{4} (right).

The energy barriers for SET from either KOtBu, 29, or potassium 2-phenylpropan-2-olate 14 to a molecule of CBr_{4} were calculated to be $\Delta \mathrm{G}^{\ddagger}=35.4 \mathrm{kcal} / \mathrm{mol}$ and $36.1 \mathrm{kcal} / \mathrm{mol}$ respectively (SET from $\mathrm{KO}^{\star} \mathrm{Bu}$ to CCl_{4} in dichloromethane: $\Delta \mathrm{G}^{\ddagger}=38.8 \mathrm{kcal} / \mathrm{mol}$ and $\Delta \mathrm{G}_{\mathrm{rxn}}=$ $16.0 \mathrm{kcal} / \mathrm{mol}$), and these barriers are not accessible for a reaction performed at $40{ }^{\circ} \mathrm{C}$. When the reaction was performed in CCl_{4} a similar energy profile was obtained for the SET from either of the two alkoxides to a molecule of CCl_{4}. The energy barriers calculated were $\Delta \mathrm{G}^{\ddagger}=42.5 \mathrm{kcal} / \mathrm{mol}$ and $44.5 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{SET} \mathrm{to}^{\mathrm{CCl}_{4}}$ from $\mathrm{KO}^{\dagger} \mathrm{Bu} 29$ and potassium 2-phenylpropan-2-olate 14 respectively. From these computationally derived energy profiles for the SET step, it suggests that the initiation for this halogenation of adamantane 18 is not via SET from the alkoxide.

To reassure ourselves that our proposed pathway (Scheme 7) can occur experimentally under our conditions, tert-butyl hypochlorite 46 was prepared and subjected to our reaction conditions (Table S1). The tert-butyl hypochlorite 46 chlorinated adamantane 18 , in both dichloromethane and CCl_{4} as the solvents, to give products: 1-chloroadamantane 47 (25% and 11% respectively), and 1,3-dichloroadamantane 48 (16% and 26% respectively) (Table S1, entry 1 and 2). 2-Chloroadamantane 49 (13%) was formed in dichloromethane, but not in CCl_{4}. We also explored whether an efficient chain reaction could be initiated by lower amounts of tert-butyl hypochlorite 46 when CCl_{4} was added in stoichiometric quantities (Table S1, entries 3-5).

Table S1. The reaction of tert-butyl hypochlorite 46 in dichloromethane or carbon tetrachloride as solvent.

Entry ${ }^{\text {a }}$	Substrate (mmol)	Additive (mmol)	$\begin{gathered} \text { Solvent } \\ (\mathrm{mL}) \end{gathered}$	$\begin{gathered} \hline 18 \\ (\%) \\ \hline \end{gathered}$	47 (\%)	$\begin{gathered} \hline 48 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 49 \\ (\%) \\ \hline \end{gathered}$
1	46 (2)	18 (0.5)	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (3.13) \end{gathered}$	10	25	16	13
2	46 (2)	18 (0.5)	$\begin{gathered} \mathrm{CCl}_{4} \\ (3.13) \end{gathered}$	2	11	26	0
3	46 (0.4)	$\begin{gathered} 18(0.5) \\ \mathrm{CCl}_{4}(0.5) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (3.13) \end{gathered}$	58	12	1	6
4	46 (0.1)	$\begin{gathered} 18(0.5) \\ \mathrm{CCl}_{4}(0.5) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (3.13) \end{gathered}$	66	<1		
5		$\begin{gathered} 18(0.5) \\ \mathrm{CCl}_{4}(0.5) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (3.13) \end{gathered}$	71			

${ }^{\text {a }}$ yields were determined by spiking with 1,3,5-trimethoxybenzene (internal standard, $8.4 \mathrm{mg}, 10 \mathrm{~mol} \%$)
Table S2. tert-Butyl hypobromite 50 in bromination of adamantane 18.

Entry ${ }^{\text {a }}$	Substrate (mmol)	Additive (mmol)	Solvent (mL)	$\begin{gathered} \hline 18 \\ (\%) \end{gathered}$	$\begin{gathered} 31 \\ (\%) \end{gathered}$	$\begin{gathered} \hline 51 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ (\%) \\ \hline \end{gathered}$
1	50 (0.4)	18 (0.5)	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (3.13) \end{gathered}$	70	16	4	<1
2	50 (0.4)	$\begin{gathered} 18(0.5) \\ \mathrm{CBr}_{4} \\ (0.5) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (3.13) \end{gathered}$	2	28	5	18
3	50 (0.1)	$\begin{gathered} 18(0.5) \\ \mathrm{CBr}_{4} \\ (0.5) \\ \mathbf{1 8}(0.5) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (3.13) \end{gathered}$	29	35	14	11
4		$\begin{aligned} & \mathrm{CBr}_{4} \\ & (0.5) \end{aligned}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (3.13) \end{gathered}$	75			

${ }^{\text {a }}$ yields were determined by spiking with 1,3,5-trimethoxybenzene (internal standard, $8.4 \mathrm{mg}, 10 \mathrm{~mol} \%$)
In addition, tert-butyl hypobromite 50 was synthesised and subjected to similar reaction conditions (Scheme 7), affording analogous bromoadamantanes - (adamantane 18 (70\%), 1-bromooadamantane 31 (16%), 2-bromooadamantane 51 (4%), and 1,3-dibromoadamantane $48(<1 \%)$. We also explored whether an efficient chain reaction could be initiated by lower amounts of tert-butyl hypbromite 46 when CBr_{4} was added (Table S2, entries 2-4). In general, these conditions were not conducive to efficient halogenations. ${ }^{1}$

