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Abstract

:

Aconitum (Ranunculaceae) consists of approximately 400 species distributed in the temperate regions of the northern hemisphere. Many species are well-known herbs, mainly used for analgesia and anti-inflammatory purposes. This genus is well represented in China and has gained widespread attention for its toxicity and detoxification properties. In southwestern China, several Aconitum species, called ‘Dula’ in the Yi Nationality, were often used to control the poisonous effects of other Aconitum plants. In this study, the complete chloroplast (cp) genomes of these species were determined for the first time through Illumina paired-end sequencing. Our results indicate that their cp genomes ranged from 151,214 bp (A. episcopale) to 155,769 bp (A. delavayi) in length. A total of 111–112 unique genes were identified, including 85 protein-coding genes, 36–37 tRNA genes and eight ribosomal RNA genes (rRNA). We also analyzed codon usage, IR expansion or contraction and simple sequence repeats in the cp genomes. Eight variable regions were identified and these may potentially be useful as specific DNA barcodes for species identification of Aconitum. Phylogenetic analysis revealed that all five studied species formed a new clade and were resolved with 100% bootstrap support. This study will provide genomic resources and potential plastid markers for DNA barcoding, further taxonomy and germplasm exploration of Aconitum.
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1. Introduction


Chloroplasts are an important semiautonomous organelle in plants, providing essential energy [1]. The chloroplast genome structure, gene content and gene order is often better conserved than the nucleus and the mitochondria genome. It contains about 130 genes, with a typical circular quadripartite structure comprising two identical copies of inverted repeats (IRs), separated by a large single-copy region (LSC) and a small single-copy region (SSC). The chloroplast genome sizes of almost all land plants range between 120–160 kb in length [2,3]. Generally, coding regions in the chloroplast genome show lower polymorphism than non-coding regions [4]. With the rapid development of next generation sequencing (NGS) technologies, an increasing number of studies have focused on plant chloroplast genomes. Sequencing and phylogenetic analysis on the complete cp genome is a highly efficient and relatively low-cost way for improving intrageneric classification and population analysis. Recently, comparative analysis of the complete chloroplast (cp) genomes of several closely related species has provided promising results for the study of phylogeny, species identification and evolution [3,5,6,7,8,9].



Aconitum (Ranunculaceae) is a perennial or pseudoannual genus with an erect or twining stem and blue, purple or yellow flowers. It is comprised of about 400 species distributed in the temperate regions of the northern hemisphere and there are 211 species in China [10]. The genus is one of the most important medicinal and poisonous plants in the world [10]. Aconitum species have been noted for their toxicity from as early as mid-7 BC in Guoyu [11]. At present, many species are well-known herbs and mainly used for analgesia and anti-inflammatory purposes [12]. To date, the cp genomes of 17 Aconitum species have been reported [13,14].



In southwestern China, some Aconitum species, which are called ‘Dula,’ are often used to control the poisonous effects of other Aconitum plants; they are A. episcopale, A. vilmorinianum, A. contortum and A. delavayi [15,16,17,18,19]. The first two species are twining, belonging to Aconitum subgen. Aconitum ser. Volubilia; the last two species are erect and a member of ser. Stylosa and ser. Ambigua respectively [20]. The major medicinal and toxic compounds aconitine, hypaconitine and mesaconitine are not contained in these species. However, the use of morphological and molecular markers for the identification of Aconitum species is controversial or limited due to unmanageable phenotypic characteristics or morphological similarity among species [21,22,23,24]. The coexistence of toxic species and species with antidote properties in Aconitum may result in misuse during practical application. Therefore, providing more genomic information is imperative for the understanding of these species and the safe and effective utilization of ‘Dula.’



