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Abstract: Increasing evidence suggests that dietary carotenoids may reduce the risk of breast cancer.
However, anti-breast cancer effects of carotenoids have been controversial, albeit understudied. Here,
we investigated the effects of specific carotenoids on a wide range of breast cancer cell lines, and found
that among several carotenoids (including β-carotene, lutein, and astaxanthin), lutein significantly
inhibits breast cancer cell growth by inducing cell-cycle arrest and caspase-independent cell death,
but it has little effect on the growth of primary mammary epithelial cells (PmECs). Moreover,
lutein-mediated growth inhibition of breast cancer cells is quantitatively similar to that induced by
chemotherapeutic taxanes, paclitaxel and docetaxel, and exposure to lutein plus taxanes additively
inhibits breast cancer cell growth. Analysis of mechanisms showed that lutein treatment significantly
increases the intracellular reactive oxygen species (ROS) production in triple-negative breast cancer
(TNBC) cells, but not in normal PmECs. Lutein-induced growth inhibition is also attenuated by
the radical oxygen scavenger N-acetyl cysteine, suggesting a role for ROS generation in the growth
inhibitory effect of lutein on TNBC cells. Additionally, we found that the p53 signaling pathway
is activated and HSP60 levels are increased by lutein treatment, which may contribute partly to
the induction of growth inhibition in TNBC cells. Our findings show that lutein promotes growth
inhibition of breast cancer cells through increased cell type-specific ROS generation and alternation of
several signaling pathways. Dietary lutein supplementation may be a promising alternative and/or
adjunct therapeutic candidate against breast cancer.
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1. Introduction

Breast cancer remains the second leading cause of cancer-related death and the most frequently
diagnosed cancer in American women between the ages of 20 and 59, with over 233,000 new cases
and 40,000 deaths annually [1]. Globally, it is the leading cause of cancer deaths in women. Metastatic
breast cancer has had a 5-year relative survival rate under 25% [1]. It is a multistep disease involving
genetic and environmental factors [2]. In a more granular perspective, breast cancer is a heterogeneous
disease which is classifiable into several molecular subtypes, including luminal A, luminal B, human
epidermal growth factor (EGF) receptor 2 (HER2) overexpressing, and basal-like. Expression of the
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estrogen receptor (ER), progesterone receptor (PR), and HER2 are useful markers for identifying these
four major subgroups: luminal A: ER+ and/or PR+/HER2−; luminal B: ER+ and/or PR+/HER2+;
HER2 overexpressing: ER−/HER2+; and basal-like: ER/PR−/HER−. The basal-like subtype, ‘triple
negative’ for ER, PR, and HER2, is resistant to available receptor-targeted therapies. Triple-negative
breast cancers (TNBC) account for approximately 15 to 20% of all diagnosed breast cancer cases,
and are more prevalent in younger women (<40 years of age) and women of African-American or
Hispanic origin [2,3]. Currently, aside from systemic chemotherapy, there is no defined standard
treatment strategy for prevention of re-occurrence for TNBC. In addition, the lack of selectivity
of many cancer chemotherapeutics severely limits current treatment regimes, especially in triple
negative tumors and chemo-resistance often emerges in patients having locally advanced or metastatic
disease. Consequently, there is an urgent need for identifying new selective and/or nontoxic agents
that exhibit anti-cancer activities, and that can lower co-administered effective doses of current
non-selective agents.

Carotenoids are primarily plant-derived lipophilic pigments with polyisoprenoid structures.
Epidemiological studies indicate that women who have higher levels of circulating dietary carotenoids,
such as α-carotene, β-carotene, lycopene, and lutein/zeaxanthin, have significantly lower risk of breast
cancer, especially the ER− subtype [4,5]. A pooled analysis of 18 prospective cohort studies further
supports an inverse association between intakes of carotenoids and breast cancer risk [6]. However,
findings from several other epidemiological studies on the relationship between total carotenoids
and the risk of breast cancer have been inconclusive. In sum, some case-control studies and cohort
studies have noted an inverse association of breast cancer with specific carotenoids [7,8], while others
have not [9]. Moreover, which carotenoids may be active in vitro and in vivo against breast cancer,
the respective intracellular mechanisms, and possible interactions with chemotherapy have either not
been thoroughly examined or are incompletely understood.

The anti-cancer properties of specific carotenoids may result variously from their antioxidant
properties, interactions with cellular (including growth control) signaling cascades, and/or altering
gene expression. Certain carotenes, especially β-carotene, are also precursors for vitamin A (retinol)
formation. All carotenoids, to different degrees, can act as antioxidants by virtue of free radical
quenching properties [10]. However, studies conducted in animal models and human subjects have
been less than conclusive regarding direct carotenoid antioxidant effects in vivo [11]. Moreover,
clinical trials of high dose of β-carotene for preventing lung cancer failed to show benefit and, rather,
produced deleterious effects [12]. A meta-analysis confirmed that a significant increase in mortality
was associated with the vitamin A/β-carotene/vitamin E supplement [13].

Importantly, in contrast to β-carotene, the carotenoid lutein has no known toxicities, even in
individuals who have ingested it in pharmacologic levels [14]. Previous investigations have revealed
that lutein possesses a range of biological properties including anti-inflammatory, anti-oxidant and
anti-cancer actions [15], and has growth inhibitory and cytotoxic effects in several cancer cell lines
and animal models [15,16]. Lutein inhibits growth of rat prostate carcinoma cells (AT3 cells) and
human prostate cancer cells (PC3) [17], alters mouse mammary tumor development [18], and induces
apoptosis in transformed but not in normal human mammary cells [19].