Preparation of tert-butyl hypochlorite 46

Throughout the experiment, all the equipment was covered in aluminium foil and the reaction mixture was always kept in the dark. $\mathrm{NaOCl}(0.6 \mathrm{M}, 200 \mathrm{~mL}, 1.4 \mathrm{eq}$.) was added to a round-bottomed flask and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . A mixture of tert-butanol ($8 \mathrm{~mL}, 84 \mathrm{mmol}$) and acetic acid (5.3 $\mathrm{mL}, 92 \mathrm{mmol}, 1.11 \mathrm{eq}$.$) were added in one batch under vigorous stirring and the reaction mixture was stirred$ at $0{ }^{\circ} \mathrm{C}$ for 10 min . The reaction mixture phase-separated. The top yellow phase was separated from the reaction mixture, washed with saturated aqueous NaHCO_{3} solution (50 mL) and water (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give tert-butyl hypochlorite $46{ }^{2,3}\left(0.82 \mathrm{~mL}, \mathrm{~d}=1.128 \mathrm{~g} \mathrm{~mL}^{-1}, 34 \%\right)$ as a yellow oil ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.9\left(3 \times \mathrm{CH}_{3}\right), 84.0(\mathrm{C})$. These signals are consistent with the literature values. The tert-butyl hypochlorite 46 was used immediately.

Reactions of tert-butyl hypochlorite 46 with adamantane 18:

Table S1, entry 1
tert-Butyl hypochlorite 46 (0.19 mL , freshly prepared, $2 \mathrm{mmol}, 4.0 \mathrm{eq}$.), adamantane 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$) and dichloromethane $(3.13 \mathrm{~mL})$ were added to an oven-dried pressure tube and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid $(1 \mathrm{M}, 5 \mathrm{~mL})$ and extracted with dichloromethane ($4 \times 10 \mathrm{~mL}$). The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (10\%), 1-chloroadamantane 47 (25%), 1,3-dichloroadamantane 48 (16%) and 2-chloroadamantane 49 (13%) were determined by adding 1,3,5trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-1.78(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane 18; $\delta 1.68(6 \mathrm{H}, \mathrm{s}), 2.14(9 \mathrm{H}, \mathrm{s})$ for 1-chloroadamantane $47 \operatorname{c}^{4} \delta 2.06(8 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}), 2.47(2 \mathrm{H}, \mathrm{s})$ for 1,3-chloroadamantane $48 ;{ }^{5} \delta 4.40\left(1 \mathrm{H}\right.$, s) 2-chloroadamantane $49 ;{ }^{6}{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.5,37.9$ for adamantane 18; $\delta 31.9,35.7,47.9$ for 1 -chloroadamantane $47 ;^{4} \delta 33.5,33.8,45.9,56.6,66.9$ for 1,3dichloroadamantane $48 ; 5,6 \delta 26.9,27.5,31.1,35.9,37.8,38.3,68.42$-chloroadamantane 49 . Analysis of the crude material showed that the products were inseparable, hence the analysis of the product mixture was performed using experimental ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ values reported within the literature as a reference.

1-Chloroadamantane $47^{55}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.68-1.69(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH} 2), 2.14(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}$ and 3 x CH2); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.9,35.7,47.9,69.1$.

1,3-Dichloroadamantane $48{ }^{5,6}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.63\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right), 2.06(8 \mathrm{H}, \mathrm{d}, 4 \times \mathrm{CH} 2), 2.30(2$ $\mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}), 2.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.4\left(\mathrm{CH}_{2}\right), 33.7$, $(2 \times \mathrm{CH}), 45.7\left(4 \times \mathrm{CH}_{2}\right), 56.5$ $\left(\mathrm{CH}_{2}\right), 66.7(2 \times \mathrm{C})$.

2-Chloroadamantane $49^{6}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.56-1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.76-1.87(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}$ and $\left.2 \times \mathrm{CH}_{2}\right), 1.93-1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.08(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}), 2.26-2.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.0,27.6,31.2,36.0,37.9,38.3,68.5$.

Table S1, entry 2

tert-Butyl hypochlorite 46 (0.19 mL , freshly prepared, $2 \mathrm{mmol}, 4.0 \mathrm{eq}$.), adamantane 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{CCl}_{4}(3.13 \mathrm{~mL})$ were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5$ mL) and extracted with dichloromethane $(4 \times 10 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (2\%), 1-chloroadamantane 47 (11\%) and 1,3-
dichloroadamantane 48 (26\%) were determined by adding 1,3,5-trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-1.78(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br}$ s) for adamantane $18 ; \delta 1.68(6 \mathrm{H}, \mathrm{s}), 2.14(9 \mathrm{H}, \mathrm{s})$ for 1-chloroadamantane $47 ;{ }^{4} \delta 2.06(8 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 2.47(2 \mathrm{H}, \mathrm{s})$ for 1,3-chloroadamantane $48 ;{ }^{5}{ }^{13} \mathrm{C}$-NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.5,37.9$ for adamantane 18; $\delta 31.9,35.7,47.9$ for 1 -chloroadamantane $47 ;{ }^{7} \delta 33.5$, 33.8, 45.9, 56.6, 66.9 for 1,3-chloroadamantane $48 .{ }^{5}$ These signals are consistent with the literature values and reference samples.

Table S1, entry 3
tert-Butyl hypochlorite 46 (24 mg , freshly prepared, $0.22 \mathrm{mmol}, 0.4 \mathrm{eq}$.$) , adamantane 18$ ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$), carbon tetrachloride ($77 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$.) and dichloromethane (3.13 mL) were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with dichloromethane $(4 \times 10 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (58\%), 1-chloroadamantane 47 (12%), 1,3-dichloroadamantane 48 (1\%) and 2chloroadamantane 49 (6\%) were determined by adding 1,3,5-trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-1.78(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane $18 ; \delta 1.68(6 \mathrm{H}, \mathrm{s}), 2.14(9 \mathrm{H}$, s) for 1chloroadamantane $47 ; 7 \delta 2.06(8 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 2.47(2 \mathrm{H}, \mathrm{s})$ for 1,3-chloroadamantane $48 ;{ }^{2} \delta 4.40(1 \mathrm{H}, \mathrm{s}) 2-$ chloroadamantane 49.9
Analysis of the crude material showed that the products were inseparable, hence the analysis of the product mixture was performed using experimental ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ values reported within the literature as a reference.