In this study, we used an Illumina Miseq Platform to assemble the cp genomes of five herbal plants in Aconitum, four ‘Dula’ (A. episcopale, A. contortum, A. vilmorinianum, A. delavayi) and one, A. hemsleyanum (ser. Volubilia), which is also twining and morphologically similar to A. vilmorinianum and clustered with ‘Dula’ in previous analyses [23,24,25]. The aims of our study were: (1) to deepen understanding of the structural patterns of Aconitum cp genomes; (2) to provide knowledge for species identification of ‘Dula’; (3) and to reconstruct phylogenetic relationships among the Aconitum species using the cp genome sequences.




2. Results and Discussion


2.1. Chloroplast Genome Features


We obtained cleaned reads of 8,783,602 bp to 24,899,740 bp from the five Aconitum species, using the Illumina Miseq platform. Out of 1161–2540 de-novo assembled contigs, only 3–4 contigs were used in the final cp genome assemblies (Table 1). The five Aconitum cp genomes ranged from 151,214 bp (A. episcopale) to 155,769 bp (A. delavayi) in length and 56.4× to 159.9× coverage. They had a typical quadripartite structure that was similar to the majority of cp genomes of land plants, consisting of a pair of IRs (26,209 bp–26,240 bp), separated by the LSC (83,182 bp–86,394 bp) and SSC (of 15,598 bp–16,949 bp) regions (Table 1 and Figure 1). Compared with other Aconitum species, we discovered that the size of the cp genome in A. episcopale is the smallest [13,14]. These five plastomes are highly conserved in gene content, gene order and intron number. The cp genomes of A. vilmorinianum, A. delavayi, A. hemsleyanum and A. contortum had the same GC content of 38.1%, A. episcopale showed a subtle difference (38.3%) compared with the others. The GC contents of the LSC and SSC regions of the five species were lower than that of the IR regions due to the reduction of AT nucleotides in the four duplicate rRNA genes [6,26].



The cp genomes of four species contained 112 unique genes, including 78 protein-coding genes (PCGs), 30 transfer RNA genes (tRNA) and four ribosomal RNA genes (rRNA). A. episcopale did not contain the trnG-UCC tRNA gene. The LSC region contained 60 PCGs and 21–22 tRNA genes, while the SSC region contained eleven PCGs and one tRNA gene. Seven PCGs (rpl2, rpl23, ycf2, ycf15, ndhB, rps7 and rps12), seven tRNA (trnI-CAU, trnL-CAA, trnV-GAC, trnI-GAU, trnA-UGC, trnR-ACG and trnN-GUU) and all four rRNA (rrna16, rrna23, rrna4.5 and rrna5) genes were duplicated and all were located in IR regions (Table 1 and Table 2 and Figure 1). Compared with A. sinomontanum, A. barbatum var. puberulum and A. barbatum var. hispidum, the rps16 gene was missing in these five species [13,26]. Two pseudogenes ψrps19 and ψycf1 were found in A. contortum, A. episcopale, A. vilmorinianum and A. hemsleyanum, while only one pseudogene ψycf1 was found in A. delavayi.



Introns are non-coding fragments of genes that are under less functional constrains and thus accumulated mutations more rapidly. However, introns can have an integral in regulating gene expression [27]. In four Aconitum species, with the exception of A. episcopale, 15 intron-containing genes were investigated: 12 genes (atpF, rpoC1, ndhB, petB, rpl2, ndhA, trnA-UGC, trnI-GAU, trnK-UUU, trnL-UAA, trnG-GCC and trnV-UAC) had only one intron, while three genes (clpP, ycf3 and rps12) had two introns. In A. episcopale, there are also 15 intron-containing genes; the petB gene does not contain an intron, the other intron-containing genes are similar to the other four Aconitum species (Table S1). The rps12 gene was a trans-spliced gene with 5’ end located in the LSC region and the duplicated 3’ end in IR regions, which was similar to other land plants [6,9]. The trnK-UUU gene had the largest intron and ranged from 2236 bp–2538 bp. It also contained the matK gene.