In the present study, we investigated the potential effectiveness of an array of carotenoids
applied in a nutritional/physiological concentration range against human breast cancer cells and the
mechanisms underlying their activities. Our data show that lutein selectively inhibits the growth of all
human breast cancer cell lines tested—regardless of receptor phenotype—and enhances the cytotoxic
effects of chemotherapeutic taxanes. Importantly, we demonstrate that the pro-apoptotic effect of
lutein in triple-negative breast cancer cells is mediated by an increase in intracellular ROS, activation
of p53 signaling, and upregulation of cellular HSP60.
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2. Results

2.1. Lutein Selectively Inhibits the Growth of Human Breast Cancer Cells

Carotenoids may exhibit anti-cancer activity in a variety of cancer cell types [20]. To determine
the effects of specific carotenoids on human breast cancer cells, we initially investigated the
anti-proliferative effect of three carotenoids (lutein, β-carotene, astaxanthin) on the growth of human
breast cancer cell lines (MCF-7 [ER/PR+HER2−] and MDA-MB-468 [triple-negative]), and normal
primary human mammary epithelial cells (PmECs). Astaxanthin, a dietary carotenoid consumed in
fish, has anti-inflammatory and suspected anti-tumor activities. Cells were treated with physiological
concentration of carotenoids (0.5 to 2.0 µM) for 48 h and cell growth/viability was assayed. As shown
in Figure 1A, lutein, but neither β-carotene nor astaxanthin, significantly inhibited the cell viability of
both MCF-7 and MDA-MB-468 cells. PmECs exposed to this carotenoid concentration range showed
no changes in cell growth/viability. Consequently, we focused on the effects of lutein in normal breast
epithelial cells and breast cancer cells.

Figure 1. Effect of lutein on growth in human breast cancer cells and normal human breast epithelial
cells. (A) Lutein treatment inhibits cell growth in human breast cancer cells but not in normal mammary
epithelial cells. PmEC and breast cancer MCF-7 and MDA-MB-468 cell lines were grown in 96-well
plates and treated with lutein (0.5–2.0 µM) or Dimethyl Sulfoxide (DMSO) for 48 h. Cell viability
was measured by MTT assay. The experiments were performed in triplicate. Data are presented as
mean ± S.D and are representative of three independent experiments; * p < 0.05. (B) Inhibition of
cell proliferation by lutein in representative breast cancer cell lines and PmEC. Data are presented as
means ± S.D. * p < 0.05, compared with control cells. (C) Colony formation assays were performed
in MCF-7 and MDA-MB-468 cells. Breast cancer cells were seeded in 6-well plates at a density of
5 × 103 cells/well, and treated with lutein (2.0 µM) or DMSO (vehicle control) for 48 h. Media was
changed after 48 h of incubation. Colonies were monitored for a period of 2 weeks. The data shown
are from a representative experiment, repeated three times with similar results. Data are presented as
means ± S.D. ** p < 0.01, compared with untreated cultures.
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We examined the effect of lutein on a broader panel of human breast cancer cells, including
BT-474 (ER/PR+HER2+), MDA-MB-453 (triple-negative), and MDA-MB-231 (triple-negative) cell lines,
and found that all showed similar lutein-mediated growth inhibition profiles (Figure 1B). To study the
effects of lutein on longer-term proliferation, MCF-7 and MDA-MB-468 cells were treated with lutein
in colony formation assays. As shown in Figure 1C, lutein treatment significantly reduced colony
numbers and decreased the size of colonies formed.

2.2. Lutein Induces Cell Cycle Arrest in Human Breast Cancer Cells

To investigate mechanism(s) underlying lutein’s inhibitory activity on breast cancer cells, we first
examined the effects of lutein on cell cycle progression. MCF-7 and MDA-MB-468 cells were treated
with 2.0 µM lutein or vehicle for 48 h, and then subjected to cell cycle analysis by flow cytometry.
Lutein treatment significantly inhibited cell cycle progression in both MDA-MB-468 and MCF-7 cells,
resulting in an increased population of cells in G1 phase and a reduction in G2 phase in MDA-MB-468
cells, as well as a decreased cell population in G1 phase and an increase in G2 phase in MCF-7 cells
(Figure 2A). At 48 h, the percentage of cells in G1 had increased from 55.3% in control cells to 80.7% in
lutein-treated MDA-MB-468 cells. Similarly, the percentage of cells in S phase decreased to 8.0% from
15.8% in control cultures; G2 phase cells decreased to 11.2% from 28.4% in the control (Figure 2A upper
panel). DNA incorporation assays using the modified thymidine analog EdU confirmed the observed
decline in S phase in lutein-, but not β-carotene or astaxanthin-treated MDA-MB-468 cells (Figure 2B).
Similar effects of three carotenoids on MCF-7 cells (Figure 2C) were also observed. To further
investigate the underlying mechanisms responsible for lutein-induced G1 arrest in MDA-MB-468
cells, we analyzed cell-cycle related gene expression profiles using targeted cell cycle regulatory gene
expression PCR arrays. As shown in Figure 2D, lutein-treated MDA-MB-468 cells exhibited significant
up-regulation of anaphase promoting complex subunit 2 (ANAPC2), aurora kinase B (AURKB), cyclin
F (CCNF), cell division cycle 25 homolog A (CDC25A), cyclin-dependent kinase 6 (CDK6), CDKN1A
(p21, Cip1), CDKN1B (p27, Kip1), E2F transcription factors 1 and 4 (E2F1, E2F4), minichromosome
maintenance complex component 2, and 5 (MCM2, and 5), checkpoint controller RAD9A, SERTAD1
and transcription factor Dp-1 (TFDP1), and down-regulation of CCND1 (Cyclin D1), CCND3 (Cyclin
D3), CDK2 and CDK4.
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Figure 2. Effect of lutein on cell cycle distribution in triple-negative MDA-MB-468 cells. (A) Lutein
induced G1 cell cycle arrest in MDA-MB-468 cells and G2 arrest in MCF-7 cells. MDA-MB-468
and MCF-7 cells were treated with 2 µM lutein for 48 h. 0.1% DMSO vehicle was used as control.
The distribution of cell cycle phases was assessed by flow cytometry. (B) and (C) EdU proliferation
assays were performed in MDA-MB-468 and MCF-7 cells. Breast cancer cells were grown in 96-well
plates and treated with carotenoids (lutein, β-carotene, astaxanthin) at 0.5–2.0 µM or DMSO for 48 h.
Data shown represent mean ± S.D. (n = 6); * p < 0.05. (D) The scatter plot compares the normalized
expression of every gene on the array between the two groups (lutein vs. DMSO) by plotting them
against one another to quickly visualize large gene expression changes. The central line indicates
unchanged gene expression. The dotted lines indicate the 2-fold regulation threshold.

