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Abstract: Chitosan is a naturally occurring compound and is commercially produced from seafood
shells. It has been utilized in the induction of the defense system in both pre and post-harvest
fruits and vegetables against fungi, bacteria, viruses, and other abiotic stresses. In addition to that,
chitosan effectively improves the physiological properties of plants and also enhances the shelf life of
post-harvest produces. Moreover, chitosan treatment regulates several genes in plants, particularly
the activation of plant defense signaling pathways. That includes the elicitation of phytoalexins and
pathogenesis-related (PR) protein. Besides that, chitosan has been employed in soil as a plant nutrient
and has shown great efficacy in combination with other industrial fertilizers without affecting the
soil’s beneficial microbes. Furthermore, it is helpful in reducing the fertilizer losses due to its coating
ability, which is important in keeping the environmental pollution under check. Based on exhibiting
such excellent properties, there is a striking interest in using chitosan biopolymers in agriculture
systems. Therefore, our current review has been centered upon the multiple roles of chitosan in
horticultural crops that could be useful in future crop improvement programs.

Keywords: biopolymer; vegetables; fruits; biotic stress

1. Introduction

Recently, chitosan has been one of the most preferred biopolymers due to its biocompatibility,
antioxidant, anticancer, biodegradability, antimicrobial, and non-toxic properties as well as being
an economical material, produced from waste resources such as seafood shells [1–3]. Structurally,
chitosan is a linear polymer, composed of two sub-units as D-glucosamine and N-acetyl-D-glucosamine,
linked with each other through 1,4-glycosidic bonds [4,5]. Since the last decade, chitosan research
is increasing due to its significant diverse uses in several fields of life i.e., plant sciences [6–9] and
medical sciences [10]. About 8700 chitosan-related records are available on Scopus. On a commercial
scale, chitin has been extracted by following a classic, well-known acid-base method. The samples are
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demineralized using acids followed by a deproteinization with a base, respectively [6–8]. However,
the functionality of chitin increases when it is converted into chitosan, a derivative form of chitin [9].
The presence of amine groups on chitosan makes it prone to structural modifications resulting in a
functional derivative of chitin [10]. Besides agriculture, chitosan has a large set of applications, such as
in the food, cosmetic, textile, and biomedical industries [11–14].

In plants, the chitosan is largely used to mimic biotic and abiotic stresses. The first study
of using chitosan as an antipathogen in plants was reported by Allan and Hadwiger [15], where
they demonstrated the fungicidal effects of chitosan on different cell wall compositions of fungi.
The improvement of the defense system after applying chitin and chitosan, both in monocotyledon
and dicotyledons is the center of addressing this biopolymer in multi-research area [16]. Chitosan
has been a bio-fungicide, bio-bactericide, and bio-virucide, which spurs plant defense system against
the pathogen, thus inducing the immune system of plants, fruits, and vegetables [12,15,17–19].
Furthermore, the growing demand for food also stimulated the increased use of industrial fertilizer,
which causes serious environmental unbalance and is having catastrophic effects on human health.
Therefore, the use of chitosan as a biofertilizer is considered. Chitosan has been reported to have a
positive effect on rhizobacteria growth, where Chitosan possesses a symbiotic relation with growth
promoting rhizobacteria, thus triggered germination rate and improving plant nutrient uptake [20].

This review presents the plethora of research conducted on the uses of chitosan in horticulture
crops. In particular, we present the utilization of chitosan in coping with biotic and abiotic stresses,
improving the physiological attributes of plants, post-harvest quality of fruits and vegetables, and
reducing the use of inorganic fertilizer.

2. Sources of Chitosan

Chitosan is the N-deacetylated derivative of chitin. It is a natural polysaccharide, which can be
produced after the alkaline deacetylation of chitin (essential structural polymer, constituting a large
fraction of insects and a crustacean’s exoskeleton) [21–24]. Briefly, the chitin extracted isolates are
refluxed in 60% NaOH solution (w/v 1:15 or 1:20, where w = mass of chitin, v = volume of NaOH
solution) for 3–4 h by stirring at a temperature of 80–100 ◦C. In order to neutralize the pH level of the
isolated chitosan, the samples are washed with deionized, distilled water. Then, the chitosan samples
are dried for 24 h in an oven using a temperature of 60–80 ◦C and the chitosan percentage is then
calculated. Below we compiled different sources of chitin and chitosan (Table 1).

