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Abstract: Napthoquinones and coumarins are naturally occurring compounds with potential
anticancer activity. In the current study, two O-naphthoquinons (mansonone-G and mansonone-N)
and six coumarins (mansorin-A, mansorin-B, mansorin-C, mansorins-I, mansorin-II, and mansorin-III)
were isolated from the heartwood of Mansonia gagei family Sterculariaceae. Isolated compounds
were examined for their potential anticancer activity against breast (MCF-7), cervix (HeLa), colorectal
(HCT-116) and liver (HepG2) cancer cells using Sulfarhodamine-B (SRB) assay. Mansorin-II and
mansorin-III showed relatively promising cytotoxic profile in all cell lines under investigation
with inhibitory concentrations (IC50s) in the range of 0.74 µM to 36 µM and 3.95 µM to 35.3 µM,
respectively. In addition, mansorin-B, mansorin-C, mansorin-II and mansorin-III significantly
increased cellular entrapment of the P-glycoprotein (P-gp) substrate, doxorubicin, in colorectal
cancer cells expressing the P-gp pump. The inhibitory effect of the isolated compounds on P-gp pump
was examined using human recombinant P-gp molecules attached to ATPase subunit. Mansorin-B
and mansonone-G were found to inhibit the P-gp attached ATPase subunit. On the other hand,
mansorin-C, mansorin-III and mansorin-II inhibited P-gp pump via dual action (P-gp related ATPase
subunit inhibition and P-gp substrate binding site occupation). However, mansorin II was examined
for its potential chemomodulatory effect to paclitaxel (PTX) against colorectal cancer cells (HCT-116
and CaCo-2). Mansorin-II significantly reduced the IC50 of PTX in HCT-116 cells from 27.9 ± 10.2 nM
to 5.1 ± 1.9 nM (synergism with combination index of 0.44). Additionally, Mansorin-II significantly
reduced the IC50 of PTX in CaCo-2 cells from 2.1 ± 0.8 µM to 0.13 ± 0.03 µM (synergism with
combination index of 0.18). Furthermore, cell cycle analysis was studied after combination of
mansorin-II with paclitaxel using DNA flow cytometry analysis. Synergism of mansorin-II and PTX
was reflected in increasing apoptotic cell population in both HCT-116 and CaCo-2 cells compared to
PTX treatment alone. Combination of mansorin-II with PTX in CaCo-2 cells significantly increased
the cell population in G2/M phase (from 2.9 ± 0.3% to 7.7 ± 0.8%) with reciprocal decrease in G0/G1
cell fraction from 52.1 ± 1.1% to 45.5 ± 1.0%. Similarly in HCT-116 cells, mansorin-II with PTX
significantly increased the cell population in G2/M phase (from 33.4 ± 2.8% to 37.6 ± 1.3%) with
reciprocal decrease in the S-phase cell population from 22.8 ± 1.7% to 20.2 ± 0.8%. In conclusion,
mansorin-II synergizes the anticancer effect of paclitaxel in colorectal cancer cells, which might be
partially attributed to enhancing its cellular entrapment via inhibiting P-gp efflux pump.
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1. Introduction

Naphthoquinones are a group of widely distributed phenolics of plant origin and are classified to
ortho and para-naphthoquinones. Ortho-naphthoquinones are particularly known for their cytotoxic
effects among other biological activities such as anti-bacterial, anti-fungal and antiparasitic and
acetylcholine esterase inhibitory effects [1]. Mansonones are a group of sesquiterpene-derived
ortho-naphthoquinones occurring in different genuses in the plant kingdom such as Hibiscus,
Mansonia and Thespesia [2]. Mansonones are, biosynthetically, thought to be phytoalexins produced
by the injury of bark of some plants such as American elm (Ulmus minor). Mansonones E and F were
reported to possess a potent cytotoxic effect on HeLa, human malignant melanoma A357-S2, MCF-7 and
human histocytic lymphoma U937 cell lines [3,4]. In addition, antileukemic and topoisomerase
inhibitory effects were reported to mansonone E. However, other mansonones such as mansones
A–D, G, I–S were not investigated for their possible cytotoxic effects on several cell lines despite their
structural similarity to that of mansones E and F [5].