2.3. Lutein Induces Minimal Apoptotic Cell Death in Breast Cancer Cells

To investigate if lutein-mediated reduction in cell proliferation results from apoptosis, annexin
V-FITC/propidium iodide (PI) double staining was used, in order to determine cell death quantitatively
in lutein-treated vs untreated MDA-MB-468 and MCF-7 cells. Treatment of MDA-MB-468 (Figure 3A,
upper panel) or MCF-7 cells (Figure 3A, lower panel) with lutein (2.0 µM for 24 h) did not
significantly alter the early stage apoptotic (annexin V+/PI−) population (5.21%) in MDA-MB-468
cells. An increased, but still minor (<10%) late-stage apoptotic/necrotic (annexin V+/PI+) cell fraction
was also observed in MDA-MB-468 cells, but not in MCF-7 cells. To investigate if lutein induces
cell death by triggering the mitochondrial apoptotic pathway, we examined the expression of a
panel of apoptosis-related genes using gene expression profiling RT-PCR arrays. As shown in
Figure 3B, lutein-treated MDA-MB-468 cells exhibited increased expression in seven pro-apoptotic
genes (GADD45A, Bax, CASP3/4/8, TNFRSF10A and TNFRSF21) decreased expressions in one
pro-apoptotic gene (CD70), and one anti-apoptotic gene (Bcl-2). Consistent with the gene expression
profiling data, lutein-treated MDA-MB-468 cells showed a slight increase in the protein level of Bax
and a larger decrease in Bcl-2, which results in a two-fold increase in the pro-apoptotic/anti-apoptotic
(Bax:Bcl-2) ratio (Figure 3C). Caspase-3 activation is a hallmark of an apoptotic pathway. We examined
the levels of cleaved caspase-3 in lutein-treated MDA-MB-468 and MCF-7 cells. Despite increased
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caspase-3 gene expression in MDA-MB-468 cells, we only detected minimal caspase-3 cleavage in
lutein-treated MDA-MB-468 cells (Figure 3D), and as well as caspase 3 deficiency in MCF-7 cells.

Figure 3. Pro-apoptotic effects of lutein on breast cancer cells. (A) MDA-MB-468 and MCF-7 cells
were exposed to 2.0 µM lutein for 24 h. DMSO was used as vehicle control. Cells were processed by
flow cytometry using Annexin V/PI staining. The percentage of Annexin V-positive cells indicates
the fraction of cells undergoing apoptosis induction. (B) Relative expression of 84 apoptosis-related
genes comparing lutein-treated MDA-MB-468 cells and DMSO vehicle control. The figure depicts a
log transformation plot of the relative expression level of each gene (2−∆Ct) between untreated control
(x-axis) and lutein treatment (y-axis). The gray lines indicate a 2-fold change in gene expression.
(C) Changes in levels of apoptosis-related proteins by lutein in MDA-MB-468 cells. Cells were treated
with 1.0 and 2.0 µM lutein for 24 h and cell lysates were prepared and subjected to Western blotting
for Bax and Bcl-2. The histogram in Figure 3C indicates the average of adjusted Bax and Bcl2 levels
(mean ± SD, n = 3). * p < 0.05. (D) Western blot analysis of caspase-3 cleavage in MDA-MB-468 and
MCF-7 cells. Cells were treated with 2.0 µM lutein for 24 h and cell lysates were prepared and subjected
to Western blot for caspase-3.

