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Abstract: Plant secondary metabolites (SMs) are not only a useful array of natural products but also an
important part of plant defense system against pathogenic attacks and environmental stresses. With
remarkable biological activities, plant SMs are increasingly used as medicine ingredients and food
additives for therapeutic, aromatic and culinary purposes. Various genetic, ontogenic, morphogenetic
and environmental factors can influence the biosynthesis and accumulation of SMs. According
to the literature reports, for example, SMs accumulation is strongly dependent on a variety of
environmental factors such as light, temperature, soil water, soil fertility and salinity, and for most
plants, a change in an individual factor may alter the content of SMs even if other factors remain
constant. Here, we review with emphasis how each of single factors to affect the accumulation of
plant secondary metabolites, and conduct a comparative analysis of relevant natural products in
the stressed and unstressed plants. Expectantly, this documentary review will outline a general
picture of environmental factors responsible for fluctuation in plant SMs, provide a practical way to
obtain consistent quality and high quantity of bioactive compounds in vegetation, and present some
suggestions for future research and development.

Keywords: plant secondary metabolites; phenolics; flavonoids; terpenoids; alkaloids; responses;
environmental factors; light irradiation; temperature; soil water; soil fertility and salinity

1. Introduction

As distinguished from primary metabolism and first attributed to Kossel [1], plant secondary
metabolism is defined as a term for pathway and small molecule products of metabolism that are
non-essential for the survival of the organism. In nature, a variety of secondary metabolism pathways
elicited an array of plant defensive compounds called secondary metabolites (SMs). In addition to
basic nutrients such as proteins, fats or carbohydrates, plants can produce other compounds including
taxoids, polysaccharides, flavones, etc. SMs are the molecules to be dispensable for plant metabolism
and growth, whereas the wide variety and high diversity of secondary products are key components for
plants to interact with the environment in the adaptation to both biotic and abiotic stress conditions [2,3].
In fact, secondary metabolites involved in the protection against herbivores, bacteria, fungi, viruses
and even other competing plants. In addition, some plants made use of secondary metabolites as
signals for communication between plants and symbiotic microorganisms, as well as served to attract
pollinators and seed dispersers [3,4].

Plant SMs are usually classified according to their chemical structure [5]. Several groups of large
molecules, including phenolic acids and flavonoids, terpenoids and steroids, and alkaloids have been
implicated in activation and reinforcement of defense mechanisms in plants (see the classification
and biosynthisis of flavonoids, alkaloids and terpenoids in plant at Figures 1–3) [5,6]. Due to their
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remarkable biological activities, plant SMs have been formerly used as important source of active
traditional medicine, perfume and industrial raw materials for centuries [7–12]. Whereafter, they were
widely used as valuable compounds such as pharmaceutics, cosmetics, fine chemicals, or more recently
nutraceuticals [13–19]. Obviously, SMs tremendously promoted to the commercial importance and
value of plants.

Figure 1. Classification and biosynthisis of flavonoids in plant (ANS = Anthocyanid in synthase;
AS = Aureusidin synthase; C4H = Cinnamate-4-hydroxylase; CHI = Chalcone isomerase; 4CL =
4-coumaroyl: CoA-ligase; CHS = Chalcone synthase; DFR = Dihydroflavonol 4-reductase; F3H =
Flavanone-3-hydroxylase; F3′H = Flavonoid 3′-hydroxylase; F3′5′H = Flavonoid 3′5′-hydroxylase;
FLS = Flavonol synthase; FSI = Flavone synthase; IFS = Isoflavone synthase; PAL = Phenylalanine
ammonia lyase; THC4′GT = UDP-glucose: tetrahydroxychalcone 4′GT).
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Figure 2. Classification of terpenoidsin plant. (A): monoterpenes, A1: Open-chain, A2: Single
ring, A3: Bicyclic; (B): sesquiterpenes, B1: Open-chain, B2: Cyclic; (C): Diterpenes; (D): Triterpenes;
(E): Tetraterpenes.