1-Chloroadamantane $47^{4}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.68-1.69\left(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}\right), 2.14(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}$ and 3 x CH2); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.9,35.7,47.9,69.1$.

1,3-Dichloroadamantane $48{ }^{5,8}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.63(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH} 2), 2.06(8 \mathrm{H}, \mathrm{d}, 4 \times \mathrm{CH}$), $2.30(2$ H, br s, $2 \times \mathrm{CH}$), $2.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.4\left(\mathrm{CH}_{2}\right), 33.7,(2 \times \mathrm{CH}), 45.7\left(4 \times \mathrm{CH}_{2}\right), 56.5$ $\left(\mathrm{CH}_{2}\right), 66.7(2 \times \mathrm{C})$.
2-Chloroadamantane $496{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.56-1.59(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 1.76-1.87(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}$ and $\left.2 \times \mathrm{CH}_{2}\right), 1.93-1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.08(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}), 2.26-2.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$; ${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.0,27.6,31.2,36.0,37.9,38.3,68.5$.

Table S1, entry 4

tert-Butyl hypochlorite 46 (5.4 mg , freshly prepared, $0.05 \mathrm{mmol}, 0.1 \mathrm{eq}$.), adamantane 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$), carbon tetrachloride ($77 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$.) and dichloromethane (3.13 mL) were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with dichloromethane $(4 \times 10 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (66%) and 1 -chloroadamantane $47(<1 \%)$ were determined by adding 1,3,5trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-1.78(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane 18; $\delta 1.68(6 \mathrm{H}, \mathrm{s}), 2.14\left(9 \mathrm{H}\right.$, s) for 1-chloroadamantane $47 ;{ }^{4}{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.5$, 37.9 for adamantane 18; $\delta 31.9,35.7,47.9$ for 1-chloroadamantane $47 .{ }^{4}$

Analysis of the crude material showed that the products were inseparable, hence the analysis of the product mixture was performed using experimental ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ values reported within the literature as a reference.

1-Chloroadamantane $47^{7}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.68-1.69\left(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}\right), 2.14(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}$ and 3 x CH2); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.9,35.7,47.9,69.1$.
Table S1, entry 5, blank reaction

Adamantane 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$), carbon tetrachloride ($77 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$.) and dichloromethane (3.13 mL) were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with dichloromethane ($4 \times 10 \mathrm{~mL}$). The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (71%) was determined by adding 1,3,5trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The product was identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-1.78(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane 18. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.5,37.9$. These signals are consistent with the literature values and reference samples.

Reaction of $\mathrm{KO}^{ \pm} \mathrm{Bu}$ with adamantane $18 \mathrm{in}_{\mathrm{CCl}}^{4}$

$\mathrm{KO}^{t} \mathrm{Bu} 29$ ($\left.224 \mathrm{mg}, 2 \mathrm{mmol}, 4.0 \mathrm{eq}.\right)$, adamantane $18(68 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{CCl}_{4}(3.13 \mathrm{~mL})$ were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with dichloromethane ($4 \times 10 \mathrm{~mL}$). The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (64%) and 1-chloroadamantane $47^{4}(5 \%)$ were determined by adding 1,3,5-trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-1.78(12 \mathrm{H}, \mathrm{m}), 1.88$ $(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane $18 ; \delta 1.68(6 \mathrm{H}, \mathrm{s}), 2.14(9 \mathrm{H}, \mathrm{s})$ for 1 -chloroadamantane $47 ;{ }^{4}{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 28.5,37.9$ for adamantane 18; $\delta 31.7,35.6,47.8$ for 1-chloroadamantane $47 .{ }^{4}$ These signals are consistent with the literature values and reference samples.

Synthesis of tert-butyl hypobromite 50

Throughout the experiment all the equipment was covered in aluminium foil and the reaction mixture was always kept in the dark. To a round-bottomed flask was added $\mathrm{NaOCl}(0.6 \mathrm{M}, 200 \mathrm{~mL}, 1.4 \mathrm{eq}$.$) and the$ reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . $\mathrm{NaBr}(9.26 \mathrm{~g}, 90 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was added and the reaction$ mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 min . A mixture of tert-butanol ($8 \mathrm{~mL}, 84 \mathrm{mmol}$) and acetic acid ($5.3 \mathrm{~mL}, 92$ $\mathrm{mmol}, 1.11$ eq.) was added in one batch under vigorous stirring and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was extracted with dichloromethane (10 mL), washed with water (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give tert-butyl hypobromite 50^{57} as a dark red solution in dichloromethane ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.5\left(3 \times \mathrm{CH}_{3}\right), 82.9(\mathrm{C})$. The tert-butyl hypobromite 50 was used immediately.

To quantify the amount of tert-butyl hypobromite 50 formed, 0.2 mL of the tert-butyl hypobromite/dichloromethane solution was transferred to a small vial and a solution of 1,2-dibromoethane (internal standard) in dichloromethane ($1 \mathrm{~mL}, 0.5 \mathrm{M}, 0.5 \mathrm{mmol}$) was added. The concentration was determined from ${ }^{1} \mathrm{H}$-NMR: In 0.2 mL of the tert-butyl hypobromite / dichloromethane solution, there is 0.052 mmol of tert-butyl hypobromite 50 . The compound was used immediately in reactions. To ensure the tertbutyl hypobromite $\mathbf{5 0}$ had not decomposed prior to being used in the reactions, the tert-butyl hypobromite / dichloromethane solution was analysed in the same way immediately after being used, to determine the amount of tert-butyl hypobromite 50 present in the tert-butyl hypobromite/dichloromethane solution: the amount was determined from ${ }^{1} \mathrm{H}-\mathrm{NMR}$: In 0.2 mL of the tert-butyl hypobromite/dichloromethane solution, there was 0.052 mmol of tert-butyl hypobromite 50 .