Table 1. Sources of chitin and chitosan from various aquatic and terrestrial organisms.
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3. Structure and Characterization of Chitosan

Chemically, chitosan is a linear polymer composed of two sub-units, D-glucosamine and
N-acetyl-D-glucosamine, linked with each other through 1,4-glycosidic bonds [4,5]. The general
structure of the chitosan molecule is made up of three rings (Figure 1). Chitosan exhibits three
functional groups, primary and secondary hydroxyl groups and amine groups [45]. Due to these
functional groups, they can easily undergo chemical modification. In addition, these functional groups
affect the solubility and mechanical properties of chitosan. Chitosan also has beta-1, 4 glycosidic
linkages. The oxygen atoms (O1 and O2) are attached to the C6–C7 and C10–C13 atoms. Compare to
chitin, chitosan is more soluble in acidic aqueous mediums. The solubility comes from the protonation
of –NH2 at the C-2 position of the D-glucosamine repeat unit which induces the conversion of the
polysaccharide to a polyelectrolyte in acidic media [5]. The solubility character of chitosan broadens
its scope of applications in almost every field of man’s life and health (agriculture, medical, process
engineering, industries etc.). In literature reports, the structural chemistry of chitosan has been vastly
characterized using different analytical tools, including FT-IR, NMR, and XRD. These techniques are
actively being applying for the identification and detailed characterization of chitosan obtained from
different sources, such as honeybee [6], Vespa crabro (wasp) [7], Leptinotarsa decemlineata [21], Daphnia
longispina (Crustacea) [22], Asellus aquaticus, Agabus bipustulatus, Anax imperator, Hydrophilus piceus,
Notonecta glauca, Ranatra linearis [42], Orthoptera species (Calliptamus barbarus and Oedaleus decorus)
Ceriodaphnia quadrangula [46–49]. The FT-IR peaks for chitosan are known to be around 1650 cm−1

and 1590 cm−1 which correspond to amide I band (carbonyl ν(C=O)) and amide II (amine ν(NH2)
tensions), respectively [46,48]. Like chitin, chitosan also degrades in two stages. In the first stage, 2–4%
of mass loss can be recorded at the temperature ranging from 0 to 150 ◦C. This first stage of degradation
can be ascribed to the evaporation of the bound water molecules in the chitin structure. The second
degradation stage can be recorded between the temperature ranges of 150–650 ◦C, causing mass loss
of around 60–90%. The maximum thermal stability peak (◦C) of chitosan varies from source to source
but on average, the thermal stability of chitosan ranged between 280–310 ◦C [21].

Chitosan exhibits several reactive amino side groups which enhance the applicability of chitosan
and offer the possibility of formation of a large variety of chitosan derivatives.

Chitooligosaccharides (COS) or oligochitosan is one of the several useful water-soluble derivatives
of chitosan. Like all other polysaccharides, chitosan can also be cleaved by hydrolyzing agents
due to the unstable glycosidic bonds. COS can be produced by different methods such as acid
hydrolysis [47], enzymatic hydrolysis [49], oxidative degradation [50], and ultrasonic degradation [51].
N-carboxymethyl chitosan (CM-chitosan) is a water-soluble derivative of chitosan which has many
applications in the food and medical industries, and in gene therapy [52,53]. N-carboxymethyl chitosan
can be prepared by treating chitosan with glyoxylic acid. Chitosan is water-soluble at pH > 7, however
at pH 2.5–6.5 phase separation can be seen because of the equilibrium between charges (positive
and negative) on the polymer. The excess of charges (positive or negative) determines the solubility
of CM-chitosan [33]. Trimethylchitosan ammonium is another water-soluble cationic derivative of
chitosan. It is produced by quaternization of chitosan i.e., reacting low acetyl content chitosan with
methyl iodide and sodium hydroxide. Trimethylchitosan ammonium displays flocculating properties
such as kaolin dispersions, making it applicable in paper manufacturing [33]. N-methylene phosphonic
chitosan (NMPC) is an anionic derivative, exhibiting amphoteric properties. NMPC possesses bonding
efficiency for cations such as Ca2+ and many transition metals (Cu (II), Cd (II), Zn (II)) [54].