Coumarins are naturally occurring benzopyrones with wide biological activities reported such
as anti-inflammatory, antibacterial, cytotoxic, antioxidant and anti HIV effects [6]. Several naturally
occurring coumarins and their synthetic derivatives exhibited cytotoxic effects via a telomerase enzyme
inhibitory effect, protein kinases inhibition and oncogene downregulation. Other suggested cytotoxic
mechanisms of coumarins are induction of caspase-9-mediated apoptosis and antiproliferative effects
due to cell cycle arrest in G0/G1-phase and G2/M-phase [7,8]. Finally, coumarins are expected to
inhibit the efflux activity of p-glycoprotein (P-gp) and enhance the anticancer properties of several
P-gp substrate chemotherapies [9].

Mansonia gagei is a tree belonging to the family Sterculiaceae and native to Thailand [10]. M. gagei
heartwood was reported as a folk remedy for cardiac stimulation, anti-emetic, antidepressant and
refreshing agent [11]. Several O-naphthoquinones named mansonones were isolated from this plant.
In addition, a group of unique coumarins (Mansorin A–C and I–III), which are structurally related to
mansonones, were also isolated from M. gagei. Mansonones and mansorins obtained from M. gagei
revealed anti-estrogenic, larvicidal, antioxidant and antifungal activities [12–16]. Despite there are some
reports about the cytotoxic effects of mansonones, there is nothing reported regarding the cytotoxicity
of coumarins from this plant. Herein, we tested the potential cytotoxic effects of O-naphthoquinones
and related coumarins from M. gagei against four different types of solid tumor cells. Among them,
mansorin-II was further investigated for potential chemomodulatory effect to paclitaxel against
colorectal cancer cells.

2. Results and Discussion

2.1. Isolation and Structural Identification of O-Naphthoquinones and Coumarins

The CHCl3-soluble fraction of M. gagie was subjected to several chromatographic processes using
normal and reversed phase silica gel columns to obtain 7 compounds (1, 3–8) (Figure 1). In addition,
compound 2 was obtained from its closely related 1 by demethylation using hydroiodic acid (Figure 1).
The compounds were identified as six coumarins; mansorin A (1), mansorin B (2), mansorin C (3) [13],
mansorin I (4), mansorin II (7) and mansorin III (8) [16], and, in addition to two sesqueterpenoid
naphthoquinones, mansonone G (5) [17], and mansonone N (6) [15]. Compounds were identified by
comparing its 1H and 13C-NMR data with the reported literature (Supplementary Materials Figures S5–S12).
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2.2. Cytotoxicity Assessment of Some O-Naphthoquinones and Coumarins

SRB-U assay was used to assess the cytotoxicity of eight naturally naphthoquinone and related
coumarin compounds against four different tumor cell lines over concentration range 0.01–100 µM.
Tested compounds showed variable cytotoxicity against cell lines under investigation (HCT-116,
HepG2, MCF-7 and HeLa cell lines) (Supplementary Materials Figures S1–S4). However, MCF-7 was
relatively more resistant while HeLa was the most sensitive cell line under investigation (Table 1).

Table 1. Cytotoxicity parameters of some naturally occurring coumarins and O-naphthoquinones
against different solid tumor cell lines.

Compound

HCT-116 HepG2 MCF-7 HeLa

IC50
(µM)

R-Fraction
(%)

IC50
(µM)

R-Fraction
(%)

IC50
(µM)

R-Fraction
(%)

IC50
(µM)

R-Fraction
(%)

Mansorin-A (1) 11.2 0.0 3.9 46.5 2.1 90.5 12.3 1.5
Mansorin-B (2) 5.7 26.3 21.9 0.0 5.0 78.9 38.7 1.3
Mansorin-C (3) 8.6 49.9 12.1 31.3 3.1 77.2 1.0 3.5
Mansorin-I (4) 11.1 0.0 35.3 0.0 23.8 0.0 3.95 0.0
Mansorin-II (7) 19.3 0.36 26.8 0.0 36.0 0.0 0.74 5.7
Mansorin III (8) >100 0.0 7.2 69.6 >100 0.0 5.2 39.8

Mansonone-G (5) 63.4 0.5 49.4 1.1 23.0 5.1 18.8 1.8
Mansonone-N (6) >100 0.0 >100 5.2 >100 97.2 >100 0.0

In HCT-116 colorectal cancer cells, mansorin-A, mansorin-I and mansorin-II showed the most
potent cytotoxic profile with R-values less than 20% and IC50s of 11.2 µM, 11.1 µM and 19.3 µM,
respectively. Mansonone-G, mansonone-N and mansorin-III possessed relatively weaker cytotoxic
profile with IC50s higher than 50 µM. With respect to mansorin-B and mansorin-C, despite their
apparent high potencies (IC50s of 5.7 µM and 8.6 µM, respectively), their R-values were higher than
20% (26.3% and 49.9%, respectively). It was found in our previous work that decreasing the R-value
percent is an indicator of diminishing colorectal cancer cell resistance due to the overexpression of the
P-glycoprotein efflux pump [18].