Reaction of tert-butyl hypobromite 50 with adamantane 18.

tert-Butyl hypobromite 50 (0.87 mL , freshly prepared and used immediately, $0.22 \mathrm{mmol}, 0.4$ eq.), adamantane 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$) and dichloromethane $(3.13 \mathrm{~mL})$ were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with dichloromethane ($4 \times 10 \mathrm{~mL}$). The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (70\%), 1-bromoadamantane 31 (16\%), 2-bromoadamantane 51 (4\%) and 1,3-
bromoadamantane $52(<1 \%)$ were determined by adding 1,3,5-trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74-1.76(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane $18 ; \delta 1.72(6 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.36(6 \mathrm{H}, \mathrm{m})$ for 1-bromoadamantane $31 ;{ }^{19} \delta 1.97-2.00(2 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.33(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.68(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ for 2-bromoadamantane 51;48 $\delta 1.70(2 \mathrm{H}, \mathrm{m}), 2.25-2.30(10 \mathrm{H}, \mathrm{m}), 2.87(2 \mathrm{H}, \mathrm{br}$ s) for 1,3-dibromoadamantane $52.47{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.5,37.9$ adamantane 18; $\delta 32.8,35.7,49.5$ for 1-bromoadamantane 31. These signals are consistent with the literature values and reference samples.

Reactions of $\mathrm{KO}^{\star} \mathrm{Bu}$ (29) with adamantane (18) and CBr_{4}
Table S2, entry 1
$\mathrm{KO}^{t} \mathrm{Bu} 29$ ($224 \mathrm{mg}, 2 \mathrm{mmol}, 4.0 \mathrm{eq}$.), adamantane 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$), CBr 4 ($166 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and dichloromethane $(3.13 \mathrm{~mL})$ were added to an oven-dried pressure tube and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid $(1 \mathrm{M}, 5 \mathrm{~mL})$ and extracted with dichloromethane $(4 \times 10 \mathrm{~mL})$. The organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (84\%) and 1bromoadamantane 31 (4\%) were determined by adding 1,3,5-trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74-1.76(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane $18 ; \delta 1.72(6 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.36(6 \mathrm{H}, \mathrm{m})$ for 1-bromoadamantane $31 ;{ }^{11}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.5,37.9$ adamantane 18; $\delta 32.8$, 35.7, 49.5 for 1-bromoadamantane 31. These signals are consistent with the literature values and reference samples. ${ }^{6,11}$

Table S2, entry 2

tert-Butyl hypobromite 50 (1.89 mL , freshly prepared and used immediately, $0.22 \mathrm{mmol}, 0.4 \mathrm{eq}$.$) , adamantane$ 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$), carbon tetrabromide ($166 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$.$) and dichloromethane (3.13 \mathrm{~mL}$) were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with dichloromethane $(4 \times 10 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (9\%), 1-bromoadamantane 31 (28\%), 2-bromoadamantane 51 (5\%) and 1,3-bromoadamantane 52 (18\%) were determined by adding 1,3,5-trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74-1.76(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane 18; δ $1.72(6 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.36(6 \mathrm{H}, \mathrm{m})$ for 1-bromoadamantane $311^{1} \delta 1.97-2.00(2 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.33(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.68(1 \mathrm{H}, \mathrm{br}$ s) for 2-bromoadamantane $51 ; 6 \delta 1.70(2 \mathrm{H}, \mathrm{m}), 2.25-2.30(10 \mathrm{H}, \mathrm{m}), 2.87(2 \mathrm{H}, \mathrm{br}$ s) for 1,3-dibromoadamantane $52 .{ }^{11}{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.5,37.9$ for adamantane 18; $\delta 32.8,35.7$, 49.5 for 1-bromoadamantane 31 . These signals are consistent with the literature values and reference samples.

Table S2, entry 3

tert-Butyl hypobromite 50 (0.33 mL , freshly prepared and used immediately, $0.05 \mathrm{mmol}, 0.1 \mathrm{eq}$.$) , adamantane$ 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$), carbon tetrabromide ($166 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$.) and dichloromethane (3.13 mL) were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with dichloromethane ($4 \times 10 \mathrm{~mL}$). The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (29\%), 1-bromoadamantane 31 (35%), 2-bromoadamantane 51 (14%) and 1,3-bromoadamantane 52 (11\%) were determined by adding 1,3,5-trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The products were identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74-1.76(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ for adamantane 18; δ $1.72(6 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.36(6 \mathrm{H}, \mathrm{m})$ for 1-bromoadamantane $311^{12} \delta 1.97-2.00(2 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.33(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.68(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ for 2-bromoadamantane $51 ; 45 \delta 1.70(2 \mathrm{H}, \mathrm{m}), 2.25-2.30(10 \mathrm{H}, \mathrm{m}), 2.87(2 \mathrm{H}$, br s) for 1,3 -dibromoadamantane $52 .{ }^{13}{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.5,37.9$ for adamantane $18 ; \delta 32.8,35.7$, 49.5 for 1-bromoadamantane 31 . These signals are consistent with the literature values and reference samples.

Table S2, entry 4, blank reaction

Adamantane 18 ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$), carbon tetrabromide ($166 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$.) and dichloromethane (3.13 mL) were added to an oven-dried pressure tube and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 90 h in the dark. The reaction mixture was cooled to RT and quenched with aqueous hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with dichloromethane ($4 \times 10 \mathrm{~mL}$). The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yield of adamantane 18 (75%) was determined by adding 1,3,5trimethoxybenzene to the crude mixture as an internal standard for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The product was identified by the following characteristic signals; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74-1.76(12 \mathrm{H}, \mathrm{m}), 1.88(4 \mathrm{H}$, br s) for adamantane 18. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.5,37.9$. These signals are consistent with the literature values and reference samples.