Lactic-Glycolic Acid-Chitosan hydrogels, another functional derivative of chitosan, showed a
stronger interaction between water and chitosan chains after grafting with lactic and/or glycolic
acid. It can be produced by direct grafting of D,L-lactic and/or glycolic acid on chitosan without any
catalysts. It has potential applications in biomedical applications including drug delivery systems and
wound dressings (134).
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Figure 1. Structural design and chemistry of chitosan.

4. Antimicrobial Activity of Chitosan

The increase in the number of research papers related to chitosan’s antimicrobial activity prove
it as a versatile biostimulant in the horticulture sector. The elicitation of the defense system in both
pre- and post-harvest fruits and vegetables is highly promising. Therefore, regarding the antimicrobial
mechanism of chitosan, several researchers have presented their practical point of view. For example,
Goy et al. suggested three antibacterial mechanisms of chitosan; firstly, ionic surface interaction
resulting in cell wall leakage; secondly, permeation of chitosan into microorganism nuclei inhibits their
protein and mRNA synthesis, and thirdly, formation of an external film over the plant surface, limiting
the nutrient availability for microorganisms [55]. Liang et al. [56] stated that chitosan is responsible for
the destruction of the bacterial cell membrane which causes death due to the leakage of intracellular
substances [56]. It was also found to be involved in altering the growth of fungi and reduced toxin
production [57]. However, in recent times, it has been reported that chitosan is responsible for the
hydrolysis of peptidoglycans (cell wall component), increasing electrolyte leakage and potentially
causing the death of the pathogen (Figure 2) [58].

Figure 2. Chitosan acts on the pathogen by breaking the peptidoglycan bond and causing intracellular
electrolyte leakage which leads to the death of the microbes.
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4.1. Chitosan Effect on Fungi, Bacteria, and Nematodes

Since 1979, when chitosan was reported as a bio fungicide by Allan and Hadwiger [15], it has
attracted an ample amount of attention in terms of research in the field of plant protection. In addition,
it is also well documented in controlling plant disease caused by bacteria. However, in nematodes,
not a great amount of research material is available and therefore further study is required to assess
the role of chitosan as a potential nematocide. The effectiveness of chitosan against different pests
and pathogens has covered a large number of research articles across different fruits and vegetable.
Therefore, from the big collection of chitosan research, we enlisted recent studies (Table 2) reporting
the fungicidal, bactericidal, and nematocidal capacity of chitosan in various fruits and vegetables.
This body of research suggests that chitosan can be use a bio-stimulant of the plant immune system to
tackle diverse unfriendly environments.

Table 2. Defense mechanisms induced by chitosan in horticultural crops.

Crop Concentration Pathogen/Pest Defense Mechanism Mode of Application References

Banana 1.0% (w/v) Anthracnose Arresting fungal activity In-vivo [59]

Carrots 2 or 4% (w/v) Sclerotinia sclerotiorum Antifungal activity In Vitro [60]

Cucumber 0.2 g L−1 Botrytis cinerea Antifungal Foliar spray [61]

Cucumber 2% (w/v) Sphaerotheca fuliginea Antifungal Petri dish treatment [62]

Chilli pepper 0.32% (w/v) Colletotrichum capsici Hijacked fungal activity In vivo [63]

Eggplant 20 mL Ralstonia solanacearum Reduce fungal caused wilt Cotton leaf disk
elicitation method [64]

Mango 1% (w/v) Colletotrichum gloeosporioides Fungus inhibition Post-harvest coating [65]

Orange 2% (w/v) Penicillium italicum and
Penicillium digitatum Fungicidal effect Post-harvest coating [66]

Pear 25 g/L A. kikuchiana and P. piricola Antifungal activity Post-harvest treatment [67]

Papaya 1.5% (w/v) C. gloeosporioides Fungicidal effect In situ [68]

Palm 1 mg mL−1 Fusarium oxysporum Inhibition of root fungal activity Soil inoculation [69]

Peach 0.5 g L−1 Monilinia fructicola Antioxidant and antifungal Dipping in solution [70]

