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Abstract: The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria
to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant
bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial
infections. As such, many plant-based natural products have been widely explored for their
therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals
generation or transmission to combat QS pathogens. In this study, we report the anti-QS activities of
four different Chinese herbal plant extracts: Poria cum Radix pini, Angelica dahurica, Rhizoma cibotii and
Schizonepeta tenuifolia, on Pseudomonas aeruginosa PAO1. All the plants extracted using hexane,
chloroform and methanol were tested and found to impair swarming motility and pyocyanin
production in P. aeruginosa PAO1, particularly by Poria cum Radix pini. In addition, all the plant extracts
also inhibited violacein production in C. violaceum CV026 up to 50% while bioluminescence activities
were reduced in lux-based E. coli biosensors, pSB401 and pSB1075, up to about 57%. These anti-QS
properties of the four medicinal plants are the first documentation that demonstrates a potential
approach to attenuate pathogens’ virulence determinants.

Keywords: quorum sensing; natural products; Pseudomonas aeruginosa PAO1; Poria cum Radix pini;
Angelica dahurica; Rhizoma cibotii; Schizonepeta tenuifolia

1. Introduction

Pseudomonas aeruginosa PAO1 is a Gram-negative bacterium that is well known to cause various
diseases, such as respiratory system infections, urinary tract infections, dermatitis, soft tissue infections,
as well as bone and joints infections [1]. However, the excessive and discriminate use of antibiotics has
led to the emergence of bacteria with resistance towards the drugs, causing a global threat for public
health. Researchers are exploring different alternatives, and one of them is targeting the bacterial
quorum sensing (QS) system, a mechanism commonly used by a variety of bacteria in coordinating
their communal behavior [2,3].

P. aeruginosa PAO1 has two types of QS systems, LasI/R and RhlI/R, in which they produce
autoinducers acylhomoserine lactone (AHL), known as N-(3-oxododecanoyl)-L-homoserine lactone
(3OC12-HSL) and N-butyryl-L-homoserine lactone (C4-HSL), respectively [4]. P. aeruginosa PAO1 also
possesses a quinolone-based signaling system (PQS), adding another level of control in the QS network,
as it provides a link between the las and rhl systems [5]. In addition, the recent discovery of the fourth
QS communication signal, named the integrated QS signaling system (IQS), revealed the complexity of
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the QS system in P. aeruginosa PAO1, in which it plays a vital role in modulation of bacteria pathogenesis
by allowing the bacteria to regulate their QS system along with the environmental stress cues [6,7].
Previous studies have shown that P. aeruginosa has the ability to produce and secrete various virulence
factors such as extracellular enzymes, haemolysins, toxins, secondary metabolites, pili and alginate [8].
These virulence factors are believed to be the main contributors for both acute and chronic infections
in immunocompromised patients as they can generally damage both tissues and organs as well as
interfere with the human immune system defense mechanism [9].

The QS system among bacteria is centralized on signal generator, signal receptor and autoinducer
signaling molecules. Hence, plant-based natural products could be used to target the QS system
in three different ways, either by interfering with the synthesis of autoinducers by AHL synthase,
degrading the autoinducers or disrupting the binding of autoinducers to the signal receptor. One of the
strategies is to screen for the presence of any compound(s) in the natural products that could prevent
the synthesis of signaling molecules and/or decrease the expression of the luxI-encoded AHL synthase.
For instance, if there is no AHL being produced, the bacteria would not be able to sense when a
quorum is reached and thus the QS-controlled virulence genes would not be activated. To date,
most of the studies on anti-QS compounds emphasized on the transcriptional regulator, in which
the compounds could be used to inhibit the binding of signaling molecules to the cognate LuxR
signal receptor through competitive inhibition [10–12]. Anti-QS compounds such as plant natural
products are extensively studied as they are potential candidates in anti-virulence therapy to control
bacterial infections. Anti-virulence therapy is a form of quorum quenching (QQ) in which the anti-QS
compounds do not kill the bacteria but attenuate the pathogens and thus prevent them from attacking
the hosts [13].