References

1. For efficient halogenation of alkanes with hypohalites, seeR. Montoro and T. Wirth, Synthesis, 2005, 1473-1478.
2. G. Bentzinger, W. De Souza, C. Mullié, P. Agnamey, A. Dassonville-Klimpt, P. Sonnet, Tetrahedron: Asymmetry, 2016, 27, 1-11.
3. F. Kleinbeck, G. J. Fettes, L. D. Fader, E. M. Carreira, Chem. Eur. J., 2012, 18, 3598-3610.
4. L. Candish, E. A. Standley, A. Gómez-Suárez, S. Mukherjee, F. Glorius, Chem. Eur. J., 2016, 22, 9971-9974.
5. J. Y. Becker, S. Yatziv, J. Org. Chem., 1988, 53, 1744-1748.
6. Y. Liu, Y. Xu, S. H. Jung, J. Chae, Synlett, 2012, 23, 2692-2698.
7. Y. Sato, T. Aoyama, T. Takido, M. Kodomari, Tetrahedron, 2012, 68, 7077-7081.
8. R. I. Khusnutdinov, N. A. Shchadneva, A. R. Bayguzina, T. Oshnyakova, Y. Y. Mayakova, U. M. Dzhemilev, Russ. J. Org.Chem., 2013, 49, 1557-1566.
9. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009
10. C. Walling, J. A. McGuinness, J. Am. Chem. Soc., 1969, 91, 2053-2058.
11. S. E. Denmark, B. R. Henke, J. Am. Chem. Soc., 1991, 113, 2177-2194
12. A. A. Fokin and P. R. Schreiner, Adv. Synth. Catal., 2003, 345, 1035-1052.
13. 44. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem., 2003, 24, 669-681

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR Spectra

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR 14

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR 17 (Commercial sample used as a reference)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR 16

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR 15

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR 18

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR 19

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR 20

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR 30

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$－NMR 33

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR 34

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR 32

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR 46

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR tert-butyl hypobromite 50

1.5 XYZ coordinates for computational optimisation

H atom abstraction in $17 / \mathrm{CBr}_{3}$ radical - starting species 17 and CBr_{3} radical in benzene
23
-426.9051125

C	-3.90491	-0.96580	-0.22621
C	-3.75423	0.22028	-0.93490
C	-2.81466	1.16321	-0.53024
C	-2.01249	0.94800	0.59521
C	-2.18151	-0.24924	1.30281
C	-3.11299	-1.19521	0.89682
H	-4.62615	-1.70798	-0.54756
H	-4.36334	0.41279	-1.81055
H	-2.70514	2.07400	-1.10586
H	-1.55768	-0.45941	2.16292
H	-3.21328	-2.12069	1.45215
C	-0.98211	1.94772	0.98847
C	-0.47340	2.00075	2.22312
H	-0.80937	1.34756	3.01932
H	0.29386	2.72463	2.47338
C	-0.53525	2.92369	-0.07065
H	-0.28316	2.40786	-1.00190
H	-1.32946	3.64039	-0.29914
H	0.33765	3.48289	0.26573
C	0.98108	-0.25076	-0.12691
Br	0.07561	-0.85567	-1.68954
Br	1.21401	-1.53394	1.26330
Br	2.45321	0.93081	-0.41129

H atom abstraction from 17/CBr3 radical - transition state in benzene

H	0.53096	0.13828	2.62011
H	-0.34978	1.72754	2.53226
H	-0.44283	0.49086	1.12809
C	-1.17109	-0.08734	0.05548
Br	-0.29117	-1.76801	-0.34876
Br	-1.03658	1.20776	-1.37934
Br	-2.98928	-0.31824	0.70604

H atom abstraction from 17 - products 59 and HCBr_{3} in benzene
23
-426.9178080

C	-3.43817	-1.67132	-0.27794
C	-3.64023	-0.56709	-1.10143
C	-3.10845	0.66920	-0.75541
C	-2.37730	0.82307	0.42482
C	-2.19771	-0.28572	1.25574
C	-2.71640	-1.52726	0.90250
H	-3.84107	-2.63822	-0.55513
H	-4.20963	-0.66968	-2.01787
H	-3.26482	1.52608	-1.40150
H	-1.62590	-0.18269	2.17282
H	-2.54776	-2.38216	1.54689
C	-1.75329	2.13504	0.76979
C	-1.82435	2.60181	2.07395
H	-2.37191	2.06320	2.83593
H	-1.34882	3.53447	2.35094
C	-1.08500	2.83989	-0.22445
H	-1.00182	2.45018	-1.23132
H	-0.62342	3.79539	-0.00779
C	1.01894	-0.02651	0.04643
Br	0.18676	-0.65225	-1.59916
Br	1.41858	-1.50066	1.26207
Br	2.60186	1.06525	-0.31788
H	0.31481	0.62475	0.54665

H atom abstraction from 17 - starting species 17 and CBr_{3} radical in dichloromethane
23
-426.9068042

C	-0.59175	3.06143	0.44122
C	-1.02673	2.66498	-0.82260
C	-1.80766	1.52723	-0.96838
C	-2.18557	0.76412	0.14608
C	-1.73160	1.16674	1.40583

C	-0.94354	2.30540	1.55306
H	0.03010	3.94199	0.55238
H	-0.73792	3.23400	-1.69904
H	-2.10703	1.20768	-1.96006
H	-1.99174	0.58985	2.28556
H	-0.60309	2.59794	2.53975
C	-3.03071	-0.45118	-0.00387
C	-2.86318	-1.54062	1.02446
C	-3.91791	-0.56892	-0.99594
H	-4.08513	0.22324	-1.71640
H	-4.51586	-1.46719	-1.10062
C	0.89088	-0.29981	-0.06697
Br	1.20544	-0.97081	1.69270
Br	2.20482	0.90390	-0.74481
Br	0.18166	-1.55165	-1.32107
H	-3.41533	-2.43363	0.73161
H	-3.23589	-1.21965	2.00120
H	-1.80850	-1.80068	1.14977