2.2. Codon Usage


We further analyzed the codon usage frequency and relative synonymous codon usage (RSCU) based on sequences of 85 PCGs in the five Aconitum species cp genomes. Among these, leucine was the most abundant amino acid, with 2325 (10.32%), 2316 (10.32%), 1852 (8.77%), 2320 (10.32%) and 2324 (10.33%) of codons in A. vilmorinianum, A. delavayi, A. episcopale, A. hemsleyanum and A. contortum, respectively, while cysteine was the least abundant amino acid, with 256 (1.14%), 256 (1.14%), 382 (1.81%), 256 (1.14%) and 256 (1.14%) codons in each species, respectively (Figure 2 and Table S2). Codon usage was biased towards A and T at the third codon position in the five species, which agrees with previous reports for the angiosperm chloroplast genome [28,29,30]. Furthermore, the usage of start codons AUG and UGG, encoding methionine and tryptophan, had no bias (RSCU = 1) (Table S2).




2.3. Repeat and SSR Analyses


Repeat regions are considered to play an important role in the generation of substitutions and indels [29,31,32]. A total of 151 repeats were identified in the five Aconitum chloroplast genomes, including 42 forward repeats, 59 palindromic repeats, 15 reverse repeats and 35 tandem repeats. Aconitum hemsleyanum possessed the highest number of repeats (37), while A. episcopale possessed the fewest (24) (Figure 3A and Table S3). The majority of repeats ranged in size from 20 to 39 bp (Figure 3B). Most of them were distributed in intergenic (52.32%) or gene regions (43.71%) and only 3.97% were located in intron regions, such as clpP and rpoC1 (Figure 3C and Table S3). Repeats located in identical regions with the same lengths were identified as shared repeats. Using this criterion, 18 repeats were found to be shared by all five Aconitum species (Table 3), providing a useful resource for phylogeny and population studies.



SSRs are tandemly repeated DNA sequences with 1–6 bp and are distributed throughout the genome. They are widely used for the screening of effective molecular markers for detecting intraspecific and interspecific polymorphisms [33,34] and population genetics [35]. In total, 1375 SSRs were identified in the cp genome of the five Aconitum species, ranging from 259 SSRs in A. episcopale to 282 SSRs in A. vilmorinianum and A. contortum; more than half of the SSRs were composed of A or T (Figure 4A,C and Table S4). The majority of SSRs were mononucleotide repeats, followed by trinucleotide repeats; no hexanucleotide repeats were found. Most of the SSR repeats were located in intergenic spacer regions (IGS) (57.75%), while the regions situated in coding DNA sequence (CDS) or tRNA introns, ψrps19 or ψycf1 and rRNA or tRNA accounted for 32.36%, 6.84%, 1.24% and 1.82% of SSR repeats, respectively (Figure 4B). Among these mononucleotide repeats, there were generally polyadenine (polyA, 47.33–51.09%) and polythymine (polyT, 45.99–49.58%) repeats (Table S4) and rarely tandem guanine (G) or cytosine (C) repeats, which agrees with previous chloroplast SSRs reports [36]. The longest polyA (17 bp) and the most abundant mononucleotide (51.09%) were found in A. contortum.