Chinese herbal medicines are believed to hold a rich treasure of therapeutic effects and have been
used for thousands of years in China to promote health and as prescriptions for specific ailments.
Different parts of the plants including leaves, stems, flowers, seeds as well as roots have been tested and
have shown promise as potential active ingredients for new modern drugs [14,15]. Some of the plants’
food extracts as well as their active compounds have been found to target the bacterial QS system
and this can help to minimize the formation of multi-drug resistant bacteria [2,10,16,17]. Research
have shown that plant-derived sources such as malabaricone C (from Myristica cinnamomea) [18],
Melicope lunu-ankenda [19] and Phyllanthus amarus [20] could inhibit QS responses in bacteria without
affecting their growth. Other higher plants such as garlic, carrot, chamomile, and water lily, as well as
an array of peppers, have been reported to exhibit anti-QS activity on bacteria [21]. The pea seedlings
and root exudates, on the other hand, were found to inhibit pigment production, exochitinase activity
and protease activity in C. violaceum [22] while buttonwood, graceful sandmat, bottlebrush, black olive,
Florida clover ash and live oak have tested positive for QQ activities in both C. violaceum and
A. tumefaciens biosensor strains [23]. Besides that, furanones produced by Delisea pulchra were found to
attenuate the virulence activity in S. liquefaciens, V. harveyi, E. carotovora and P. aeruginosa significantly
without affecting their growth [24,25].

In this study, we examined the anti-QS properties of four different herbal plants—Poria cum
Radix pini, Angelica dahurica, Rhizoma cibotii and Schizonepeta tenuifolia extracts—that are commonly
used against QS-regulated phenotypes in P. aeruginosa PAO1. The effect of the plant extracts on
bioluminescence production by Escherichia coli [pSB401] and E. coli [pSB1075] were also assessed.

2. Results and Discussion

2.1. Bacterial Growth

The effect of the plant extracts on the growth of C. violaceum CV026, P. aeruginosa PAO1 and
E. coli lux-based biosensors were observed over the course of 24 h and all of the extracts tested at
1 mg/mL did not cause any inhibition in the growth of the bacteria or biosensors used (Supplementary
Figures S1–S4).
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2.2. Screening for Anti-Quorum Sensing Activities

2.2.1. Quantitative Analysis of Violacein Production in C. violaceum CV026

A preliminary screening was conducted on the crude extracts using C. violaceum CV026.
C. violaceum is a Gram-negative bacterium that produces purple violacein pigment that acts as an
antioxidant, which protects the bacteria membrane against oxidative stress and is a QS-mediated
phenotype. In this study, we used C. violaceum CV026 as a biosensor to test the anti-QS effects
of the plant extracts. C. violaceum CV026 is basically a double mini-Tn5 mutant that has lost the
ability to produce AHL, and its LuxR homologue receptor, known as CviR, binds only to short-chain
AHLs, particularly C6-HSL. Our findings (Figure 1) showed that all the four plant extracts reduced
violacein production in C. violaceum CV026 up to 50%. The extracts may inhibit the binding of AHL to
transcriptional regulator, CviR, as C. violaceum CV026 possess a defective cviI synthase gene [26,27].

Figure 1. The inhibition of violacein production by the plant extracts, extracted using hexane [H],
chloroform [C] and methanol [M]. C. violaceum CV026 incubated with DMSO and catechin (Cat) served
as negative and positive controls, respectively. RP, AD, RC and ST correspond to plant extracts from
Poria cum Radix pini, Angelica dahurica, Rhizoma cibotii and Schizonepeta tenuifolia at the concentration of
1 mg/mL, respectively. All the compounds with different extraction solvents were found to decrease
the production of violacein compared to the negative control.

2.2.2. Bioluminescence Assay

All the plant extracts were also tested for their ability to inhibit bioluminescence activities using
E. coli lux-based biosensors. E. coli [pSB401] harbors V. fischeri luxR and the promoter region of luxI fused to
luxCDABE from Photorhabdus luminescens. It responds to exogenous short-chain AHLs, resulting in light
emission. Likewise, E. coli [pSB1075] carries lasR and promoter of lasI from P. aeruginosa PAO1 fused to
luxCDABE of P. luminescens. This biosensor detects the presence of long-chain AHLs [28]. The present
study shows that all the Chinese herbal plants, except S. tenuifolia, exhibited significant inhibition of
bioluminescence in both biosensors, up to 57% (Figures 2 and 3). This highly suggests that the three plant
extracts have promising anti-QS activities.
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Figure 2. The inhibition of bioluminescence in E. coli pSB401 at the concentration of 1 mg/mL in hexane,
chloroform and methanol. (A) R. pini (B) A. dahurica (C) R. cibotii (D) S. tenuifolia. The curve for pSB401
refers to untreated E. coli [pSB401] culture while DMSO served as negative control. Bioluminescence
activities were found to decrease by half in all three of the plant samples, except for A. dahurica in
methanol extracts. S. tenuifolia, on the other hand, shows negative results.