C	2.48362	-0.55089	0.72891
C	2.46284	0.84529	0.78609
C	3.26953	1.60346	-0.05627
H	4.74458	1.56573	-1.62210
H	4.81842	-0.91153	-1.71908
H	3.39178	-2.25371	-0.22384
H	1.78713	1.34464	1.47062
H	3.22978	2.68531	-0.00560
C	1.59060	-1.36238	1.60902
C	1.28807	-0.91016	2.88641
H	1.72996	-0.00937	3.29075
H	0.61904	-1.47671	3.52222
C	1.05011	-2.55022	1.12671
H	1.23036	-2.88931	0.11532
H	0.41636	-3.15755	1.76138
C	-1.19716	-0.04895	0.03483
Br	-0.29426	-0.28200	-1.67931
Br	-1.15922	1.80871	0.63442
Br	-3.02314	-0.74819	-0.01312
H	-0.65202	-0.63812	0.76026

H atom abstraction from 17 - transition state in dichloromethane

23			
-426.8841066			
C	-4.93425	-0.93960	0.31081
C	-4.45968	-1.10433	-0.98683
C	-3.35036	-0.38621	-1.42252
C	-2.70425	0.51624	-0.57224
C	-3.18871	0.67134	0.73140
C	-4.29340	-0.04975	1.16937
H	-5.79446	-1.50352	0.65184
H	-4.95357	-1.79168	-1.66365
H	-3.00198	-0.51388	-2.44109
H	-2.67823	1.34348	1.41216
H	-4.64978	0.07666	2.18501
C	-1.53952	1.31267	-1.05076
C	-1.39905	2.60647	-0.70624
H	-2.13987	3.11551	-0.10122
H	-0.54483	3.18284	-1.04387
C	-0.51527	0.64293	-1.86737
H	-0.82085	-0.25558	-2.39869
H	0.10015	1.30802	-2.47133
H	0.32769	0.19521	-1.04441
C	1.31070	-0.12675	-0.04838
Br	0.28971	-0.44313	1.56750
Br	2.43186	1.45424	0.06253
Br	2.26696	-1.69725	-0.67083

H atom abstraction of $17 \mathrm{CBr}_{3}$ radical - products X and HCBr_{3} in dichloromethane
23
-426.9183180

C	4.11587	0.97577	-0.96558
C	4.15326	-0.41515	-1.02216
C	3.34429	-1.17143	-0.18125

H atom abstraction from 18 - starting species 18 in dichloromethane 26
-390.6458290

C	-1.10154	0.02223	-1.38950
H	-0.87252	-0.32352	-2.40376
H	-2.13602	0.38348	-1.39153
C	-0.14894	1.16304	-0.99714
H	-0.25448	1.98966	-1.70645
C	-0.95480	-1.14017	-0.39527
H	-1.63379	-1.95113	-0.67608
C	0.49445	-1.65081	-0.41808
H	0.74433	-2.02000	-1.41905
H	0.60526	-2.48969	0.27824
C	1.29871	0.64722	-1.01915
H	1.98763	1.45755	-0.75565
H	1.55958	0.30977	-2.02852
C	1.45112	-0.51376	-0.02418
H	2.48252	-0.87897	-0.04101
C	1.10161	-0.02221	1.38921
H	1.22124	-0.83941	2.10939
H	1.78726	0.77959	1.68541
C	-0.49477	1.65065	0.41869
H	-1.52101	2.03405	0.44120
H	0.17003	2.47435	0.70211
C	-1.29900	-0.64750	1.01887
H	-2.33607	-0.29479	1.04870
H	-1.21276	-1.47342	1.73385
C	-0.34658	0.49150	1.41647
H	-0.59276	0.84140	2.42368

				H	-1.46100	0.23602	-2.07377	
	bstraction	from 18 - s	tarting species CBr_{3} radical	C	-0.51662	1.34640	1.08041	
	romethan			H	0.12724	2.14995	1.45289	
4				H	-1.53112	1.51522	1.45616	
				C	-0.52385	1.36006	-0.47432	
C	0.00044	-0.00044	0.33966	H	-0.89524	2.32476	-0.83336	
Br	1.85239	-0.26784	-0.01942	C	0.90989	1.13046	-0.98045	
Br	-1.15836	-1.46920	-0.01941	H	0.92292	1.14984	-2.07578	
Br	-0.69410	1.73712	-0.01940	H	1.56426	1.93703	-0.63197	
				C	1.42982	-0.22903	1.07371	
				H	1.80724	-1.18921	1.44059	
	abstract	ion of 18	8 - transition state in	H	2.08563	0.56422	1.44743	
	nethane			C	0.51992	-1.34927	-0.98734	
30				H	0.89383	-2.31972	-0.64288	
	626			H	0.52654	-1.36656	-2.08268	
C	-1.69951	0.40968	-1.37350	C	1.43704	-0.22444	-0.48103	
H	-1.35970	-0.26981	-2.16298	H	2.45613	-0.38419	-0.84639	
H	-1.26297	1.39556	-1.56598	H	abstract	n from	18 - product	HCBr_{3} in
C	-1.27870	-0.11942	-0.01398		methane			
H	-0.01580	-0.12510	-0.00522	5				
C	-3.24812	0.48677	-1.37206					
H	-3.58923	0.88147	-2.33389	C	0.00056	-0.00040	0.53201	
C	-3.81937	-0.91892	-1.13979	Br	1.75864	-0.62524	-0.04580	
H	-3.51459	-1.58326	-1.95483	Br	-1.42110	-1.20979	-0.04575	
H	-4.91350	-0.87447	-1.13991	Br	-0.33767	1.83511	-0.04573	
C	-1.77575	-1.53624	0.19124	H	0.00105	-0.00068	1.61262	
H	-1.39852	-1.96322	1.12699					
H	-1.45054	-2.17692	-0.63501					
C	-3.32356	-1.47091	0.21180					
H	-3.72308	-2.47631	0.36899		$\mathrm{C}^{\prime}-\mathrm{Br}$			
C	-3.79325	-0.53614	1.33668					
H	-4.88798	-0.50047	1.33763					