2.4. Lutein Selectively Increases Intracellular ROS Production in Human Breast Cancer Cells

Although carotenoids (including lutein) are often classified as anti-oxidants, in biological
systems carotenoids may exhibit either anti- or pro-oxidant activities [21]. To determine if lutein
affects intracellular ROS levels in breast cancer cells, we used the redox-sensitive fluorescent probe
(carboxy-H2DCF-DA) to monitor intracellular ROS accumulation in the presence and absence of lutein
exposure. Breast cancer cells treated with lutein (2.0 µM for 3 h) significantly increased ROS levels
(1.9-fold) in MDA-MB-468 cells, compared to untreated (DMSO vehicle) cells (Figure 4A, middle panel),
and slightly elevated ROS levels in MCF-7 cells (Figure 4A, right panel). In contrast to the results in
MDA-MB-468 and MCF-7 cells, similar exposures to lutein did not significantly increase in ROS levels
in normal PmECs (Figure 4A, left panel).
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Figure 4. Effect of lutein on intracellular ROS production in human normal and breast cancer cells.
(A) PmECs, MDA-MB-468 and MCF-7 cells were treated with 2.0 µM lutein for 3 h and intracellular ROS
levels were measured by flow cytometry. Data are presented as means ± S.D. and are representative of
three independent experiments. * p < 0.05, ** p < 0.001, compared with control group. (B) MDA-MB-468
cells were pretreated with or without 3.0 mM NAC for 1 h, and followed by 2.0 µM lutein for 3 h. Lutein
induced an increase in ROS levels which is abolished by NAC. Data are presented as means ± S.D. and
are representative of three independent experiments. ** p < 0.01, compared with the indicated group.
(C) NAC blocked the growth inhibitory effect of lutein on breast cancer cells. MDA-MB-468 cells were
grown in 96-well plates, and pre-treated with or without 3.0 mM NAC for 1 h, followed by lutein
(0.5–2.0 µM) or DMSO (control) for 48 h. Cell viability was measured by MTT assay. The experiments
were performed in triplicate. Data are presented as mean ± S.D and are representative of three
independent experiments; * p < 0.05). (D) Effect of lutein on expression of BCO2. PmEC, MCF-7 and
MDA-MB-468 cells were gown in 6-well plate for 48 h. Cell lysates were prepared and subjected to
Western blotting for BCO2. The histogram in Figure 4D indicates the average of adjusted BCO2 levels
(mean ± SD, n = 3), ** p < 0.01.
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To assess the functional importance of ROS induction in lutein-treated triple-negative
MDA-MB-468 cells, we examined lutein-inducible cellular ROS generation in cells pretreated with the
ROS scavenger, N-acetyl cysteine (NAC). MDA-MB-468 cells were pretreated with or without NAC
(3.0 mM for 1 h), and then exposed to lutein for an additional 3 h. As anticipated, pretreatment of cells
with NAC caused a significant drop in ROS levels in lutein-treated MDA-MB-468 cells (Figure 4B).
Moreover, blocking ROS generation by NAC also abolished the growth inhibitory effect of lutein
(Figure 4C). These results suggest that the selective lutein-mediated growth inhibition of breast
cancer cells is mediated by ROS induction. Previous investigations have suggested that carotenoids
(including lutein/zeaxanthin) induce intracellular ROS production in cells when the carotenoid (lutein)
metabolic enzyme β-carotene 9’,10’-oxygenase (BCO2) is absent [22]. To determine if lutein-induced
ROS production in breast cancer cells is dependent on the expression of BCO2, we analyzed BCO2
protein expression in normal and breast cancer cell lines by western blot. As shown in Figure 4D,
the level of BCO2 in normal breast epithelial cells is actually slightly lower than that in the lutein
sensitive breast cancer lines, implying that lutein-selective induction of ROS in breast cancer cells may
not BCO2-dependent.

2.5. Lutein Enhances the Cytotoxic Effects of Chemotherapeutic Taxanes in Human Breast Cancer Cells

Taxanes, a major class of breast cancer chemotherapeutic agents, are microtubule disruptors,
i.e., mitotic inhibitors. Our observation that caspase-independent cell death induced by lutein
through a ROS-mediated mechanism in breast cancer cells raised the possibility that this ‘nutriceutical’
might be a useful adjunctive therapeutic option with chemotherapy. To investigate this possibility,
we first assessed the sensitivity of MCF-7 and MDA-MB-468 cells to increasing concentrations of
paclitaxel or docetaxel, comparable to those used in breast cancer treatment. MTT assays indicated
a dose-dependent decrease in cell proliferation in docetaxel-treated MCF-7 cells (Figure 5A) and
paclitaxel-treated MDA-MB-468 cells (Figure 5B). Taxane-mediated growth inhibition of breast
cancer cells with a concentration of 1.0 µM was quantitatively similar to that induced by a similar
concentration of lutein. To determine if lutein can sensitize breast cancer cells to taxane-mediated cell
growth inhibition, we examined the effect of combinations of lutein and either paclitaxel or docetaxel
on cell viability using MCF-7 and MDA-MB-468 cells. Following 24 h treatment, lutein (0.5 µM) or
taxane (1.0 µM) alone reduced MCF-7 and MDA-MB-468 cell viability by 20% and 25%, respectively.
The combination of 0.5 µM lutein and 1.0 µM paclitaxel or docetaxel resulted in 50% and 40% growth
inhibition of MCF-7 (Figure 5C) and MDA-MB-468 (Figure 5D) cells respectively. These data indicate
that lutein and taxanes together additively inhibit breast cancer cell growth, supporting the hypothesis
that lutein may potentiate the effects of chemotherapeutic taxanes.
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Figure 5. Enhanced effects of lutein and chemotherapeutic taxanes in human breast cancer cells.
(A) MCF-7 cells were treated with docetaxel for 24 h in a dose-dependent manner and MTT assays
were used to assess cytotoxic and growth effects of exposure to docetaxel. (B) MDA-MB-468 cells were
treated with paclitaxel for 24 h in a dose-dependent manner, and cell viability was measured using
MTT assays. The experiments were performed in triplicate. Data are presented as mean ± S.D and
are representative of three independent experiments. (C) MCF-7 cells were treated with taxanes alone
(1.0 µM), lutein alone (0.5 µM) and lutein in combination with a taxane. (D) MDA-MB-468 cells were
treated with taxanes alone (1.0 µM), lutein alone (0.5 µM) and lutein in combination with a taxane.
Experiments were performed in triplicate. Data are presented as means ± S.D and are representative
of three independent experiments; * p < 0.05.