2.4. Comparative Chloroplast Genomic Analysis


Sequence identity plots of the five Aconitum species were generated, with the annotation of A. vilmorinianum cp genome as a reference (Figure 5). LSC and SSC regions were more divergent than IRs regions. Whereas, the coding regions were more conserved than the non-coding regions, the highly divergent non-coding regions among the five chloroplast genomes appeared in IGS, such as trnH-psbA, trnK-trnQ, atpF-atpH, trnC-petN, ycf4-cemA, trnP-psaJ and rpl16-rps3. Among coding regions, ndhA, ndhH, rps15 and ycf1 genes were relatively divergent. On the other hand, all the rRNA genes were highly conserved and are similar to other plants’ chloroplast genomes [37]. For further understanding of the nucleotide variability (Pi), we also calculated the DNA polymorphism among these five Aconitum species (Figure 6). The results are the same as previous reports: the IR regions more conserved than LSC and SSC regions [13,14]. There were eight variable regions that showed high Pi values (≥0.005), including psbA and ycf1 genes, the intron of trnV-UAC and intergenic regions (trnK-UUU-trnQ-UUG, trnE-UUC-trnT-GGU, trnT-GGU-psbD, trnT-UGU-trnL-UAA and rpl20-rps12) in the chloroplast genomes. These hotspot regions could be developed as molecular markers and barcoding for future phylogenetic analyses and species identification of Aconitum.




2.5. IR Expansion and Contraction


IRs are the most conserved regions of the chloroplast genome. However, the contraction and expansion of IR borders are common evolutionary events and are the major reason for size differences between chloroplast genomes [37]. Chloroplast genome structure and the junction positions between IR regions were well conserved among the five Aconitum species but structure variation was still found in the IRs/SC borders (Figure 7). There were 3 bp protrusion of rps19 gene into IRa regions, with the corresponding pseudogene fragment ψrps19, located in the IRa/LSC border for A. vilmorinianum, A. hemsleyanum and A. contortum. This agrees with most Aconitum subgen. Aconitum species. However, the length of this protrusion was 107 bp in A. episcopale [13]. Moreover, no pseudogene fragment ψrps19 was found in A. delavayi and there were 127 bp between rps19 and the IRa/LSC border. Long ψycf1 fragments with 1259–1291 bp were created at the IRa regions due to the border between SSC and IRb located in the ycf1 genes. In addition, the trnH-GUG genes for four of the five species were all located in the LSC region, with the distance between trnH-GUG and the IRb/LSC border varying from 54 to 55 bp. The exception to this was A. episcopale, in which the trnH-GUG gene overlapped with the ψrps19 by 49 bp.




2.6. Phylogenetic Analyses


Relationships within Aconitum species are fairly well resolved in previously published studies but the positions of the twining species of Aconitum still remain somewhat uncertain and there is a possibility that they might have evolved independently in various groups [13,23]. The phylogenetic analysis of these five species mostly used the chloroplast fragment trnH-psbA and the nuclear fragment ITS [21,23,24]. In the present study, we chose two datasets (the whole cp genomes and 77–79 PCGs) from the five Aconitum species and 20 published plastomes to perform the phylogenetic analysis. A phylogenetic tree based on the same dataset, using ML and BI, had an almost identical topological structure but different support values (Figure 8).



There were no obvious conflicts between the phylogenetic trees built by different datasets but the support values of the branches based on the whole cp genomes dataset were higher than those based on the PCG dataset, except for the clade of A. delavayi and A. episcopale. All of the 22 Aconitum taxa formed a monophyletic clade with 100% bootstrap value or the Bayesian posterior probability. The five species formed a monophyletic clade with 100% bootstrap value or the Bayesian posterior probability within Aconitum subgen. Aconitum, among which three twining species belonging to ser. Volubilia (A. episcopale, A. vilmorinianum and A. hemsleyanum) were clustered with the species from ser. Stylosa (A. contortum) and ser. Ambigua (A. delavayi). Furthermore, A. delavayi and A. episcopale formed a monophyletic group with very high support value and sister to the clade that was clustered by A. vilmorinianum and A. hemsleyanum (Figure 8), a finding consistent with the previous result that the ser. Volubilia was not a monophyly [23]. Aconitum vilmorinianum had a closer phylogenetic relationship to A. hemsleyanum than to the other three species. At the same time, the phylogenetic relationship constructed using the whole cp genomes dataset showed that A. ciliare and A. japonicum subsp. napiforme formed a clade with a high support value of 98.4/1.00, sister to A. kusnezoffii (Figure 8); however, their monopyly was not resolved with the PCGs (Figure S1). The current phylogenetic tree showed the deep-level relationships of Aconitum species, raising the possibility that the cp genome sequences may be useful for elucidating the phylogeny of Aconitum species in the future.