In HepG2 liver cancer cells, mansorin-B, mansorin I, mansonone-G and mansorin II showed
relatively potent cytotoxic profile at an R-value less than 20% and IC50s ranging from 21.9 µM to
49.4 µM. Mansonone-N showed weak cytotoxicity with IC50 higher than 100 µM. However, the R-value
of mansonone-N was relatively low (5.2%). On the other hand, mansorin-A, mansorin-C and mansorin
III suffered from high cellular resistance in HepG2 cells (R-values were higher than 30%). Similar to
colorectal cancer cells, liver cancer might express P-gp pump [19]. In addition, other underlying reasons
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for liver cancer cell resistance are reported such as tumor-associated stem cells [20], overexpression of
oncogenes and/or downregulation of tumor suppressor genes [21].

With respect to MCF-7 breast cancer cells, mansorin I, mansonone-G and mansorin II showed
considerable cytotoxicity with IC50s of 23.8 µM, 23.0 µM and 36.0 µM, respectively (R-values were less
than 20%). Mansonone-N and mansorin I showed weak cytotoxicity with IC50 higher than 100 µM.
Other compounds (mansorin-A, mansorin-B and mansorin-C) showed apparently low IC50s (2.1 µM,
5.0 µM and 3.1 µM, respectively) with very high resistance (R-values were higher than 70%).

The most sensitive cell line to O-naphthoquinones and related coumarins under investigation
was HeLa cells; mansorin-A, mansorin-B, mansorin-C, mansorin II, mansorin-I, and mansonone-G
killed HeLa cells with IC50s less than 50 µM and R-values less than 10%. Only mansonone-N did not
show any cytotoxicity against HeLa cells with IC50 higher that 100 µM and mansorin-III suffered from
resistant fraction higher than 30%. Structurally related coumarins are known to induce apoptosis and
cell cycle arrest in cervical cancer cells such as HeLa cells [22].

Accordingly, mansorin-I and mansorin-II would be recommended for further investigations either
as cytotoxic or cytotoxicity chemomodulating agent. It is worth mentioning that coumarins are known
for their cytotoxic potential due to their non-covalent DNA binding ability [23].

2.3. The Influence of O-Naphthoquinones and Related Coumarins on the Cellular Pharmacokinetics within
Tumor Cells

Multidrug resistance in particular tumor types, such as solid tumors within the gastrointestinal
tract, is highly attributed to impaired cellular pharmacokinetics and intracellular drug entrapment
issues [24]. The ability of O-naphthoquinones and related coumarins to enhance the cellular entrapment
of P-glycoprotein substrates was tested within HCT-116 colorectal cells. Mansorin-II, mansorin-B,
mansorin-C and mansorin-I significantly increased cellular internalization of doxorubicin (P-gp
probe) and significantly increased its intracellular concentration from 5.37 ± 0.17 nmole/cell to
5.78 ± 0.19 nmole/cell, 5.55 ± 0.13 nmole/cell, 5.8 ± 0.14 nmole/cell and 5.78 ± 0.19 nmole/cell,
respectively. On the other hand, mansorin-A decreased the intracellular concentration of doxorubicin
to 5.01 ± 0.12 nmole/cell (Figure 2A). HCT-116 and other colorectal cancer cells are known to express
P-gp efflux protein and participate considerably in their resistance to chemotherapies [18,25].