Neutral complex of 14 and CBr_{4} in dichloromethane			
-1116.1116760			
C	3.10600	0.93009	0.61016
C	2.68297	0.81112	2.08946
H	3.50789	0.50312	2.73667
H	2.32364	1.78662	2.42866
H	1.87227	0.08711	2.19661
C	4.31261	1.88956	0.52154
H	4.62136	1.99333	-0.52192
H	4.01315	2.87211	0.89887
H	5.16877	1.53943	1.10545
O	2.07777	1.45022	-0.15433
C	3.56206	-0.44960	0.10293
C	3.03091	-0.98119	-1.07248
C	4.53174	-1.19650	0.78308
C	3.44692	-2.22296	-1.55210
H	2.28262	-0.40565	-1.60253
C	4.95150	-2.43506	0.30863
H	4.97143	-0.80792	1.69593
C	4.40798	-2.95647	-0.86405
H	3.01802	-2.61808	-2.46680
H	5.70410	-2.99399	0.85377
H	4.73220	-3.92206	-1.23477
Br	-0.06633	0.46111	-0.01173

C	-1.95735	-0.26662	0.04902
Br	-3.14756	0.82699	-1.09293
Br	-2.64399	-0.22230	1.90371
Br	-1.99814	-2.13452	-0.59663
K	1.24586	3.63343	-0.93669
Triplet complex 44 in dichloromethane 27			
-1116.0776501			
C	2.30193	-1.04484	0.70234
C	1.46279	-1.77821	-0.35183
H	2.01937	-2.61793	-0.77089
H	0.54809	-2.15406	0.11012
H	1.19767	-1.08111	-1.14787
C	2.57293	-1.99402	1.90724
H	3.15012	-1.47761	2.67451
H	1.62566	-2.33948	2.32256
H	3.14293	-2.85097	1.54593
O	1.56608	-0.03774	1.28604
C	3.62712	-0.54028	0.13215
C	3.95004	0.81504	0.16401
C	4.53801	-1.43677	-0.43376
C	5.16100	1.26634	-0.35685
H	3.23946	1.51694	0.58047
C	5.74696	-0.98756	-0.95468
H	4.30882	-2.49665	-0.47177
C	6.06335	0.36839	-0.91725
H	5.39506	2.32445	-0.32957
H	6.44147	-1.69666	-1.38991
H	7.00381	0.72032	-1.32460
Br	0.49425	1.83738	-1.00419
C	-2.22121	-0.32519	-0.17504
Br	-2.02620	-1.20291	1.51587
Br	-2.12953	-1.44307	-1.71261
Br	-3.51162	1.07993	-0.23179
K	0.06526	1.94213	2.09261

H	5.40934	0.01548	0.88565
H	5.81889	-1.46676	-0.00236
O	2.93691	0.21790	0.00033
C	3.38738	-1.79711	-1.25348
C	-1.41957	-0.05845	-0.00013
K	2.83217	2.66403	0.00262
H	3.99700	-2.70543	-1.28527
H	2.33392	-2.08900	-1.27099
H	3.59542	-1.20717	-2.15097
Br	-2.07517	-1.39505	-1.30191
Br	-2.09604	-0.54006	1.79686
Br	-2.14752	1.71745	-0.49499
Br	0.62939	-0.00450	-0.00076

Triplet complex 45 in dichloromethane 20
-924.3685022

C	4.70433	-0.31992	0.25852
C	4.59623	-1.79140	0.66061
H	5.48883	-2.33459	0.34233
H	4.49407	-1.87981	1.74398
H	3.71962	-2.23312	0.18318
C	5.90609	0.34368	0.98065
H	5.96968	1.40266	0.72715
H	5.81279	0.23106	2.06114
H	6.81402	-0.15968	0.64270
O	3.62317	0.39507	0.75021
C	4.83439	-0.14945	-1.25482
C	-2.06866	-0.03608	0.11930
K	1.78092	2.04832	-0.29321
H	5.71972	-0.67292	-1.62259
H	3.94853	-0.56239	-1.74140
H	4.92257	0.90922	-1.51111
Br	-3.15680	-1.15085	-0.97859
Br	-2.04671	-0.44498	1.98252
Br	-2.06619	1.82747	-0.32393
Br	1.05408	-0.94765	-0.84691

Neutral complex of 14 and CCl_{4} in carbon tetrachloride 27
-2903.5754123

C	2.29240	1.12884	0.64758
C	1.95731	0.99349	2.15010
H	2.78116	0.58595	2.74215
H	1.71297	1.98667	2.53662
H	1.08514	0.34798	2.27901
C	3.56417	1.99612	0.50483

H	3.80938	2.10474	-0.55511
H	3.36302	2.98780	0.92066
H	4.42902	1.56777	1.02040
O	1.24533	1.71555	-0.01778
C	2.62482	-0.26963	0.08274
C	2.00048	-0.72218	-1.07906
C	3.56668	-1.11112	0.68725
C	2.29093	-1.97510	-1.61611
H	1.27553	-0.07034	-1.54943
C	3.86206	-2.36313	0.15710
H	4.08170	-0.78798	1.58596
C	3.22166	-2.80411	-0.99896
H	1.78737	-2.30502	-2.51865
H	4.59301	-2.99670	0.64743
H	3.44763	-3.78058	-1.41161
C	-2.55237	-0.56021	0.18435
K	-0.27510	3.08460	-1.15816
Cl	-3.75660	0.46765	-0.64398
Cl	-0.98260	0.27978	0.21369
Cl	-3.10512	-0.88079	1.84009
Cl	-2.39511	-2.09310	-0.69620