3. Materials and Methods


3.1. Plant Material, DNA Extraction and Sequencing


Fresh leaves of five Aconitum species were collected from Yunnan province and dried with silica gel. Voucher specimens were deposited in the herbarium of the Kunming Institute of Botany (KUN), Chinese Academy of Sciences. Total genomic DNA was extracted with the modified cetyltrimethyl ammonium bromide (CTAB) method [38]. The extracted DNA was sequenced using the Illumina Miseq platform (Illumina, San Diego, CA, USA). The chloroplast sequence generated in this study was submitted to GenBank (Table 1).




3.2. Chloroplast Genome Assembly and Annotation


For each Aconitum species, reads of the cp genome were assembled using CLC Genomic Workbench v10 (CLC Bio., Aarhus, Denmark). All the contigs were checked against the reference genome of A. chiisanense (KT820665), using BLAST (https://blast.ncbi.nlm.nih.gov/) and aligned contigs were oriented according to the reference genome. The complete cp genomes were then constructed using Geneious v4.8.5 (Biomatters Ltd., Auckland, New Zealand).



The annotation of cp genome sequence was performed using DOGMA (http://dogma.ccbb.utexas.edu/) [39] and start/stop codons and intron/exon boundaries were adjusted in Geneious v4.8.5. The tRNA was identified through tRNAscan-SE v2.0 [40]. The circular genome map was generated in OGDRAW (http://ogdraw.mpimp-golm.mpg.de/) [41].




3.3. Structure of Genome and Genome Comparison


All protein-coding genes were used for determining the codon usage. Avoiding the influence of the amino acid composition, we examined the RSCU using MEGA v7.0 [42]. We identified the repeat sequences, including palindromic, reverse and forward repeats, in REPuter Online software, with the following settings: Hamming distance of 3 and minimum repeat size of 30 bp [43]. Tandem Repeats Finder v4.07 was used to analyze tandem repeats using default settings [44]. Simple sequence repeats (SSRs) were detected by Phobos v3.3.12 [45] and SSR Hunter v1.3 [46]. The threshold value of the repeat number was set as: ≥8 for mononucleotide repeats, ≥4 for dinucleotide repeats and ≥3 for trinucleotide repeats, tetranucleotide repeats, pentanucleotide repeats and hexanucleotide repeats. The mVISTA was used to compare the cp genomes of the five Aconitum species in Shuffle-LAGAN mode, with annotation of A. vilmorinianum as a reference [47]. These cp genome sequences were aligned by CLC Genomic Workbench v10. Sliding window analysis was conducted to determine the nucleotide diversity of the cp genome using DnaSP v5, with 200 bp of step size and 600 bp window length [48].




3.4. Phylogenetic Analyses


In order to explore the phylogenic relationships of the five species among Aconitum, a total of 20 complete cp genomes of the family Ranunculaceae were obtained from GenBank, including 17 Aconitum taxa and another three species from different genera as outgroups (Table S5). For the phylogenetic analysis, 77–79 PCGs and the whole cp genomes were aligned by CLC Genomic Workbench with default parameters. A Maximum Likelihood (ML) tree was then performed in RAxML [49], with the nucleotide substitution model of GTR + Gamma and a bootstrap of 1000 replicates. Bayesian inference (BI) was estimated with MrBayes v3.2.6 [50]. The best-fitting substitution model was selected using jModelTest [51]. The general time-reversible (GTR) model was chosen with a gamma model for the rate of heterogeneity. The Markov chain Monte Carlo (MCMC) analysis was run for 10,000,000 generations. The trees were sampled every 1000 generations, with the first 25% discarded as burn-in.