2.6. Lutein Activates the p53 Signaling Pathway and Upregulates HSP60 in MDA-MB-468 Cells

Increased cancer cell ROS production that is associated with targeted cancer killing [23] also
sustains elevated cancer proliferative demands, in effect, driving tumor cells toward a redox
stress threshold and increasing tumor susceptibility to ROS-modulating agents. Many anti-cancer
compounds induce ROS generation and activate related cell signaling pathways [24]. To determine if
lutein activates pathways related to mitochondrial oxidation and apoptosis, we examined targeted
protein phosphorylation in lutein-treated vs. vehicle-treated MDA-MB-468 cells. MDA-MB-468
cells were exposed to 2.0 µM lutein for 12 h and protein phosphorylation was examined using
Western blot and a human phospho-kinase array. Lutein treatment did not alter the level of total p53
protein in MDA-MB-468 cells (Figure 6A), but, as shown in Figure 6B, significantly increased levels of
phosphorylated p53. Cellular HSP60 also was robustly increased in response to lutein treatment.
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Figure 6. Effect of lutein on phosphorylated signaling proteins in triple-negative breast cancer cells.
(A) Left panel: Western blot analysis of p53 in MDA-MB-468 cells. Cells were treated with 1.0,
or 2.0 µM lutein or DMSO vehicle control for 24 h. Cell lysates were prepared and subjected to Western
blotting for p53. Right panel: the histogram in Figure 6A indicates the average of adjusted p53 levels
(mean ± SD, n = 3). (B) Analysis of a proteome profiler for human phospho-kinases using breast
cancer MDA-MB-468 cell lysates from lutein-treated and DMSO vehicle control. Data represent the
densitometric analysis of phosphorylated signaling proteins in MDA-MB-468 cells treated with lutein
or control. The insets are the representative proteome profiler from the Human Phospho-Kinase Array
using MDA-MB-468 cell lysates treated with 2.0 µM lutein or DMSO control for 12 h.

3. Discussion

Based on a range of epidemiologic and experimental data, specific carotenoids have been
implicated as potential anti-cancer agents in several tumor types [15,20]. In this study, we evaluated
the growth inhibitory effects of several carotenoids (β-carotene, lutein, and astaxanthin) in normal and
breast cancer cells. Although β-carotene, lutein, and astaxanthin resemble one another structurally,
they have distinct biological actions. We demonstrate that human breast cancer cell lines, but not
normal human primary mammary epithelial cells, are highly sensitive to growth inhibition by exposure
to the carotenoid lutein, while β-carotene and astaxanthin, two other carotenoids having biological
activity in other systems, had no effects. Lutein also induced cell cycle arrest and increased apoptosis
in triple negative breast cancer cells. Importantly, intracellular ROS levels were induced by lutein in
TNBC cells, but not in primary mammary epithelial cells. This increased ROS production, in turn,
appears to mediate lutein-mediated growth inhibition in breast cancer cells. These findings suggest
mechanisms that may underlie lutein’s selective cytotoxic effects in breast tumors.
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Apoptosis plays a pivotal role in carcinogenesis, including cancer initiation, progression, and
metastasis [25]. Apoptosis can be induced through either extrinsic or intrinsic pathways. The extrinsic
pathway is triggered by death receptors (Fas, TNFR, DR5) in response to ligand binding, leading to
caspase-8 activation [26]. A key event in the intrinsic pathway is permeabilization of the mitochondrial
outer membrane in response to various stimuli, a process that is regulated by cytoplasmic proteins
including Bcl-2 family members [27]. Bcl-2 is a thiol-containing protein that prevents apoptosis
through the negative regulation of Bax and Bak mitochondrial translocation [28]. The Bax/Bcl-2 ratio,
as a candidate prognostic biomarker in breast cancer, indicates the degree of mitochondrial outer
membrane permeabilization and, hence, cell entry for the execution phase of the apoptotic program.
The present study shows that a decrease in Bcl-2 expression is accompanied by concomitant increases
in Bax protein expression in response to lutein (Figure 3B,C). Although caspase-dependent apoptosis
appears to be the major form of controlled cell death in cancer cells, lutein did not appear to activate
caspase-3 cleavage in breast cancer cells, suggesting lutein might induce cell apoptotic cell death
through caspase-independent mitochondrial pathway.

Over the past decades, carotenoid research on cancers has focused on prevention, prompted by
the purported carotenoid functions as antioxidants. Indeed, cell culture, animal, and epidemiologic
studies have suggested that various carotenoids may be protective against tumorigenesis [20].
However, two large clinic trials that utilized high dose β-carotene administration showed an increased
risk in lung cancer among smokers, implying potential pro-oxidant activities of β-carotene [29].
In fact, some carotenoids, including β-carotene, can act either as anti- or pro-oxidants depending on
concentration and the targeted cells [21,29,30]. With regard to cellular oxidant stress, it has been
reported that lutein can inhibit methotrexate-induced apoptosis in IEC-6 cells by blocking ROS
generation [31]. Conversely, lutein can induce intracellular ROS production in macrophages [32] and
mitochondrial-mediated ROS generation to trigger apoptosis in HepG2 (human hepatic carcinoma)
cells [33]. Lutein also has been shown to exert significant inhibitory effects on deoxynivalenol-induced
apoptosis in HT-29 cells, possibly due to its anti-oxidant and anti-inflammatory activities [34].

In this study, we show that lutein has potent anti-proliferative and potentially cytotoxic effects
in breast cancer cells, but has little effect on normal human breast epithelial cell growth or viability.
Lutein also significantly increases ROS production in triple-negative breast cancer (MDA-MB-468)
cells, but not in primary mammary epithelial cells. The ROS scavenger NAC significantly attenuated
lutein-mediated cell death in lutein-treated triple-negative breast cancer cells. Cancer cells usually
exhibit excessive ROS production compared to normal cells, related to aberrant cell metabolism and
continuous cell division, and are less tolerant to further oxidative (ROS) insult. Another natural
product, piperlongumine, has been reported selectively to increase ROS levels and apoptotic cell death
in cancer cells, but again, not in normal cells [35]. Vitamin C also selectively kills KRAS and BRAF
mutant cells by inducing oxidative stress [36]. Cell-based and animal studies have indicated certain
dietary carotenoids (e.g., lutein and, its geometric isomer zeaxanthin) can impair hepatic mitochondrial
respiration, increase mitochondrial ROS generation, and induce apoptotic cell death [22]. These effects
are proposed to result from interference with mitochondrial electron transport and are dependent on
the mitochondrial-localized carotenoid metabolic enzyme, β-carotene 9’,10’-oxygenase (BCO2) [33].
BCO2-mediated carotenoid metabolism protects mitochondria from carotenoid-induced dysfunction.
Not surprisingly, the bco2 gene is expressed in human epithelial cells and most human tissues [37].
Conversely, bco2 gene expression is decreased in several cancers. We previously determined that
BCO2 is highly expressed in normal prostatic epithelial cells, but its expression is decreased and even
lost in many prostate cancer cell lines and tissues [38]. However, in contrast to prostate cancer, we now
show that BCO2 expression in breast cancer cells is even greater than that in normal breast epithelial
cells (Figure 4D), which suggests that the observed lutein-mediated increase in ROS generation may
not be BCO2-dependent in breast cancer. The role of BCO2 accumulation in breast cancer cells has
not previously been explored. Of note, unlike β-carotene, which is localized in the cytoplasm of cells,
lutein/zeaxanthin and their oxidized metabolites are enriched in the inner membranes of mitochondria
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of hepatic cells [39]. In summary, further investigation is needed to determine mechanisms underlying
lutein-induced ROS generation in breast cancer.

