Supplementary Section

Preferential and increased uptake of hydroxyl terminated PAMAM dendrimers by activated microglia in rabbit brain mixed glial culture

Yossef Alnasser^{† 1,4}, Siva P. Kambhampati^{† 2}, Elizabeth Nance^{1,5}, Labchan

Rajbhandari³, Shiva Shrestha³, Arun Venkatesan³, Rangaramanujam M Kannan²,

Sujatha Kannan^{*,1,2}.

¹Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD

²Center for Nanomedicine, Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins, University School of Medicine, Baltimore, MD

³Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

⁴Current Address: Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.

⁵Current Address: Department of Chemical Engineering, University of Washington, Seattle, WA, USA.

† Co-first authors with equal contribution to this work

*Corresponding authors:

Sujatha Kannan, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD-21205, USA.

Tel.: +1 410 955 7610; email: <u>skannan3@jhmi.edu</u>

Rangaramanujam M. Kannan, Department of Ophthalmology, Center for

Nanomedicine at the Wilmer Eye Institute, 400 North Broadway, Baltimore, Maryland 21231, USA

Tel.: +1 443-287-8634; e-mail: krangar1@jhmi.edu.

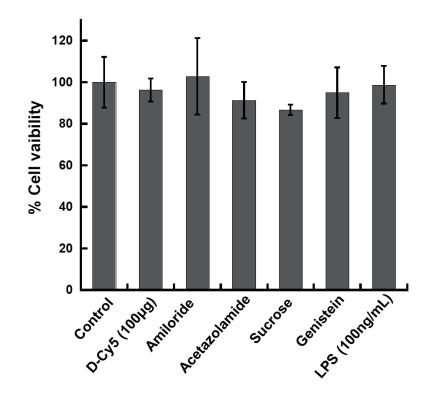


Figure S1: Cell toxicity profile various inhibitors in primary mixed glia culture. The various treatments D-Cy5 (100 μ g/mL), Amiloride (10 μ M) to prevent macropinocytosis, Acetazolamide (100 nM) obstruct aquaporin channels, Sucrose (450 nM) to impede fluid phase endocytosis, Genistein (100 nM) to block caveolae-mediated endocytosis, and LPS (100 ng/mL) to activate the cells were evaluated for cytotoxicity. Three hours treatment with aforementioned treatments did not demonstrate significant cytotoxicity (>85%).