Molecules 2018, 23, 972 5 of 14

Figure 3. The inhibition of bioluminescence in E. coli [pSB1075] after being treated with 1 mg/mL
of plant extracts in hexane, chloroform and methanol. (A) R. pini (B) A. dahurica (C) R. cibotii
(D) S. tenuifolia, with DMSO served as negative control. All the plant samples show positive results in
reducing bioluminescence production in E. coli [pSB1075], except for S. tenuifolia.
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2.2.3. Pyocyanin Assay

In recent years, extensive studies have been conducted on P. aeruginosa PAO1, an opportunistic
human pathogen responsible for various infections in blood, skin, eye, gut, respiratory system,
genitourinary tract and burn wounds. One of the major virulence determinants of P. aeruginosa
PAO1 is pyocyanin, a blue secondary metabolite which could generate free-radicals. This is commonly
seen in cystic fibrosis patients, in which pyocyanin interferes with ion transports as well as mucus
secretion in the respiratory epithelial cells [29]. A number of studies have shown that the synthesis
of pyocyanin is regulated by a complex synchrony of QS systems, lasR-lasI, rhlR-rhlI and mvfR-haq
QS-system, in which they affect rhamnolipids, proteases and elastase production [30–32]. In this work,
the anti-QS activity of the plants was validated by examining their effects on pyocyanin production in
P. aeruginosa PAO1. Our results (Figure 4) showed that all the plant samples demonstrated an overall
decrease in pyocyanin production when supplemented to the bacterial culture at a concentration of
1 mg/mL. The effect of R. pini, A. dahurica and R. cibotii on pyocyanin production suggests the presence
of compounds which act as inhibitors of rhl system in the plant extracts [33]. However, it remains
unknown if the compounds act on RhlI or RhlR, and further work needs to be done.

Figure 4. The inhibition of pyocyanin production by hexane [H], chloroform [C] and methanol
[M]-extracted plant samples. P. aeruginosa PAO1 incubated with DMSO and catechin (Cat) served
as negative and positive controls, respectively. RP, AD, RC and ST correspond to the plant extracts
from Poria cum R. pini, A. dahurica, R. cibotii and S. tenuifolia, respectively, at the final concentration of
1 mg/mL. A. dahurica in hexane extract shows the strongest inhibition on the production of pyocyanin
while S. tenuifolia shows the weakest effect among all the plant samples.

2.2.4. Swarming Motility Assay

Another reason that P. aeruginosa PAO1 is considered a major life-threatening opportunistic
pathogen is the ability to attach to surface area to form biofilms as well as to mobilize and colonize
other environments through motility. Previous findings have shown that P. aeruginosa PAO1 is one of
the exceptional bacteria that have three different types of motility, which are swimming, swarming
and twitching [34]. Swarming can be referred to as part of the surface translocation that requires
pili or flagella in order to coordinate their behavior across viscous environments like semi-solid agar
surfaces. It is reported to be part of the QS-mediated phenotype and studies have proved that lasI/lasR
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mutants reduced and delayed swarming while rhlI/rhlR mutants inhibit the ability of the bacteria
to swarm. In addition, the production of the biosurfactant or rhamnolipids also assist in swarming
motility of P. aeruginosa PAO1 as it could reduce the surface tension that enables movement across
the surface [34–36]. Swarming assays were performed in this work to explore the potential of the
Chinese herbal plants in anti-QS activity. Results showed that all the plant extracts, particularly R. pini,
were able to reduce swarming in P. aeruginosa PAO1 (Figure 5). A more detailed finding on swarming
activities is shown in Supplementary Figure S5.

Figure 5. The effects of the four plant extracts (R. pini, A. dahurica, R. cibotii and S. tenuifolia) on the
swarming motility in P. aeruginosa PAO1 at the concentration of 1 mg/mL in hexane [H], chloroform
[C] and methanol [M] extraction. Swarming agar inoculated with (A) P. aeruginosa PAO1 alone,
(B) P. aeruginosa PAO1 supplemented with DMSO (10% v/v), and (D) P. aeruginosa PAO1 supplemented
with Malabaricone C at 1 mg/mL. All the samples reduce swarming in PAO1 with R. pini showing the
strongest effect.

2.3. The Quorum Sensing Inhibition of Other Plant Compounds

Numerous studies in the past decade have reported the capacity of plant extracts and phytochemicals
to inhibit bacterial QS mechanism and thereby control the expression of their virulence attributes.
Some of the favorable characteristics that make plant extracts ideal QS inhibitors include their high
chemical stability, highly effective low molecular mass molecules and, most importantly, their being
harmless for human health [10].