Further investigation for the sub-molecular interaction between the isolated compounds and P-gp
subunits was undertaken using human recombinant P-gp membrane bound protein linked to ATPase
enzyme subunits. P-gp binding site inhibitors such as verapamil (VRP) are supposed to increase
ATPase activity due to conformational changes and results in more ATP consumption (68.7% less
remaining ATP concentration compared to basal ATP consumption). On the other hand, direct ATPase
enzyme subunit inhibitors such as sodium vanadate would decrease ATP consumption (203.7% more
remaining ATP concentration compared to basal consumption condition). Only mansorin-B and
mansonone-G showed pure ATPase inhibitory effects with 155.6% and 137.0% more remaining ATP
concentration, respectively (Figure 2B). Other naphthoquinones and coumarins did not induce any
significant change for ATP consumption rate. This might be attributed to lack of interaction with
either subunit of P-gp molecules or attributed to dual interaction with both subunits. However,
mansorin-II, mansorin-C and mansorin-I significantly increased cellular entrapment of P-gp probe.
Accordingly, it is suggested that mansorin-II, mansorin-C and mansorin-I interact with both subunits
of P-gp molecules. On the other hand, mansorin-A, mansonone-N and mansorin-III did not exert
any significant interaction with either subunits of P-gp molecules. Our previous work on synthetic
compounds based on curcumin scaffold showed a distinct ATPase inhibitory effect and/or binding
site inhibition effect. This, in turn, increased the efficacy and decreased the resistance to paclitaxel
within colorectal cancer cells [18]. Many other P-gp inhibitors of synthetic origin were suggested as
potential chemomodulators of several anticancer drugs [26–29]. Herein, a similar chemomodulatory
effect is expected when combining compounds such as mansorin-II with P-gp substrate (such as
paclitaxel) [30]. However, several compounds of natural origin are known for their P-gp inhibitory
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potential and hence chemomodulatory capacity due to improving the cellular pharmacokinetics of
anticancer agents [9,31,32].
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Figure 2. The effect of isolated compounds on the activity of P-glycoprotein efflux pump within
HCT-116 cells (A) and in cell free isolated recombinant P-gp protein (B). Data is presented as
mean ± SD; n = 3. (*): significantly different from CCl4 treated group.

2.4. Chemomodulatory Effect of Mansorin-II to Paclitaxel (PTX) against Colorectal Cancer Cells

P-gp efflux activity is a considerable determinant for paclitaxel intracellular pharmacokinetics and
hence cell killing effect [30,33]. Attributed to its considerable cytotoxic profile and its P-gp interaction
properties, mansorin-II would be a good candidate to improve the activity of P-gp substrate drugs
(such as paclitaxel) within P-gp expressing tumor cell types (such as colorectal cancer). Cytotoxicity of
mansorin-II was much weaker in CaCo-2 cells compared to HCT-116 cells with IC50s of 107.9 ± 6.4 µM
and 19.3 ± 3.7 µM, respectively. However, mansorin-II synergistically improved the cytotoxic profile of
PTX against both colorectal cancer cell lines. Mansorin-II significantly decreased the IC50s of PTX form
27.9 ± 10.2 nM and 2.1 ± 0.8 µM to 5.1 ± 1.9 nM and 0.13 ± 0.03 µM in HCT-116 and CaCo-2 cells,
respectively (Figure 3A,B). The combination indices for equitoxic combination of mansorin-II and PTX
within HCT-116 and CaCo-2 cells were 0.44 and 0.18, respectively. In addition, mansorin-II decreased
the resistant fraction to PTX within HCT-116 and CaCo-2 cells from 14.2 ± 5.3% and 3.1 ± 0.37% to
11.6 ± 6.3% and 1.8 ± 0.25%, respectively (Table 2). As shown in our previous work, inhibiting P-gp
ATPase subunit would decrease tumor cell resistance, while binding site inhibition increased anticancer
potency (decreased IC50) [18].
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Figure 3. The effect of mansorin-II on the cytotoxicity of PTX in HCT-116 (A) and CaCo-2 (B) cell lines.
Cells were exposed to serial dilution of PTX ( ), mansorin-II (#) or their combination (H) for 72 h. Cell
viability was determined using SRB assay.
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Table 2. Effect of mansorin-II on the cytotoxicity parameters of PTX in colorectal cancer cell lines.