Activation of caspases is a common means by which cancer cells undergo type-1 programmed cell
death [40]. Nevertheless, many tumor cells develop resistance by becoming deficient in this apoptotic
pathway, thereby, averting death [40]. Consequently, exploiting a combination of various mechanisms
of cell death may be a viable approach to induce synergistic cancer cell killing. We present the novel
finding that lutein potentiates the lethality of taxanes (Figure 5C,D). Our results suggest this interaction
might act through reciprocal induction of caspase-dependent and caspase-independent pathways.
Although the molecular mechanisms of the interaction of lutein and taxanes remain to be determined,
these findings suggest strategies that target both caspase-dependent and caspase-independent
pathways may improve outcomes compared with conventional therapies.

Multiple lines of evidences support the contention that excessive ROS release and DNA damage
promote apoptosis by common signaling pathways. The current findings of lutein-inducible cell
cycle arrest and DNA damage suggest involvement of p53. The major tumor suppressor protein,
p53, is one of the most commonly mutated genes associated with human cancer [41], and is a crucial
regulator of cell growth and death. In response to intracellular and extracellular stress, p53 is activated
via phosphorylation, and serves as a transcription factor in a range of target genes which, in turn,
modulate cellular processes such as DNA repair, cell cycle arrest, and apoptosis [42]. Mounting
evidence suggests that p53-dependent apoptosis is mediated by intracellular ROS generation [43].
Many anti-cancer agents (e.g., cisplatin, paclitaxel, docetaxel, anthracyclins, adriamycin, etoposide) are
directly or indirectly toxic to cancer cells, in part, by generating ROS leading to apoptotic cell death [24].
Consistent with this mechanism, we demonstrate that lutein selectively increases intracellular ROS
production in triple-negative MDA-MB-468 breast cancer cells and induces significant elevations
in p53 phosphorylation at serine residues Ser15, Ser46, and Ser392 (Figure 6A,B). Phosphorylation
of wild-type p53 at Ser15 plays a major role in the cellular response to DNA damage by reducing
interaction between p53 and its negative regulator, the ubiquitin ligase MDM2. Phosphorylation of
p53 at Ser392 also appears to be important in growth suppression, DNA binding, and transactivation
of wild-type p53 [44]. Of note, an important characteristic of the MDA-MB-468 cell line is the presence
of a single p53 allele that harbors a point mutation at codon 273 (p53R273H). Mutations of p53 lead to
loss of wild-type activity either by altering a residue that directly interacts with DNA or by mutating a
residue that destabilizes or partly unfolds p53 [45,46]. Phosphorylation of mutant p53 at Ser392 inhibits
its function as a dominant-negative inhibitor over any remaining wild-type p53 [47]. Our observation
that lutein induces p53 phosphorylation in MDA-MB-468 cells might partly explain the observed
lutein-mediated growth inhibitory effects.

The observed increase of heat shock protein 60 (HSP60) in lutein-treated breast cancer cells is
also novel. Previous studies of HSP60 have focused on total immuno-reactive protein, its subcellular
distribution, and HSP60 complex proteins. HSP60, a member of the mitochondrial matrix protein
chaperonin family, exists in several multimeric forms and has a wide range of established cellular
functions. HSP accumulation (largely in the cytoplasm) may be increased or decreased, depending
on cancer type; in some tumors, increased levels of different HSPs have been correlated with a better
prognosis [48]. Although most heat shock proteins seem to have pro-survival functions, HSP60
accumulated in the cytosol can be either pro-apoptotic or pro-survival, depending on differential
interactions with caspase-3 [49]. Moreover, several observations indicate HSP60 has a pro-apoptotic
role in certain cancer cells in vivo [49,50]. Although the distribution and functions of HSP in breast
cancer phenotypes are not known in any detail, HSP60 is overexpressed at the mRNA and protein
levels during early steps of certain breast tumorigenesis, including breast ductal carcinoma in situ,
and may be correlated with tumor growth and progression. In etoposide-stimulated MDA-MB-231,
breast cancer cells cytosolic HSP60 levels increased, whereas mitochondrial HSP60 levels and HSP
mRNA levels remained constant. Our finding that total cellular HSP60 is increased in lutein-treated
breast cancer cells suggests HSP60 may be part of the lutein-induced cellular stress response in these
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cells. The relationships of HSP60 subcellular (cytosolic vs. mitochondrial) distribution, and protein
complexing to an increase in ROS, warrant further investigation.