Most of the antagonists found in natural products mimic the AHL signals, thus attaching to
the AHL receptor and thereby affecting the binding of the bacteria signaling molecules [13,16,22,37].
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One example is the phenolic extract from the fruits of Eugenia uniflora [38] and Eugenia brasiliensis [39]
which was found to inhibit the production of violacein in C. violaceum. Similarly, Rubus rosaefolius
(wild strawberry) was able to impede the formation of biofilm, swarming motility and violacein
production in C. violaceum, A. hydrophila and S. marcescens [40]. In addition, flavonoids extracted from
Centella asiatica L. were reported to possess the ability to inhibit violacein production in C. violaceum as
well as the production of pyocyanin, swarming motility, formation of biofilm, elastolytic and proteolytic
activities in P. aeruginosa PAO1 [41]. Other flavonoid compounds such as naringenin, taxifolin, catechin
and flavanes-3-ol were found to reduce the effect of pyocyanin and elastase production in P. aeruginosa
PAO1 [42–44].

Paczkowski et al. [45], on the other hand, found that flavonoids, namely phloretin, chrysin
and naringenin, could bind to the LasR and RhlR ligand-binding domain and significantly reduce
their ability to bind to DNA encoding QS-regulated promoters These flavonoids inhibit QS through
non-competitive mechanism and structure-activity relationship analysis indicated that the presence of
two hydroxyl groups in the flavonoid backbone is needed for inhibition of LasR/RhlR receptors.

Another noteworthy plant compound is the Punica granatum (pomegranate) extract which
demonstrated anti-QS activity on C. violaceum and inhibition of QS activity on pathogenic bacteria,
Yersinia enterocolitica and E. carotovora. It was found that AHL production was reduced by pomegranate
extract due to the degradation–transformation of AHLs [46,47].

All the research on roles of natural products as QS inhibitors serve as an advantage when it comes
to the development of anti-virulence drugs, as this can help to minimize the possibility of the bacteria
to become resistance mutants while preserving beneficial flora in the host [13,16,48]. Nevertheless,
there is a concern about the resistance of pathogenic bacteria to anti-virulence therapy. There are a
few in-vitro studies that suggested resistance to some anti-virulence molecules such as brominated
furanone C-30 [49,50]. Besides this, the specificity of the anti-virulence compounds is also important
so as to minimize the effect of native microbiota [51]. As such, more detailed studies are needed to
address these issues on anti-QS natural compounds before they can be further assessed in clinical trials.

3. Materials and Methods

3.1. Bacteria Strains and Culture Conditions

The bacterial strains and plasmids used in this study are listed in Table 1. All the bacteria were
grown in Luria-Bertani (LB) medium (Scharlab, Barcelona, Spain) at 37 ◦C with shaking at 220 rpm
except for Chromobacterium violaceum CV026 which was cultured at 28 ◦C. E. coli lux-based AHL
biosensors (pSB401 and pSB1075) were supplemented with 20 µg/mL of tetracycline for growth.

Table 1. Bacterial strains and plasmids used in this study.

Strains or Plasmids Relevant Genotype/Description Reference/Source

P. aeruginosa PAO1 Wild type prototroph 21 [52]

C. violaceum CV026 Double mini-Tn5 mutant derived from ATCC 31532 * KanR, * HgR,
cviI::Tn5 xylE, plus spontaneous * StrR, AHL biosensor

[26]

E. coli (pSB401) luxR/I (Photobacterium fischeri [ATCC 7744])::luxCDABE
(Photorhabdus luminescens [ATCC 299999]) pACYC184-derived, * TetR [28]

E. coli (pSB1075) lasR/I (P. aeruginosa PAO1)::luxCDABE (Photorhabdus luminescens
[ATCC 299999]) fusion in * TetR [28]

* KanR, HgR, StrR, TetR refer to resistance to kanamycin, mercury, streptomycin and tetracycline respectively.
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3.2. Plant Samples and Extraction of Crude Extracts

The plant samples that were used in this study are listed in Table 2. The samples were purchased
from the local Chinese Medical Hall and were first washed with sterile distilled water followed by
rinsing with 70% (v/v) ethanol before drying in the oven at 50 ◦C for three days. The dried samples
were ground into fine powder form and were extracted sequentially using hexane [H], chloroform [C]
and methanol [M]. The extracts were subsequently filtered through Whatman No. 1 filter paper and
the solvent was removed using rotary evaporator (EYELA, Tokyo, Japan). The crude extracts were
resuspended with 100% dimethyl sulfoxide (DMSO) at a final concentration of 10 mg/mL and were
diluted to a working concentration of 1 mg/mL using ultrapure water prior to be used.