4. Conclusions


The cp genomes of the four special Aconitum medicinal species ‘Dula’ and one species A. hemsleyanum were reported for the first time. The cp genomes all displayed a typical quadripartite structure, which was similar to that of most angiosperms. Aconitum episcopale was found to have the smallest size of cp genome (151,214 bp) presently known in Aconitum species. Except for A. delavayi, the other four species were found to have two pseudogenes (ψrps19 and ψycf1). Eight variable regions (psbA, ycf1, trnV, trnK-trnQ, trnE-trnT, trnT-psbD, trnT-trnL and rpl20-rps12) were identified and may potentially be useful as specific DNA barcodes for identifying Aconitum species. The result of phylogenetic analyses showed that the Aconitum subgen. Aconitum ser. Volubilia was not monophyletic. The resulting trees showed good construction of the deep-level relationships of Aconitum species, indicating that the whole cp genome sequences will have much better resolution in the phylogenetic study of Aconitum species in the future.
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Figure 1. Chloroplast genome map of five Aconitum species. Genes lying outside the circle are transcribed in the counter clockwise direction, while those inside are transcribed in the clockwise direction. The colored bars indicate different functional groups. The darker gray area in the inner circle denotes GC content while the lighter gray corresponds to the AT content of the genome. LSC: large single copy, SSC: Small single copy, IR: inverted repeat. 
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Figure 2. Codon content for the 20 amino acids and stop codons in 85 protein-coding genes in the five Aconitum species chloroplast genomes. RSCU: relative synonymous codon usage; F: phenylalanine; L: leucine; I: isoleucine; M: methionine; V: valine; S: serine; P: proline; T: threonine; A: alanine; Y: tyrosine; *: stop; H: histidine; Q: glutamine; N: asparagine; K: lysine; D: aspartic acid; E: glutamic; C: cysteine; W: tryptophan; R: arginine; G: glycine. 
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Figure 3. The type, length and distribution of repeats in the chloroplast genomes of five Aconitum species. (A) Number of different repeat types: F, forward; P, palindromic; R, reverse; T, tandem; (B) Number of different repeat lengths; (C) Proportion of repeats in LSC, SSC and IR regions. 
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Figure 4. The number and distribution of SSRs in the chloroplast genomes of five Aconitum species. (A) Total number of repeats; (B) Proportion of repeats in IGS, CDS, CDS or tRNA introns, ψrps19 or ψycf1 and rRNA or tRNA regions; (C) Number of repeats in LSC, SSC and IR. 
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Figure 5. Comparison of five chloroplast genomes using A. vilmorinianum annotation as a reference. The vertical scale indicates the percentage of identity, ranging from 50 to 100%. The horizontal axis indicates the coordinates within the chloroplast genome. Genome regions are color-coded as exons, introns and conserved non-coding sequences (CNS). 






Figure 5. Comparison of five chloroplast genomes using A. vilmorinianum annotation as a reference. The vertical scale indicates the percentage of identity, ranging from 50 to 100%. The horizontal axis indicates the coordinates within the chloroplast genome. Genome regions are color-coded as exons, introns and conserved non-coding sequences (CNS).



[image: Molecules 23 01015 g005]







[image: Molecules 23 01015 g006 550] 





Figure 6. Sliding-window analysis on the cp genomes for five Aconitum species. X-axis: position of the midpoint of a window; Y-axis: nucleotide diversity (Pi) of each window. 
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Figure 7. Comparisons of LSC, SSC and IR region borders among five Aconitum chloroplast genomes. ψ indicates a pseudogene. Genes are denoted by colored boxes. The number above the gene features shows the distance between the end of the gene and the borders sites. The slashes indicate the location of the distance. The arrows indicated the orientation (5’→3’) of the rps19, ndhF and ycf1 genes. This figure is not to scale. 
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Figure 8. Phylogenetic tree constructed using Maximum Likelihood (ML) and Bayesian Inference (BI) methods, based on the whole cp genomes from different species. The numbers above the branches represent ML bootstrap values/BI posterior probabilities. Triangle: twining species belonging to subgen. Aconitum. 
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Table 1. The basic characteristics of chloroplast genomes of five Aconitum species.
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	Characteristics
	A. vil
	A. del
	A. epi
	A. hem
	A. con