Tomato 1 mg/mL Alternaria solani Antibacterial defense Foliar application [71]

Tomato 0.1% (w/v) Fusarium oxysporum f.
sp. Lycopersici Antifungal Foliar application [72]

Tomato 0.1 mg mL−1 Pochonia chlamydosporia Nematocidal effect Fertigation [73]

Tomato 10 mg L−1 R. solanacearum Antibacterial Seed treatment [74]

4.2. Effect of Chitosan on Viral Diseases

The induction of plant resistance against viruses has been reported widely [75]. Generally, viruses
that affect plants systematically are more threatening. Therefore, utilization of chitosan as a virucide
was reported as the most feasible approach to limit viral infection [76]. Chirkov et al. [77] reported that
application of chitosan on potato plants infected with potato virus X (PVX) showed resistance to PVX
virus. Moreover, tomato plants treated with chitosan not only showed resistance to tomato mosaic
virus but also their vegetative growth was improved [78]. Similarly, chitosan in formulation with plant
growth promoting rhizobacteria (PGRP) conferred resistance to leaf curl virus in tomato plant [79].
Also, chitosan was found effective against squash mosaic virus (SMV) [80,81]. Furthermore, Chirkov
et al. [18] hypothesized that there might be some peculiar properties of the host plant which initiate
the antiviral reaction(s) after chitosan treatment. In line with that, chitosan oligosaccharide induces
resistance against tobacco mosaic virus (TMV) by activation of the salicylic acid signaling pathway [82].

5. Chitosan as an Insecticide

Chitosan shows strong resistance to microbial diseases and insecticidal activity against various
plant pests. However, chitosan derivatives have been found to be potentially more harmful than the
pest. Due to these reasons, more chitosan derivatives have been developed in the recent past [83].
In line with that, chitin derivative (N-2-chloro-6-fluorobenzyl-chitosan) was found to be lethal against
the oleander aphid (Aphis nerii) and larvae of leaf-worm (Spodoptera littoralis) of cotton crops [83].
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In addition, nano-chitosan (CSg PAA) was also identified as a potential insecticide against the
insects of soybean i.e., Aphis gossypii and Callosobruchus maculatus, as it significantly reduces the
number of eggs deposited by the female [84]. More recently, a new chitosan derivative named
Avermectin-grafted-N,O-carboxymethyl chitosan (NOCC) was obtained and has shown excellent
insecticidal activity against armyworms, carmine spider mites, black bean aphids, and brown plant
hoppers [85]. Despite having a strong killing impact against the above-mentioned insects, it might
have the same impact on its family members as well. According to the reported studies, the above
mentioned insects are involved in causing irreversible damage to tomato [86,87], cucumber [88],
eggplant, potato, and chili [89]. Moreover, some insects exhibit chitin in their exoskeleton which can
result in resistance to chitosan-based insecticides. To overcome such problems, chitosan has been
fed to reared carnivorous insects in order to use them as biological controllers of chitinous pests [90].
Therefore, it would valuable to utilize chitosan as a bio-insecticide for horticultural crops.

6. Chitosan’s Effects on Abiotic Stresses

6.1. Effect on Drought Stress

Drought stress is one of the most important multidimensional environmental stressors that
damage plants’ physiology, biochemical properties, and molecular traits [91]. For example, in apples,
young seedlings were foliar sprayed with chitosan, which enhanced antioxidant activity, reduced
electrolyte leakage, and restored moisture content under continuous drought stress for 35 days [92].
It was also reported to induce resistance against drought stress in potato, moth orchid, rice, white
clover, and grapevine by means of induced antioxidant activities, increased endogenous H2O2 content,
enhanced endogenous chitosan activities, and root system development [93–97]. Moreover, chitosan
induced ABA activity, which plays a key role in the regulation of stomatal aperture and reduced the
rate of transpiration when the plant is going through stress phase [98,99]. Therefore, we suggest that
chitosan might be a potential antitranspirant that helps horticulture crops cope with drought stress.