Table 2. Plants tested for anti-quorum sensing (QS) activities.

Plants Ommon Name Part of Plant Tested Pharmacological/Medicinal Uses

Poria cum Radix pini
[RP] Poria spirit/‘Fu shen’ Sclerotia

Eliminate dampness, insomnia, promotes urination,
strengthens spleen and stomach, sedative
activity [53,54]

Angelica dahurica
[AD]

Root of the holy
ghost/Wild

angelica/‘Bai zhi’
Roots

Antidote for acne, ulcer, rheumatism, headache,
rhinitis, abdominal pain, hysteria, skin diseases,
erythema, toothache, sinusitis [55–57]

Rhizoma cibotii
[RC]

Chain fern
rhizome/‘Gouji’ Rhizomes

Replenish liver and kidney, strengthen bones and
muscles, treatment of chronic rheumatism, backache,
leucorrhea spermatorrhea, hemiplegia,
numbness [58–60]

Schizonepeta tenuifolia
[ST] ‘Jing Jie’ Whole plant

Fever, anti-inflammatory, diaphoretic, analgesic,
anti-febrile, anti-spasmodic, headache, allergic
dermatitis, eczema, psoriasis [61–63]

3.3. Bacterial Growth

To test for any bactericidal activity of the plant extracts, the growth profile of C. violaceum CV026,
P. aeruginosa PAO1 and E. coli lux-based biosensors were studied using previously reported method
with slight modifications [64]. Overnight bacteria cultures were diluted and measured using the
Biochrom Libra S4 UV-visible spectrophotometer (Biochrom, Cambridge, UK) to OD600nm of 0.1 before
transfer 230 µL of diluted cultures into each well of 96-wells microtitre plate. Then, 20 µL of plant
extract was added to each well. The bacteria were incubated at their optimum temperature and the
optical density at OD600nm was measured every 30 min for 24 h using Tecan luminometer (Infinite
M200, Tecan, Männedorf, Switzerland). The measurement of optical density was taken in triplicate
readings, in three independent experiments to get the mean value.

3.4. Screening for Anti-Quorum Sensing Activities

3.4.1. Quantitative Analysis of Violacein Production by C. violaceum CV026

The quantitative analysis of violacein was performed based on the previously reported method
with slight modifications [18]. An overnight culture of C. violaceum CV026 was adjusted to OD600nm

of 1.2 and was supplemented with 0.125 µg/mL of N-hexanoyl-L-homoserine lactone (C6-HSL).
One hundred microlitre of CV026 culture was then transferred into the 96-wells microtitre plate
followed by the addition of 10 µL of plant samples. The microplate was incubated for 16 h at 28 ◦C
with agitation at 220 rpm. Next, the plate was dried at 60 ◦C until all the medium had evaporated
and 100 µL of DMSO was then added to each well to dissolve the dried violacein pigment. The plate
was subsequently incubated for another 2 h at 28 ◦C with shaking. The absorbance for each of the
well was measured at OD590nm by Tecan luminometer (Infinite M200, Tecan, Männedorf, Switzerland).
The experiments were performed in triplicates, in three independent experiments and the mean value
was calculated. DMSO (10% v/v) and catechin served as negative and positive controls.
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3.4.2. Bioluminescence Assay

The bioluminescence assay was performed using the procedures reported previously with some
modifications [65]. E. coli [pSB401] and E. coli [pSB 1075] were grown overnight in LB medium at 37 ◦C.
The bacterial culture was diluted to OD600nm of 0.1, separately, and 230 µL of the diluted culture was added
into a white 96-wells microtitre plate. Then, 20 µL of plant extracts were added to the wells containing
bacterial culture. For E. coli [pSB401], 0.001 µg/mL of synthetic N-(3-oxohexanoyl)-L-homoserine lactone
(3OC6-HSL) was added while 0.0125µg/mL of N-(3-oxodecanoyl)-L-homoserine lactone (3OC10-HSL) was
added into E. coli [pSB1075]. The luminescence and turbidity of the cultures were assessed every 30 min
for 24 h with a Tecan luminometer (Infinite M200, Tecan, Männedorf, Switzerland) at OD600nm. A graph
was plotted based on luminescence given in relative light units (RLU) per unit of turbidity (OD600nm).
The measurements of optical density were taken in triplicate readings, in three independent experiments
to obtain the mean value.