	Location
	Wuding
	Heqing
	Dali
	Qiaojia
	Dali



	Voucher specimens
	LCF1
	1395
	1379
	QJ6
	895



	GenBank numbers
	MG678799
	MG678802
	MG678801
	MG678800
	MG678803



	Total clean reads
	8,783,602
	24,899,740
	22,334,862
	14,157,482
	19,869,478



	Number of contigs
	2540
	1468
	1190
	1161
	1749



	Contigs used for constructing the cp genome
	4
	3
	3
	3
	3



	N50 of contigs (bp)
	1612
	369
	1939
	1966
	1953



	Cp genome coverage (×)
	56.4
	159.9
	147.7
	90.9
	127.7



	Total cp DNA size (bp)
	155,761
	155,769
	151,214
	155,684
	155,653



	LSC size (bp)
	86,394
	86,340
	83,182
	86,292
	86,267



	IR size (bp)
	26,209
	26,240
	26,217
	26,235
	26,221



	SSC size (bp)
	16,949
	16,949
	15,598
	16,922
	16,944



	Total number of genes
	132
	131
	131
	132
	132



	Number of different protein-coding genes
	78
	78
	78
	78
	78



	Number of different tRNA genes
	30
	30
	29
	30
	30



	Number of different rRNA genes
	4
	4
	4
	4
	4



	Number of duplicated genes
	20
	19
	20
	20
	20



	Total number of pseudogenes
	2
	1
	2
	2
	2



	GC content (%)
	38.1
	38.1
	38.3
	38.1
	38.1



	GC content of LSC (%)
	36.2
	36.2
	36.4
	36.2
	36.2



	GC content of IR (%)
	43.0
	43.0
	42.9
	43.0
	43.0



	GC content of SSC (%)
	32.5
	32.6
	32.9
	32.6
	32.6







cpDNA: chloroplast genome DNA; LSC: large single copy; IR: inverted repeat; SSC: small single copy. A. vil: A. vilmorinianum Komarov, A. del: A. delavayi Franchet, A. epi: A. episcopale H. Léveillé, A. hem: A. hemsleyanum E. Pritzel, A. con: A. contortum Finet & Gagnepain.
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Table 2. A list of genes found in the chloroplast genomes of five Aconitum species.
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Category

	
Grope of Genes

	
Name of Genes






	
Transcription and translation

	
Ribosomal proteins (LSU)

	
rpl2*(×2), rpl14, rpl16, rpl20, rpl22, rpl23(×2), rpl33, rpl36




	
Ribosomal proteins (SSU)

	
rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12**(×2), rps14, rps15, rps18, ψrps19




	
RNA polymerase

	
rpoA, rpoB, rpoC1*, rpoC2




	
Translational initiation factor

	
infA




	
rRNA genes

	
rrn16(×2), rrn23(×2), rrn4.5(×2), rrn5(×2)




	
tRNA genes

	
trnA-UGC*(×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC*, trnG-UCC, trnH-GUG, trnI-CAU(×2), trnI-GAU*(×2), trnK-UUU*, trnL-CAA(×2), trnL-UAA*, trnL-UAG, trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2), trnV-UAC*, trnW-CCA, trnY-GUA




	
Photosynthesis

	
Photosystem I

	
psaA, psaB, psaC, psaI, psaJ




	
Photosystem II

	
psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ




	
NADH oxidoreductase

	
ndhA*, ndhB*(×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK




	
Cytochrome b6/f complex

	
petA*, petB*, petD, petG, petL, petN




	
ATP synthase

	
atpA, atpB, atpE, atpF*, atpH, atpI




	
Rubisco large subunit

	
rbcL




	