4. Materials and Methods

4.1. Antibodies and Reagents

Antibody against BCO2 (Catalog number [Cat#] 14324-1-AP, 1:1000) was acquired from
ProteinTech Group (Rosemont, IL, USA). Antibodies against cleaved caspase-3 (Cat# 9662, 1:1000),
p53 (Cat# 2524, 1:1000), Bax (Cat#2772, 1:1000) and Bcl-2 (Cat#15071, 1:1000) were obtained from Cell
Signaling (Danvers, MA, USA). Antibody to β-actin (Cat# A5441, 1:10,000) was obtained from Sigma
Aldrich (St Louis, MO, USA). The 5-(and-6)-chloromethyl-2′, 7′-dichlorodihydrofluorescein diacetate,
acetyl ester (CM-H2DCF-DA) and N-acetyl cystenine (NAC) were purchased from Sigma Aldrich.
Lutein was obtained from Kemin Health (Des Moines, IA, USA; FloraGLO Lutein 10% VG TabGrade).
Beta-carotene and astaxanthin were obtained from Sigma-Aldrich. Working solutions of carotenoids
were freshly prepared with dimethyl sulfoxide (DMSO) and tetrahydrofurlan (THF) in a ratio 2:1
immediately before use. Docetaxel and paclitaxel were obtained from Tocris Bioscience (Minneapolis,
MN, USA).

4.2. Cell and Cell Culture

Human primary mammary epithelial cells (PmECs, ATCC, PCS-600-010) were purchased from
ATCC (American Type Culture Collection, Manassas, VA, USA) and were cultured in Mammary
Epithelial Cell Basal Medium + One (ATCC, PCS-600-400). Human breast cancer cell lines (MCF-7,
MDA-MB-468) were obtained from Dr. Rajkumar Lakshmanaswamy, Department of Biomedical
Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso.
Cell lines (BT474, ATCC, CRL-3247; MDA-MB-453, ATCC, HTB-131 and MDA-MB-231, ATCC,
HTB-26) were obtained from ATCC. Breast cancer cells were cultured in RPMI medium (GIBCO,
Life Technologies, Gaithersburg, MD, USA) supplemented with 10% fetal bovine serum (FBS) (Thermo
Fisher Scientific, Waltham, MA, USA), and 100 IU/mL penicillin/streptomycin (Invitrogen, Carlsbad,
CA, USA) in a humidified atmosphere of 95% air and 5% CO2 at 37 ◦C.

4.3. Cell Proliferation/Viability Assays

Normal PmECs and breast cancer cells were seeded onto 96-well plates at a density
of 1 × 105 cells/mL, and left overnight to attach. Culture medium was removed and
the cells were treated with serial dilutions of lutein (0.5–2.0 µM) in fresh culture medium
with 10% FBS, or cultured in medium with DMSO (in the same concentration as carotenoid
samples) as a control. Cell viability was determined after 48 h by MTT assay using
CellTiter96®Non-Radioactive Cell Proliferation kits (Promega, Madison, WI, USA), in which the
yellow tetrazolium salt [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] is reduced by
mitochondrial dehydrogenase in viable cells to purple, insoluble crystals of formazan. Cells were
incubated for 4 h with MTT solution at 37 ◦C and formazan crystals were solubilized in a lysing buffer
overnight at room temperature (RT). The product was quantified by measurement of absorbance at a
570 nm wavelength with the use of a BioTek Synergy™ H4 Hybrid Multi-Mode Microplate Reader
(BioTek Instruments, Winooski, VT, USA). All experiments were performed in triplicate and yielded
similar results. Results are representative of an average of three independent experiments. Data are
presented as proportional viability (%) by comparing the treated group with the untreated cells,
the viability of which was assumed as 100%.

4.4. Colony Formation Assay

Breast cancer cells (5 × 103) were seeded per well in 6-well plates and cultured overnight.
Cells were then treated with lutein at various concentrations for 48 h. After rinsing with fresh medium,
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individual cells were allowed to form colonies for the indicated time periods, fixed, and then stained
with 0.04% crystal violet. Any colony containing more than 30 cells was counted as one positive colony.
The inhibition of colony formation ratio is expressed as the percentage compared to vehicle control.

4.5. Cell Cycle Analysis

MDA-MB-468 cells were seeded onto 6-well plates at a density of 3 × 105 cells/mL and left
overnight to attach. Culture medium was removed and the cells were exposed to 2.0 µM lutein in
fresh culture medium with 10% FBS or cultured in medium with DMSO as a control. After 48 h,
treated cells were stained with propidium iodide (PI) using PI/RNase Staining Buffer (BD Biosciences,
BD Pharmingen, San Jose, CA, USA), according to the manufacturer’s instructions. Briefly, cells were
harvested and centrifuged at 300× g for 5 min at RT, and the pellets were fixed in ice-cold 80% ethanol
overnight at −20 ◦C. Following fixation, cells were centrifuged at 300× g for 5 min at 4 ◦C, washed
twice in PBS, and then incubated with 0.5 ml PI/RNase solution per 1× 106 cells for 15 min in darkness
at RT. Next, the stained cells were analyzed by flow cytometry using a Accuri C-6 flow cytometer
(BD Biosciences) equipped with a 488-nm argon-ion laser, in order to assess the percentage of cells in
phases G0/G1, S, and G2/M, based on the amount of PI incorporated into DNA; histograms of DNA
distribution were then generated. The PI fluorescence intensity of individual nuclei was determined,
and at least 10,000 events were measured within an acquisition rate >60 events/second. Cell cycle
analyses were performed with FlowJo software (NIH). All experiments were performed in triplicate
and yielded similar results.

4.6. EdU Proliferation Assays

MDA-MB-468 and MCF-7 cells were seeded on 96-well plates at a density of 10,000 cells/well
(1 × 105/mL) and 5,000 cells/well (5 × 104/mL) respectively, and left overnight to attach. Culture
medium was removed and cells were treated with serial dilutions of carotenoids (lutein, β-carotene,
astaxanthin at 0, 0.5, 1.0, and 2.0 µM) in fresh culture medium with 10% FBS. Control cells were
cultured in medium with the vehicle (DMSO/THF). Cell proliferation was assessed after 48 h with
the use of a Cell Proliferation Click-iT EdU Microplate Assay (Life Technologies, Carlsbad, CA, USA),
according to the manufacturer’s instructions. All experiments were performed in triplicate and yielded
similar results.