3.4.3. Pyocyanin Assay

The pyocyanin assay was performed as previously described [18]. Briefly, an overnight culture of
P. aeruginosa PAO1 was diluted to OD600nm of 0.1. Next, 4.5 mL of the diluted culture was supplemented
with 500 µL of plant extract and incubated at 37 ◦C for 24 h. The treated cell culture was extracted with
3 mL of chloroform and was then mixed with 1 mL of 0.2 M hydrochloric acid. Upon centrifugation,
200 µL of the organic layer was collected and transferred into a 96-wells microtitre plate. The absorbance
reading at OD520nm was taken using a Tecan luminometer (Infinite M200, Tecan, Männedorf, Switzerland).
The experiments were performed in triplicates, in three independent experiments to get the mean value.
DMSO (10% v/v) and catechin served as negative and positive controls, respectively.

3.4.4. Swarming Motility Assay

The swarming agar plates were prepared based on the method modified as described previously [66].
It consists of Bacto agar (0.6% w/v), Bacto peptone (0.6% w/v), yeast extract (0.2% w/v) and glucose
(0.5% w/v). Next, 1 mL of plant samples were mixed together with 30 mL of agar before pouring into
the petri dishes. The plates were then allowed to air-dry for 30 min and 1 µL of the overnight culture of
P. aeruginosa PAO1 with OD600nm of 0.1 was point-inoculated at the center of the agar surface. The plates
were incubated at 37 ◦C for 24 h. The experiments were performed in triplicates, in three independent
experiments in order to get the mean value. DMSO (10% v/v) and catechin served as negative and positive
controls, respectively.

3.5. Statistical Analysis

All the assays to screen for anti-QS activities were performed in triplicate, in three independent
assays. The significance of the data was presented as mean ± standard deviation (SD) and analyzed
using ANOVA test (p < 0.05) using GraphPad Prism software (GraphPad Software, California,
CA, USA).

4. Conclusions

The Chinese herbal plants used in this study have been appreciated as traditional remedies for
many illnesses since thousands of years ago. In this work, the plants tested have been shown to possess
the ability to quench QS-regulated virulence expression such as bioluminescence activity, swarming
motility, and the production of pyocyanin and violacein in bacteria tested without any bactericidal
effect. The plant samples showed broad-spectrum effects as they can modulate the P. aeruginosa QS
system at multiple levels mediated by different AHL molecules regardless of short or long chain
residues [23,67]. It is postulated that the active compounds in the plant extracts may interfere with the
LuxR receptor protein instead of the AHL synthase, as C. violaceum CV026, E. coli [pSB401] and E. coli
[pSB1075] biosensors do not have lux-based synthase. In other words, the plant extracts may contain
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molecules that are structurally similar to autoinducers (or AHL), hence blocking the AHL-mediated
QS. The ability of the active compounds in the four medicinal plants to inhibit QS-related virulence
may provide the stepping stone and contribute to further research to discover new anti-microbial
agents without the risk of developing antibiotic resistance. Nonetheless, there are more validations
needed to answer the queries that surfaced from this study, including the mechanisms used by the
plant compounds to target the bacterial QS system.

Supplementary Materials: The following are available online, Figure S1: The growth curve of C. violaceum CV026
at the concentration of 0.1, 0.5, 1, 2, 3, 4 and 5 mg/mL of plant extracts in hexane (A), chloroform (B) and methanol
(C). Figure S2: The growth curve of E. coli [pSB401] at the concentration of 0.1, 0.5, 1, 2, 3, 4 and 5 mg/mL of plant
extracts in hexane (A), chloroform (B) and methanol (C). Figure S3: The growth curve of E. coli [pSB1075] at the
concentration of 0.1, 0.5, 1, 2, 3, 4 and 5 mg/mL of plant extracts in hexane (A), chloroform (B) and methanol
(C). Figure S4: The growth curve of P. aeruginosa PA01 at the concentration of 0.1, 0.5, 1, 2, 3, 4 and 5 mg/mL of
plant extracts in hexane (A), chloroform (B) and methanol (C). Figure S5: The effects of the four plant extracts
(R. pini, A. dahurica, R. cibotii and S. tenuifolia) on the swarming motility in P. aeruginosa PAO1 at the concentration
of 1 mg/mL in hexane [H], chloroform [C] and methanol [M] extraction.
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