6.2. Effect on Heat Stress

Heat stress is often a complicated issue in agricultural species as it usually occurs simultaneously
with drought stress. This makes it hard for the plant researcher to distinguish between the two
stresses [100]. It has been reported that in dry bean production under heat stress, chitosan treatment
could be the best approach to escape heat stress in late-sown plants [101]. To the best of our knowledge,
there is not a large amount of research available on chitosan involvement in response to heat stress.
However, the participation of ABA in coping with heat stress [102] via its involvement in inducing
HS-related genes is reported in many published notes [103,104]. Overexpression of ABF3 (abscisic
acid responsive element-binding factor 3) confers tolerance to heat stress [104]. Therefore, the use
of chitosan might be effective for overcoming high-temperature stress by triggering ABA activity,
which further induces the expression of defense-related ABA-responsive genes in horticultural species.

7. Chitosan Effects on Fruits and Vegetables

7.1. Chitosan Effects on Plant Growth, Yield Attributes, and Physiological Activities

The chitosan effects on fruit physiology and agronomic traits have been highly studied using
different concentrations of chitosan over a variety of fruits. In line with that, foliar spraying of
5 mL L−1 chitosan over mango trees improved the number of fruits tree−1, weight and size of fruit,
and vegetative growth [105]. In grapes, chitosan was sprayed at 500 L per hectare during the pre-bunch
closure and veraison stage and effectively increased the POX and PAL activities, polyphenol content,
and SOD activities [106–108]. Moreover, an increase in the weight of fresh fruit of the kiwi plant was
observed after spraying with chitosan in field conditions [109]. Furtherly, Gayed et al. reported that
chitosan in combination with calcium chloride reduced the early swelling of peach trees, maintained
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freshness and firmness of fruits, and decreased the weight loss percentage [110]. In nectarine, chitosan
improved the soluble solid content and also helped maintained the post-harvest firmness of the
fruit [111].

Like in fruits, chitosan also positively affects the agronomic traits of vegetables. Tomato plants
were subjected to chitosan treatment, resulting in high phenolic compound and PPO activities,
production of phytoalexins, and improvement in fruit weight and overall yield [71,112,113].
Tsugita et al. suggested that application of chitosan in daikon radish triggered the growth of roots
and shoots [114]. Similarly, it was reported in sweet basil, grapevine, Gerbera, Dendrobium orchids,
and in cabbage, that chitosan treated plants showed better growth than that of controls [115–119].
Moreover, the cucumber plant is highly susceptible to low-temperature stress. However, when treated
with chitosan, the plants had reduced reactive oxygen species, improved photosynthetic capacity,
and the membrane system was strengthened to alleviate cold stress [120]. In chili, seeds treated with
chitosan had significantly improved germination rates, germination index, mean germination time,
and germination after accelerated aging, as well as high seed quality and enhanced storage life [121].
Furthermore, we also enlisted some crops on which the impact of chitosan was highly effective in
terms of enhancing agronomic traits (Table 3). In the context of the above discussion, chitosan use is
recommended to enhance the photosynthetic activity, vegetative growth, antioxidant activities, fruit
quality attributes, and overall growth and yield of the crop.

Table 3. Reported studies on chitosan effects on the agronomic traits of horticultural crops.

Crop Functions Reference

Artichoke Improved seed germination and plant growth [122]

Chili Leaf area, canopy diameter and plant height [123]

Cucumber Triggered vegetative growth and quality of cucumber fruits [124]

Coffee Plant height and leaf area [125]

Chinese cabbage Uniform seed germination and enhanced seedling growth [126]

Dendrobium formosum orchid Enhanced seed germination [127]

Eggplant Improved antioxidant activity and total phenolic content [64]

Grapevine Increased number of internode and improved rooting [97]

Okra Plant height, leaf number and fruit yield [128]

Potato Increased the fresh weight of tuber and overall yield [129]

Peach Induced antioxidant activity and defense-related enzymes [70]

Radish Enhanced the nutrient uptake efficiency and mimic cadmium stress [130]

Strawberry Produced fruits with an increased shelf life [131]

Tomato Improved fruit and productivity [71,72]

Tea Enhanced the phenolic content up to 9% [132]

Watermelon Increased in weight of fresh and dry seedlings, Stimulated the growth of
the primary stems, the root system, and an increase in stomatal width. [19,133]