4.7. Flow Cytometric Assay of Apoptosis

Apoptotic cells were identified by an Annexin V/Dead Cell Apoptosis Kit (Invitrogen) according
to the manufacturer’s instructions. Briefly, MDA-MB-468 cells were treated with DMSO (vehicle) or
various concentrations of lutein for 24 h. The adherent cells were trypsinized, pelleted, washed in
ice-cold PBS, and resuspended in 1× binding buffer. Cells were then stained with FITC–Annexin
V and propidium iodide (PI) for 15 min at room temperature in the dark. Annexin V–FITC detects
translocation of phosphatidylinositol from the inner to the outer cell membrane during early apoptosis;
PI enters cells during late apoptosis or necrosis. Untreated cells were used as control for the double
staining. Cells were analyzed immediately after staining using flow cytometry and FlowJo software.
For each measurement, at least 20,000 cells were counted.

4.8. Quantitative RT–PCR Apoptosis and Cell Cycle Focused Gene Arrays

RT2 Profiler PCR 96-well arrays (SA Biosciences) for the detection of 84 key apoptosis- and cell
cycle-related genes respectively, were used quantitatively to determine gene expression. Total RNA
was isolated and extracted using an RNA extraction kit (RNeasy Mini Kit, Qiagen, Germantown, MD,
USA), according to manufacturer’s protocols cDNA synthesis was performed using a first strand cDNA
synthesis kit (SA Biosciences, Frederick, MD, USA), and cDNA amplification was performed using
an Amplification Master Mix kit. Samples were prepared with Master Mix and Template Cocktail,
and loaded into the PCR array wells and run on a Bio-Rad CX90 thermal cycler using SYBR Green
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detection. Cycle thresholds were determined for each gene using instrument’ software. Cycle threshold
values were transferred into a Data Analysis Template Excel file and analyzed on SA Bioscience’s PCR
Array Data Analysis Web Portal.

4.9. Determination of Intracellular ROS Production

ROS generation was measured using the oxidation sensitive fluorescent probe CM-H2DCF-DA
(Life Technologies). Following treatment with the indicated concentrations of lutein in the absence or
presence of NAC for the specified time periods, cells were washed with PBS and incubated with 10 µM
CM-H2DCF-DA for 30 min at 37 ◦C in the dark. ROS production was analyzed by flow cytometry.

4.10. Quantitative Fluorescent Western Blot Analysis

Cells were harvested and lysed in ice-cold M-PER mammalian protein extraction reagent (Pierce,
Rockford, IL, USA) containing 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, and protease
inhibitor cocktail (Roche Diagnostics GmbH, Mannheim, Germany), and subjected to centrifugation
at 10,000 rpm for 10 min. Protein concentrations were determined by BCA protein assay. A 30–40 µg
aliquot of protein from each treatment was subjected to 10% SDS-PAGE. After electrophoresis, the
separated proteins were transferred to Immun-blotTM PVDF membranes (Bio-Rad) by semi-dry
blotting, and probed with the appropriate antibody, followed by incubation with Odyssey secondary
antibodies, according to manufacturers’ instructions (goat anti-rabbit IRDye 680 or 800 and goat
anti-mouse IRDye 680 or 800, depending on required combinations). Blots were imaged and
quantitated using an Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA).

4.11. Phospho-Antibody Array Analysis

Phospho-antibody array analysis was performed using a Proteome Profiler Human
Phospho-Kinase Array Kit (ARY003B; R&D Systems, Minneapolis, MN, USA). Briefly, MDA-MB-468
cells were treated with either control or 2.0 µM lutein for 12 h. Cells were lysed with Lysis Buffer 6
(R&D Systems, Minneapolis, MN, USA) and agitated for 30 min at 4 ◦C. Cell lysates were clarified by
microcentrifugation at 14,000 × g for 5 min and supernatants were assayed for protein concentrations.
Preblocked Human Phospho-Kinase Array nitrocellulose membranes were incubated with ∼300 µg
of cellular extract overnight at 4 ◦C on a rocking platform. The membranes were washed three
times with 1×Wash Buffer (R&D Systems) to remove unbound proteins, and then incubated with
a mixture of biotinylated detection antibodies and streptavidin-HRP antibodies. Chemiluminescent
detection reagents were applied to detect spot densities. Array images were analyzed using ImageJ
software. Each spot was subtracted by the averaged background level from negative control spots and
normalized by the density levels of its own positive control spots to validate results from four different
conditions. The averaged density of duplicated spots representing each phosphorylated kinase protein
was determined and used for the relative changes in phosphorylated kinase proteins.

4.12. Statistical Analysis

Results were expressed as means ± standard derivation (SD) of the number of experiments.
Statistical analysis was carried out using a student’s t-test or one way Analysis of Variance (ANOVA),
followed by Dunnett’s post hoc test, considering p < 0.05 to be significant (** p < 0.01,* p < 0.05).

5. Conclusions

We report novel mechanisms by which the carotenoid lutein selectively inhibits growth of breast
cancer cells. These intracellular signals involve increased ROS generation, activation of p53 signaling,
and increased HSP60 expression. Our findings indicate that lutein may be a non-toxic, selective agent
that can induce cell cycle arrest and apoptosis in breast cancer, including triple-negative breast cancer
cells. We speculate that the toxicity of taxane chemotherapy might be lessened by enabling lower
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effective doses in combination with lutein. Further investigations in preclinical and clinical settings
should establish lutein as a potential anti-cancer agent in breast cancer.
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