	
ATP-dependent protease subunit gene

	
clpP**




	
Other genes

	
Maturase

	
matK




	
Envelop membrane protein

	
cemA




	
Subunit Acetyl- CoA-Carboxylate

	
accD




	
c-type cytochrome synthesis gene

	
ccsA




	
Unknown

	
Conserved Open reading frames

	
ψycf1, ycf2(×2), ycf3**, ycf4, ycf15(×2)








* contains one intron, ** contains two introns, (×2) shows genes duplicated in the IR regions, ψ shows pseudogenes, A. delavayi did not contain ψrps19, A. episcopale not contanin trnG-UCC.
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Table 3. The shared repeats of five Aconitum species.
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	No.
	Size (bp)
	Units
	Type
	Location Region





	1
	30
	TAAAC(A)GGAA(G)AGAGAGGGATTCGAACCCTCG
	F
	IGS(psbI,trnS-GCU),

IGS(psbC,trnS-UGA)



	2
	52
	AGAAAAAGAATTGCAATAGCTAAATGG(A)TGA(G)TGA(C)GCAATATCGGTCAGCCATA
	F
	psaB(CDS),psaA(CDS)



	3
	39
	CAGAACCGTACATGAGATTTTCACCTCATACGGCTCCTC
	F
	ycf3(intron),

IGS(rps12,trnV-GAC)



	4
	31
	CC(G)ATATTGATGATAGTGAC(G)GATATT(C)GATGA
	F
	ycf2(CDS)



	5
	42
	TGGTTGTTCGCCGTTCAAGAATTCTTGAACGGCGAACAACCA
	F
	ycf15(CDS)



	6
	31
	ATCATCG(A)ATATCC(G)TCACTATCATCAATATC(G)G
	F
	ycf2(CDS)



	7
	32
	GAGATTTTATTTCG(A)AATTTGAAATAAAATCTC
	P
	IGS(psbI,trnS-GCU)



	8
	30
	ACGGAAAGAGAGGGATTCGAACCCTCGGTA
	P
	IGS(psbI,trnS-GCU),

IGS(trnS-GGA,rps4)



	9
	30
	AA(C)GGAG(A)AGAGAGGGATTCGAACCCTCGA(G)TA
	P
	IGS(trnSUGA,psbZ),

IGS(trnS-GGA,rps4)



	10
	39
	CAGAACCGTACATGAGATTTTCACCTCATACGGCTCCTC
	P
	ycf3(intron),

IGS(trnV-GAC,rps12)



	11
	72
	GTAAGAATAAGAACTCAATGGACCTTGCCCCTCG(A)AATTT(C)GAGGGGCAAGGTCCATTGAGTTCTTATTCTTAC
	P
	IGS(petA,psbJ)



	12
	48
	ATGTATCTAGGGACTAGTCGCTTC(G)C(G)AAGCGACTAGTCCCTAGATACAT
	P
	IGS(petD,rpoA)



	13
	31
	CCATATTGATGATAGTGACGATATTGATGAT
	P
	ycf2(CDS)



	14
	31
	CGATATTGATGATAGTGAGGATATCGATGAT
	P
	ycf2(CDS)



	15
	42
	TGGTTGTTCGCCGTTCAAGAATTCTTGAACGGCGAACAACCA
	P
	ycf15(CDS)



	16
	42
	TGGTTGTTCGCCGTTCAAGAATTCTTGAACGGCGAACAACCA
	P
	ycf15(CDS)



	17
	38
	TACACATGAAGTAAAGAAA×2
	T
	IGS(trnS-GCU,trnG-GCC)



	18
	26
	TTTTATAGTTAAA×2
	T
	clpP(intron)







IGS: intergenic spacer regions; CDS: coding DNA sequence.
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