HCT-116 CaCo-2

IC50 R-Value (%) IC50 R-Value (%)

PTX 27.9 ± 10.2 nM 14.2 ± 5.3 2.1 ± 0.8 µM 3.1 ± 0.37
Mansorin-II 19.3 ± 3.7 µM 0.36 ± 0.007 107.9 ± 6.4 µM 0.34 ± 0.004

PTX with mansorin-II 5.1 ± 1.9 nM 11.6 ± 6.3 0.13 ± 0.03 µM 1.8 ± 0.25

CI-index/CI-value Synergism/0.44 Synergism/0.18

2.5. Cell Cycle Distribution Analysis of Colorectal Cancer Cells

Cell cycle distribution using DNA flow cytometry was used to investigate the nature of interaction
between PTX and mansorin-II. Cell cycle analysis can figure out or dissect the antiproliferative
effect of PTX, mansorin-II or their combination in terms of cell cycle phase specificity (G0/G1, S and
G2/M-phases) [34]. In addition, it gives considerable clues for potential cell killing effects by assessing
cell population in the pre-G phase [35]. In CaCo-2 cells, mansorin II significantly increased cell
population is S-phase from 22.4 ± 1.4% to 29.9 ± 0.6% with reciprocal decrease inG2/M cell population
(Figure 4A,B,E). Suboptimal exposure (24 h) to PTX alone did not exert any significant change in the
cell cycle distribution pattern of CaCo-2 cells (Figure 4A,C,E). Combination of PTX with mansorin-II
induced significant cell cycle arrest at G2/M phase (11.2 ± 0.7%) compared to control or PTX treatment
alone (4.0 ± 0.3% and 4.2 ± 0.4%, respectively). The induced G2/M cell phase arrest was accompanied
by reciprocal decrease in the non-proliferating cell population (G0/G1-phase) from 73.4 ± 1.1% to
66.8 ± 0.8% (Figure 4A,C–E). Finally, exposure of CaCo-2 cells to PTX for 24 h resulted in significant
cell death observed by elevated pre-G cell population form 2.9 ± 1.1% to 27.8 ± 0.9%. Combination of
PTX with mansorin-II further increased pre-G cell population to 31.9 ± 0.3% (Figure 4F).
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Figure 4. Effect of mansorin II on the cell cycle distribution of CaCo-2 cells. The cells were exposed to
mansorin II (B), PTX (C), or combination of mansorin II and PTX (D) for 24 h and compared to control
cells (A). Cell cycle distribution was determined using DNA cytometry analysis and different cell phases
were plotted (E) as percentage of total events. Sub-G cell population was taken as representative of
late apoptosis/necrosis and was plotted as percent of total events (F). Data is presented as mean ± SD;
n = 3. (*): significantly different from control group; (**): significantly different from PTX group.
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With respect to HCT-116, mansorin-II significantly decreased cell population is S-phase
from 29.0 ± 0.4% to 27.3 ± 0.7% with reciprocal apparent increase in G2/M cell population from
23.1 ± 0.5% to 25.0 ± 0.9% (Figure 5A,B,E). PTX alone significantly induced cell cycle arrest at
G2/M-phase (33.4 ± 1.6%) with reciprocal decrease in both S-phase and G0/G1-phase from 29.0 ± 0.4%
to 22.8 ± 1.0% and from 47.8 ± 0.8% to 43.8 ± 0.9%, respectively (Figure 5A,C,E). Combination of
mansorin II with PTX further increased cell accumulation in G2/M phase up to 37.6 ± 0.8% with
further reciprocal decrease in S-phase to 20.2 ± 0.4% (Figure 5A,D,E). Finally, exposure of HCT-116
cells to PTX for 24 h resulted in significant cell death observed by elevated pre-G cell population
form 0.2 ± 0.01% to 1.7 ± 0.1%. Combination of PTX with mansorin II further increased pre-G cell
population to 2.4 ± 0.1% (Figure 5F).

Coumarins were found to induce cell cycle arrest and cell killing effect in tumor cells [22]. Herein,
mansorin-II potentiated the PTX-dependent cell cycle arrest and cell killing effects. Despite some
reports for the potential anticancer properties of natural and synthetic mansorins [36–38], to the best of
our knowledge, this is the first report for anticancer chemotherapeutic and chemomodulatory effect
of mansorin-II.
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Figure 5. Effect of mansorin II on the cell cycle distribution of HCT-116 cells. The cells were exposed to
mansorin II (B), PTX (C), or combination of mansorin II and PTX (D) for 24 h and compared to control
cells (A). Cell cycle distribution was determined using DNA cytometry analysis and different cell phases
were plotted (E) as percentage of total events. Sub-G cell population was taken as representative of
late apoptosis/necrosis and was plotted as percent of total events (F). Data is presented as mean ± SD;
n = 3. (*): significantly different from control group; (**): significantly different from PTX group.
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3. Materials and Methods