7.2. Chitosan Effects on Post-Harvest Fruits and Vegetables

The diverse beneficial effects of chitosan in fruit shows great value. Furthermore, a coating
of post-harvest mango with edible chitosan showed a reduction in the percentage of rotten tissue,
increased ascorbic acid content, increased shelf-life, and maintained freshness [134–136]. Likewise,
in pomegranate, edible chitosan coating enhanced the shelf life and improved freshness for up to
16 days with good chemical and sensory characteristics during post-harvest cold storage, and kept
the surface microbial growth under check [137,138]. Petriccione et al. [139] reported upregulated
anthocyanins activity, delay in color changes, and preservation of water content in chitosan-coated
sweet cherries [139]. Similarly, in post-harvested strawberries, chitosan significantly prolonged the
anthocyanins, polyphenol, and antioxidant activities, while inhibiting flesh browning under cold
storage conditions [140]. Furthermore, thin-peel rose apples showed a reduction in disease severity,
sustained fruit firmness, and a reduction in the weight loss percentage during post-harvest storage
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when treated with 2% chitosan [141]. The significance of chitosan under cold storage has also been
reported for post-harvest apricots, where it has shown improvement in antioxidant enzyme activities
and elevating the total phenolic content [142]. Bananas are a highly perishable fruit and deteriorate
faster than other fruits. Edible chitosan can be used to delay the ripening and to enhance the shelf life
of bananas. Further, it also improves the antioxidant activity and vitamin C content [143]. Green mold
disease has a substantial effect during post-harvest storage and transportation of citrus. Coating with
edible chitosan maintained fruit firmness, surface color, juice content, and other quality attributes [144].
Ripening and fruit senescence in peach is a major issue that affects their economic value. However,
treatment with chitosan resulted in a significant increase in antioxidant enzyme activity, senescence
arrest, delayed fruit ripeness, and maintenance of shape and color [70,110]. In kiwi fruit, the high
molecular weight of chitosan was found to be effective in increasing the shelf life, fruit firmness,
and other quality parameters [145]. It is clear from the above references that chitosan is involved in
improving the physical structure and shelf life and maintaining the quality of post-harvest stored fruits.

Refrigeration of tomatoes during summer causes a considerable amount of loss. However, use of
chitosan significantly enhanced the shelf life, visual appearance, and other quality attributes of the
refrigerated tomatoes [146]. Likewise in carrot, edible chitosan was applied to carrot slices, which
reduced the ripening process, reduced sugar, and increased the total phenolic content [147]. As in
broccoli, chitosan treatment along with mild heat shock improved the shelf life and also maintained
the sensory attributes [148]. Further, chitosan was used to induce chill tolerance, enhanced shelf life,
preserve fruit quality, and improve antioxidant activities in post-harvest cucumber and cantaloupe
melon [149,150]. Nowadays, people are more concerned about food safety and quality, and due to
this reason chitosan has potential to be utilized in different methods in order to enhance the innate
immunity of post-harvest products.

8. Chitosan Effects on Gene Expression

Gene expression is a biological process which changes according to changing environment, and
allows the cells to respond to environmental stimuli. Different exogenous gene regulators have been
reported in recent studies. Here, we present some of the recent research done on chitosan involvement
in the regulation of gene expression. Hadwiger [151] reported that chitosan activates genes and inhibits
RNA synthesis in fungi. The chitosan activates several genes and increases production of proteins and
phenolic compounds through the phenylpropanoid pathway, which in turn increases tolerance against
pathogens [151]. In Dendrobium, an ornamental flowering plant, chitosan treatmentdown-regulated
the expression of the ycf2 gene in young leaves, conferring enlarged chloroplasts [152]. This suggests
the important role of chitosan in increasing the flowering ability of ornamental plants through gene
pathway regulation. In addition, Hadwiger stated that PR genes are induced by chitosan [153].
Chitinase and a β-1,3 glucanase, two PR proteins, contribute to plant protection against fungal
infection by degrading the fungal cell wall [154]. In tomato plants, chitosan extracts have been used
to alleviate the effect of two tomato pathogens, namely Alternaria solani and Xanthomonas vesicatoria.
The result suggested that chitosan significantly upregulated the expression of the PINII marker, which
is responsible for activating the defense signaling pathways [155]. Similarly, in pepper, raspberry, and
strawberry plants, chitosan was found to be effective in inducing plant defense mechanisms due to
the higher expression level of chitinase (EC 3.2.1.14) and β-1,3 glucanase (EC 3.2.1.39) genes [156–159].
Moreover, in grapes, the plants pre-treated with chitosan from three different commercially-produced
formulations showed higher endochitinase activity and two of the chitosan formulations triggered
exo-chitinase activity [160]. However, there is still a lack of research examining the role of chitosan
treatment in PR genes under different stresses. Furthermore, the MLO clade V genes in vegetables are
a gateway for the pathogen of powdery mildew disease, which has been confirmed in the recent report
by Berg et al., to restore the susceptibility to powdery mildew in cucumber [161]. In contrast to that,
chitosan is effective against widespread fungal diseases. Therefore, research is required to evaluate
the impact of chitosan on MLO clade V gene expression and how much it affects the disease severity
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index. Below, we tabulated (Table 4) some of the recent studies demonstrating the role of Chitosan in
regulating gene expression.