Triplet complex of 60 in carbon tetrachloride 27

-2903.5364951			
C	-1.80480	1.60632	-0.46437
C	-2.30812	1.27837	-1.87784
H	-3.35447	0.97347	-1.85532
H	-2.21206	2.16235	-2.50998
H	-1.71792	0.46443	-2.30189
C	-2.66274	2.76194	0.14295
H	-2.28228	3.03372	1.12724
H	-2.65176	3.62725	-0.51988
H	-3.68247	2.38795	0.24419
O	-0.55857	2.18283	-0.53988
C	-1.83634	0.40052	0.47379
C	-0.72678	0.06598	1.24467
C	-2.98897	-0.38387	0.57314
C	-0.75446	-1.04480	2.08541
H	0.18814	0.64186	1.19501
C	-3.02018	-1.48943	1.41537
H	-3.87150	-0.13999	-0.00853
C	-1.89894	-1.82777	2.17097
H	0.13462	-1.28744	2.65710
H	-3.92019	-2.08997	1.47852
H	-1.92202	-2.69508	2.82015
C	0.82704	-1.51652	-0.84676
K	2.02323	2.65420	-0.00182
Cl	2.79126	0.59266	1.80325
Cl	1.19342	-0.13550	-1.82774
Cl	2.15241	-2.43336	-0.29053
Cl	-0.58621	-2.38118	-1.30128

Neutral complex of 29 and CCl_{4} in carbon tetrachloride 20
-2711.8636814

C	-3.02634	-0.76219	0.00198
C	-2.69791	-1.61317	-1.24061
H	-3.28973	-2.53383	-1.28056
H	-2.89900	-1.03050	-2.14476
H	-1.63798	-1.88314	-1.23742
C	-4.52907	-0.42322	-0.02676
H	-4.78689	0.17543	0.85221
H	-4.75553	0.16477	-0.92150
H	-5.15837	-1.31976	-0.03256
O	-2.27628	0.39675	0.01073
C	-2.74169	-1.60166	1.26262
C	2.09086	-0.20150	0.00142
K	-1.49979	2.60659	-0.00004
Cl	2.78925	1.37273	-0.46841
Cl	0.31288	-0.07798	0.02300
Cl	2.59502	-1.43469	-1.17262
Cl	2.69393	-0.63997	1.61483
H	-3.33004	-2.52506	1.28827
H	-1.68088	-1.86538	1.29983
H	-2.97875	-1.01277	2.15387

Triplet complex 61 in carbon tetrachloride 61 20
-2711.8260835

C	-2.83443	-0.68658	-0.00449
C	-2.28839	-1.77393	-0.93147
H	-2.61761	-2.75876	-0.59371
H	-2.65334	-1.61892	-1.94951
H	-1.19800	-1.74960	-0.93819
C	-4.36360	-0.70193	0.07124
H	-4.71590	0.08841	0.73563
H	-4.79215	-0.54819	-0.92155
H	-4.70979	-1.66542	0.45062
O	-2.38719	0.55854	-0.39227
C	-2.22821	-0.84550	1.42033
C	1.95988	-0.55890	-0.13473
K	-0.64093	2.50685	-0.67527
Cl	0.56444	1.52425	1.71236
Cl	1.23764	-0.16704	-1.66020
Cl	3.60471	-0.12491	0.05089
Cl	1.46236	-2.04237	0.56768
H	-2.51259	-1.83854	1.77564
H	-1.14322	-0.74953	1.39094

$\mathrm{BrO}^{t} \mathrm{Bu}$ Homolysis - $\mathrm{BrO}^{t} \mathrm{Bu}$ Optimised Geometry in dichloromethane 15
-246.3067183

C	-1.27184	0.00002	0.03466
C	-1.29606	1.26315	0.88399
H	-0.47035	1.27354	1.59818
H	-1.22662	2.14805	0.24799
H	-2.23046	1.30891	1.44693
C	-1.29667	-1.26185	0.88579
H	-2.23005	-1.30539	1.45059
H	-1.22963	-2.14780	0.25101
H	-0.46966	-1.27236	1.59849
C	-2.41975	-0.00035	-0.97642
H	-2.37324	0.88876	-1.60696
H	-2.37279	-0.88956	-1.60682
H	-3.36878	-0.00058	-0.43652
O	-0.13765	-0.00115	-0.86009
Br	1.56511	-0.00001	-0.02944

$\mathrm{BrO}^{t} \mathrm{Bu}$ Homolysis - Br Radical Optimised Geometry in dichloromethane
1
-13.2872674
$\begin{array}{llll}\mathrm{Br} & 0.00000 & 0.00000 & 0.00000\end{array}$ in dichloromethane
30
-2268.8829758

C	-1.58604	-1.46703	0.00019
H	-2.21505	-2.35788	0.00028
C	-1.83404	-0.63474	-1.25885
C	-1.83402	-0.63445	1.25903
H	-1.61769	-1.24319	-2.14078

[^0]| C | 0.00013 | -0.02598 | 0.07633 |
| :--- | :---: | :---: | :---: |
| C | -1.26562 | -0.79290 | -0.31355 |
| H | -1.29097 | -1.75801 | 0.19702 |
| H | -2.15303 | -0.22279 | -0.03306 |
| H | -1.28435 | -0.97201 | -1.39063 |
| C | 1.27237 | -0.78234 | -0.31324 |
| H | 1.29295 | -0.96129 | -1.39032 |
| H | 2.15486 | -0.20482 | -0.03242 |
| H | 1.30554 | -1.74719 | 0.19736 |
| C | -0.00569 | 1.38003 | -0.57554 |
| H | -0.89906 | 1.93341 | -0.28471 |
| H | 0.88274 | 1.94106 | -0.28425 |
| H | -0.00486 | 1.24269 | -1.65861 |
| O | -0.00136 | 0.25952 | 1.42945 |

[^0]: $\mathrm{BrO}^{t} \mathrm{Bu}$ Homolysis - $\mathrm{O}^{t} \mathrm{Bu}$ Radical Optimised Geometry in dichloromethane
 14
 -232.9600216