3.1. Drugs and Chemicals

Verapamil (VRP), trypan blue and Sulforhodamine-B (SRB) were purchased from Sigma Chemical
Co. (St. Louis, MO, USA). Phosphate buffer saline (PBS) was purchased from Becton Dickinson
(Fullerton, CA, USA). Penicillin/streptomycin and trypsin, RPMI-1640 media, DMEM media, fetal
bovine serum (FBS), and other cell culture materials were purchased from Gibco (Grand Island,
NY, USA). Other reagents were of the highest analytical grade.

3.2. General Experimental Procedures

TLC analysis was performed on pre-coated TLC plates with silica gel 60 F254 (Merck, Darmstadt,
Germany). Column chromatographic separations were performed on silica gel 60 (70–230 mesh, Merck,
Darmstadt, Germany). 1H and 13C-NMR spectra were recorded on a Bruker DRX-850 MHz Ultrashield
spectrometer (Bruker BioSpin, Billerica, MA, USA) using CDCl3 as solvent, with TMS as the internal
reference. Medium pressure liquid chromatography (MPLC) was performed on LiChroprep RP-18 and
LiChroprep Si 60 (size A and B, Merck Co., Kenilworth, NJ, USA).

3.3. Plant Material

The heartwood of Mansonia gagei Drumm was bought from the herbal drugstore “Cho Krom
Pur,” Bangkok, Thailand, and was identified by Dr. Katsuko Komatsu (Institute of Natural Medicine,
University of Toyama, Toyama, Japan). A voucher specimen has been kept in the herbarium of the Institute
of Natural Medicine, University of Toyama, Japan.

3.4. Extraction and Isolation of Compounds from A. melegueta

The mansonones and mansorins were isolated as previously described [16]. The dried powdered
heartwood of M. gagei (3.5 kg) was extracted with methanol on cold. The methanol extract (250 g) was
suspended in water (500 mL) and partitioned with chloroform (1L × 3) and the pooled chloroform
fractions were evaporated under vacuum. The combined chloroform fraction (100 g) was fractionated
on a silica gel column (70 cm × 8 cm) eluted with hexane-acetone (5% until 80% v/v) to yield eight
fractions. Fraction 1 (7 g) was applied to a silica gel column (40 cm × 4 cm) eluted with hexane-ethyl
acetate (9.5:0.5 v/v) to obtain compound 1 (4 g). The remaining of fraction 1 was re-chromatographed
using an MPLC silica gel 60 column (size A) (hexane-ethyl acetate, 9.5:0.5 v/v) to afford compounds 3
(15 mg), 6 (30 mg) and 7 (16 mg). Fraction 3 (5.2 g) was applied to a silica gel column (40 cm × 4 cm)
and eluted with hexane-ethyl acetate (9.5:0.5~9:1 v/v), then the eluate was pooled into three main
sub-fractions. Fraction 3-2 was purified on a silica gel column (20 cm × 2.5 cm) eluted with hexane-ethyl
acetate (9:1 v/v) to obtain compound 5 (2 g). Fraction 3-3 was purified on an MPLC RP-18 column
(size B) eluted with MeOH-H2O (7:3 v/v) to get compound 4 (7 mg) and 8 (15 mg).

3.5. Preparation of Compound 2

Compound 1 (116 mg, 0.5 mmol) was dissolved in acetic anhydride (5 mL). Hydroiodic acid
(HI) (d = 1.7, 2 mL) was added to the previous solution with occasional shaking. The mixture was
refluxed at 150 ◦C for 2 h in an oil bath. The resultant product was added to a saturated solution of
sodium thiosulfate and extracted with ethyl acetate (10 mL × 3). The pooled ethyl acetate extracts
were applied to a silica gel column using n-hexane-EtOAc (9.5:0.5 v/v) to obtain 2 as a yellowish white
powder (91.5 mg) (74%) [39].