Table 4. Involvement of chitosan in regulating gene expression.

Crop Genes Expression Functions Reference

Arabidopsis PAD3 ↑ Induced resistance against Botrytis cinerea [162]

Capsicum annuum cat1, pal, pr1 ↑
Maintain plant fitness and keep the
defense system alert for the upcoming
stress.

[163]

Dendrobium officinale DoWRKY1 ↑ Proper regulation of plant metabolic and
physiological properties. [164]

Ginger GLU, PAL ↑ Triggered tolerance against rhizome rot
caused by Fusarium oxysporum [165]

Mango POD ↑ Altered the severity of anthracnose
disease by inducing enzymatic activity. [166]

Peach POD, GLU ↑ Enhanced resistance against brown rot [70]

Satsuma Orange CHI, PAL ↑ Inhibiting the fungal decay process in
orange fruit caused Penicillium digitatum. [167]

Sweet orange Cellulose synthase ↓ Reduce cell wall growth and increase
resistance against biotic stress. [168]

Strawberry Fra a1, Fra a3, Fra a4 ↑ Fruit development, flavonoid
biosynthesis and fruit ripening [169,170]

Scrophularia striata Boiss PAL ↑
Improved antioxidant activities and
increased the production of
phenylpropanoid

[171]

Tomato MPK3, MPK6, PR1a1 ↑
Increase resistance against grey mold
caused decay via the activation of MAPK
signaling pathway.

[172]

↑ showing up-regulation and ↓ down-regulation of the respective genes presented in the table.