3.6. Cell Culture

Five different human solid tumor cell lines were used; colorectal cancer cell lines (HCT-116 and
CaCo-2), cervical cancer cell line (HeLa), hepatocellular canrcinoma cell line (HepG2), and breast
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adenocarcinoma cell line (MCF-7). All cell lines were obtained from VACSERA, Giza, Egypt. Cell lines
were maintained in RPMI-1640 or DMEM media containing 100 U/mL penicillin; 100 µg/mL
streptomycin, and supplemented with 10% heat-inactivated fetal bovine serum (FBS). Cells were
propagated in a humidified cell culture incubator with 5% (v/v) CO2 at 37 ◦C.

3.7. Cytotoxicity Assessment

The cytotoxicity of the isolated compounds was tested against HCT-116, HeLa, HepG2, and MCF-7
cells by SRB assay as previously described [40]. Briefly, exponentially growing cells were collected using
0.25% Trypsin-EDTA and seeded in 96-well plates at 1000–2000 cells/well. Cells were treated with the
isolated compounds for 72 h and subsequently fixed with trichloroacetic acid, TCA (10%) for 1 h at
4 ◦C. After several washings with water, cells were exposed to 0.4% SRB solution for 10 min at room
temperature in a dark place and subsequently washed with 1% glacial acetic acid. After the plates dried
overnight, Tris-HCl was used to dissolve the SRB stained cells. Color intensity was measured at 540 nm
with SpectraMax® ELISA microplate reader (Molecular Devices LLC, San Jose, CA, USA).

3.8. Data Analysis

The dose-response curves were analyzed as previously described [41] using Emax model (Equation (1)):

% Cell viability = (100 − R)×
(

1 − [D]m

Kd
m + [D]m

)
+ R, (1)

where [R] is the residual unaffected fraction (the resistance fraction), [D] is the drug concentration
used, [Kd] or IC50 is the drug concentration that produces a 50% reduction of the maximum inhibition
rate and [m] is a Hill-type coefficient. Absolute IC50 is defined as the drug concentration required to
reduce absorbance by 50% of that of the control (i.e., Kd = absolute IC50 when R = 0 and Emax = 100-R).

3.9. The Influence of Mansorin-II and Other O-Naphthoquinones/Coumarins on the Cellular Pharmacokinetics

To assess the effect of mansorin-II and other naphthoquinones/coumarins on cellular
pharmacokinetics in colorectal cancer cells, their effect on the efflux pumping activity of P-gp
was evaluated. Herein, doxorubicin (DOX) was used as P-gp fluorescent substrate. Intracellular
DOX concentration was determined with and without co-exposure with mansorin-II and other
naphthoquinones/coumarins and compared to VRP as a standard P-gp inhibitor (positive control).
Briefly, exponentially proliferating cells were plated in 6-well plates at plating density of 105 cells/well.
Cells were exposed to equimolar concentration of DOX (10 µM) and test compounds or VRP for 24 h
at 37 ◦C and, subsequently, extracellular DOX-containing media was washed three times in ice cold
PBS. Intracellular DOX was extracted after cell lysis by sonication with saturated aqueous solution of
ZnSO4 (100 µL), acetonitril (500 µL) and acetone (250 µL) for 20 min at 37 ◦C. After centrifugation, clear
supernatant solution was collected and DOX concentration was measured spectroflourometrically at
λex/em of 482/550 nm. DOX concentration was normalized based on cell number [42].

3.10. Determining Sub-Molecular Interaction Characteristics between P-gp Protein and
O-Naphthoquinones/Coumarins

P-gp inhibitors block its efflux pumping activity via either covalent binding or inhibiting P-gp
ATPase activity. Human recombinant membrane bound P-gp protein attached with ATPase subunit
(Pgp-Glo™ Assay Systems, Promega Corporation, Madison, WI, USA) was used as previously
described to determine the mechanism of P-gp inhibition via determining ATP consumption
rate [18,25]. Briefly, test compounds (10 µM) were incubated with Pgp-Glo™ assay systems according
to manufacturer’s protocol. Rate of ATP consumption was calculated by measuring the luminescent
signal of the unmetabolized ATP via a firefly luciferase system. Compounds whose covalents bind to
P-gp substrate binding sites are supposed to stimulate ATPase subunits and increase ATP consumption,
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while ATPase inhibitor compounds would decrease ATPase subunit activity and decrease the ATP
consumption rate. Verapamil and sodium vanadate were used as positive controls (binding site blocker
and ATPase inhibitors, respectively). ATP consumption was expressed as remaining ATP concentration
and normalized per P-gp protein concentration (p.mole ATP/µg P-gp protein).

3.11. Chemomodulatory Effect of Mansorin-II to Paclitaxel within Colorectal Cancer Cells

The chemomodulatory effect of mansorin-II to paclitaxel (PTX) within colorectal cancer cells was
determined using combination analysis between PTX and mansorin II as previously described [43].
Briefly, exponentially growing HCT-116 and CaCo-2 cells were seeded in 96-well plates (2000 cells/well)
and exposed to equitoxic concentrations of PTX and mansorin-II for 72 h. Cells were subsequently
subjected to SRB assay as described in the previous section. Combination index (CI-value) was
calculated and used to define the nature of drug interaction (synergism if CI-value < 0.8 as; antagonism
if CI-value > 1.2; and additive if CI-value ranges from 0.8–1.2).

CI-value was calculated from the formula:

CI − value =
IC50o f drug(x)combination

IC50o f drug(x)alone
+

IC50o f drug(y)combination
IC50o f drug(y)alone

. (2)

3.12. Analysis of Cell Cycle Distribution

To assess the effect of the paclitaxel, mansorin-II and their combination on cell cycle distribution,
CaCo-2 and HCT-116 cells were treated with the pre-determined IC50s of both agents for 24 h.
After treatment, cells were collected by trypsinization, washed twice with ice-cold PBS and
re-suspended in 0.5 mL of PBS. Two milliliters of 70% ice-cold ethanol were added gently while
vortexing. Cells were kept in ethanol solution at 4 ◦C for 1 h for fixation. Upon analysis, fixed cells were
washed and re-suspended in 1 mL of PBS containing 50 µg/mL RNAase A and 10 µg/mL propidium
iodide (PI). After 20 min incubation in a dark place at room temperature, CaCo-2 cells were analyzed
for DNA contents by FACS-VantageTM (Becton Dickinson Immunocytometry Systems, San Jose,
CA, USA). For each sample, 10,000 events were acquired. Cell cycle distribution was calculated
using CELLQuest software (Becton Dickinson Immunocytometry Systems) [44]. HCT-116 cells were
injected through a ACEA Novocyte™ flow cytometer (ACEA Biosciences Inc., San Diego, CA, USA)
and analyzed for DNA content using an FL2 signal detector (λex/em 535/617 nm). For each sample,
12,000 events were acquired and quantified by ACEA NovoExpress™ software (ACEA Biosciences
Inc., San Diego, CA, USA) [45].

3.13. Statistical Analysis

Data are presented as mean ± SEM using GraphPad prism™ software (version 5.00, GraphPad
software Inc., La Jolla, CA, USA) for Windows. Analysis of variance (ANOVA) with a Newman–Keuls
post hoc test was used for testing the significance using SPSS® for Windows, version 17.0.0. (SPSS Inc.,
Chicago, IL, USA) p < 0.05 was taken as a cut-off value for significance.

4. Conclusions

Mansorin-II (naturally occurring coumarin) synergizes the anticancer effect of paclitaxel.
This synergism might be partly attributed to interfering with the efflux activity of the P-gp pump
and/or interfering with cell cycle progression. Further mechanistic studies for the proposed
intracellular targets of mansorin-II and related compounds are strongly recommended.

Supplementary Materials: The following are available online. Figure S1. Dose response curves of different
naturally occurring O-naphthoquinones and related coumarins against HCT-116 cells, Figure S2. Dose response
curves of different naturally occurring O-naphthoquinones and related coumarins against HepG2 cells, Figure S3.
Dose response curves of different naturally occurring O-naphthoquinones and related coumarins against MCF-7
cells, Figure S4. Dose response curves of different naturally occurring O-naphthoquinones and related coumarins
against HeLa cells, Figure S5. 1H- and 13C-NMR charts of compound 1, Figure S6. 1H- and 13C-NMR charts of
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compound 2, Figure S7. 1H and 13C NMR charts of compound 3, Figure S8. 1H- and 13C-NMR charts of compound
4, Figure S9. 1H- and 13C-NMR charts of compound 5, Figure S10. 1H and 13C-NMR charts of compound 6,
Figure S11. 1H- and 13C-NMR charts of compound 7, Figure S12. 1H- and 13C-NMR charts of compound 8.
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