9. Chitosan as a Bio-Fertilizer and Fertilizer Protectant

Ecological toxicity is at a critical point due to the high-level production and usage of inorganic
fertilizers. Therefore, biodegradable biofertilizers, like chitosan, are attracting the research community
to avoid the hazards of using inorganic fertilizers. Chitosan gets degraded enzymatically without
affecting the soil-borne beneficial rhizosphere biota at low concentrations, and also induces the
symbiotic exchange between plant and microbes [73]. In addition, chitosan is a polysaccharide-based
biopolymer, which stimulates the activity of plant symbiotic microbes, resulting in the alteration of
rhizosphere microbial equilibrium, thus disadvantaging the plant pathogens [173,174]. In recent
research, chitosan was used as a biofertilizer to improve crop yield with less environmental
contamination. In line with that statement, chitosan in combination with lysozyme has shown
beneficial effects, where it significantly reduced the rate of lesions in tomato stems to 14% [175].
In potato, late blight is an important disease that causes economic damage to potato yields. However,
after soil inoculation with chitosan as a biofertilizer, a significant reduction in tuber infestation by late
blight was detected, a significant increase in plant nutrient uptake was also recorded. The study
was done to produce organic potato seeds for an organic grower [176]. Similarly, 1% chitosan
mixed with fertilizer improved the nitrogen and phosphorous content in the roots and shoots of
Eustoma grandiflorum (Raf) compared with non-chitosan mixed soil grown plants [177]. In Chinese
cabbage, plants treated with a chitin-based product showed faster growth than plants treated
with a standard mineral fertilizer [178]. In another study, chitosan in combination with N, P, K
fertilizer proved to be significant in altering the effect of Botrytis cinerea-caused grey mold disease
in Begonia × hiemalis Fotsch, and also increased the antioxidant activities and other commercial
traits [179]. Besides that, soil supplemented with chitin enhanced plant growth by improving
nutrient uptake [180]. Additionally, inoculation of soil with 0.1% chitin from crustaceans induces
defense against root-infecting fungi in chili plants and also improved the nutrient uptake [181].
Likewise, NPKB bio-fertilizer mixed with the chitosan-containing fungi Cunninghamella elegans
produced NPKP influenced melon plant growth positively and also improved NPK uptake [182].
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Furthermore, tomato plants irrigated with chitosan exhibited decreased multiplication of root-knot
nematodes and Pochonia chlamydosporia (a parasitic fungi), resulting in improved root length, weight,
and increase shoot growth (Nuria Escudero et al., 2017) [73]. Furthermore, Ornithogalum saundersiae
bulbs coated with chitosan produced earlier flowers and had broader leaves (Salachna et al., 2015) [183].
In another report by Salachna et al. 2017, chitooligosaccharide in combination with gellan gum
induced vigorous growth, high antioxidant activity, and increased polyphenol content of Ornithogalum
saundersiae [184]. This highly suggests its role as a potential bio-fertilizer. However, the use of chitosan
as a bio-fertilizer in horticulture crops is quite underestimated and not a great amount of research
material is available on it. Therefore, it might be useful to use chitosan bio-fertilizer over different
horticulture crops to evaluate its effect on growth parameters against different stresses. Furthermore,
chitosan bio-fertilizers are available commercially from different manufacturers. CANADA OCEANIC
sells it in the name of Softguard, as a potential biofertilizer that can be used for a variety of purposes
(www.canadaoceanic.com/Fertilizers/SoftGuard.shtml).

The other important aspect of using chitosan is to control the release of fertilizer. It is estimated
that about 40–70% of nitrogen, 80–90% of phosphorus, and 50–70% of potassium from applied
fertilizers is lost to the environment and cannot be absorbed by plants [185]. Due to this, fertilizers are
overused with horticultural crops, and vegetables in particular are highly affected by fertilizer toxicity.
Nitrate is also considered as an important parameter of water pollution due to its involvement in
surface and groundwater contamination [186]. Similarly, application of excessive nitrogen leads
to water contamination, as surplus nitrogen is usually carried away by water or leaches down
to pollute the water table [187]. Therefore, to minimize the negative effects of agriculture on the
surrounding environment, it is important to reduce the use of fertilizer [188]. Chitosan has been used
recently to control the release of inorganic fertilizers in order to limit the harmful effects of excessive
fertilization [189–191]. Wu et al. [189] suggested that the use of chitosan coating on fertilizer improves
the efficiency of plant fertilizer uptake and also reduce the production cost. Therefore, in order to
minimize the overuse of chemical fertilizers in vegetables and fruit by reducing the leaching and
volatilization process, local farmers must consider chitosan as a coating material, according to the
suggested model of Hähndel [192].

10. Conclusions

The plethora of available and ongoing research on chitosan utilization continues to present its
efficacy. Chitosan has shown great importance in improving the physiological mechanisms and
post-harvest shelf life of fruits and vegetable against biotic and abiotic stress. In addition, chitosan
derivatives possess good insecticidal activity, however, to the best of our knowledge, there is no report
on chitosan use in a field study against insects in major horticultural crops. Besides that, chitosan
plays a role in regulating gene expression and inducing molecular defense systems in plants and
post-harvest produce. Moreover, chitosan bio-fertilizer and fertilizer coated in chitosan triggers the
plant growth more, compared to synthetic fertilizers. Furthermore, chitosan and its derivatives provide
good antifungal and nematocidal activity without disturbing the beneficial microbes in the soil and can
be considered as a green approach for soil sterilization [73,193]. Therefore, more research is required
to utilize chitosan against heat stress, for the application of chitosan to the root zone, to prevent
nematode-borne diseases, and to reduce the overuse of synthetic fertilizers in horticulture crops.
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