However, the extraction and purification of SMs from wild natural plants normally require a
complex and time consuming process, and even so, the yield of the desirable end-product is often
very low [20–23]. Consequently, finding practical approaches to intensify the process and enhance the
yield pose a serious challenge to researchers. Up to now, many studies on searching of the highest
yield plant species and optimization of culture conditions have been conducted [24–28], but few
directly emphasized on the adaptability of plant secondary metabolites in response to environmental
disturbances and stimulations. In fact, synthesis and accumulation of phytochemical components
critically depended on environmental conditions. For most plants, external factors or variables
(light, temperature, soil water, soil fertility and salinity) can significantly affect some processes
associated with growth and development of the plants, even their ability to synthesize secondary
metabolites, eventually leading to the change of overall phytochemical profiles which play a strategic
role in production of bioactive substances [29–31]. In other words, plant secondary metabolites can
be gradually generated in response to environmental stress, and hence plant secondary metabolism
be viewed as plant behavior that is in part the ability of adaptation and survival in response to
environment stimuli during the lifetime [32], and serve to establish ecological relationships between
plants and other organisms [33]. In particular, for medicinal plants, environmental conditions are
capable of redirecting the metabolism to consequently regulate the production of active constituents.
Because, plants as herbal medicines have a complex and variable chemical composition, the type
and amount of SMs as well as biological effects were often determined according to the change
of environment.
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Figure 3. Classification of alkaloids in plant. (A): Amines; (B): Pyrrolidines; (C): Tropanes;
(D): Piperidines; (E): Terpenoid; (F): Quinolines; (G1): 1-Benzylisoquinoline; (G2): Aporphines;
(G3): Morphinane; (G4): Protoberberine; (G5): bisbenzylisoqunolines; (G6): Benzophenanthridines;
(H1): Simple indoles; (H2): Tryptamine indoles; (H3): Monoterpenoid indoles; (H4): Bisindole alkaloids;
(I): Steroidal alkaloids; (J): other alkaloids.
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Besides, specific SMs are synthesized only in certain circumstances, and thus, high quality
medicinal plants should be raised produced only under carefully controlled environments. There are
extensive literature documents on plant secondary metabolites. Here, we will focus on discussing how
the yield and content of SMs can be varied with the changes in environmental and soil nutrients and
agroclimatic conditions. In the following sections, the adaptability of plant SMs to key environmental
factors including light irradiation (duration, intensity, quality), temperature, soil water, soil fertility
and salinity will be in turn reviewed. The primary purpose of this literature commentary is to enhance
our understanding of plant SM adaptability in response to environmental stresses, and then optimize
cultivation techniques or ambient conditions to maximize yield of beneficial plant SM natural products
in an efficient and sustainable manner.

2. Response of Plant SMs to Light Irradiation

Light is indispensable to biosynthetic course of a growing plant. The key factors related light
radiation include photoperiod (duration), intensity (quantity), direction and quality (frequency or
wavelength) [34,35]. In the natural world, light plays an inreplaceable role in promoting plant growth
and inducing or regulating plant metabolism. In response to light radiation, plants are able to adapt
to the changes of circumstances by the release and accumulation of various secondary metabolites
including phenolic compounds, triterpenoids and flavonoids, and many of them, have high economic
and utilization value due to the well-known antioxidant property.

2.1. Effect of Photoperiod on Plant Secondary Metabolites

Photoperiod factor would influence the growth and development of plants, and thus regulate
the biosynthesis of SMs [36,37]. Early studies showed that the duration of light radiation had a
predominant role in regulating the levels of various phenolic phenylpropane derivatives in the
Xanthium species. In comparison with a long day of light exposure, a short day of light exposure
caused a decrease of, caffeoylquinic acids by about 40% and even an approximately double reduction
in the content of flavonoid aglycones [38]. Similarly, grown under short-day treatment, the content of
anthocyanins in Pinus contorta seedlings grown under short sunlight was notably lower than those
growing in the long sunlight area, whereas the concentration of proanthocyanins and flavan-3-ols
changed little as sunshine period varied [39]. A long period (16 h) of light irradiation on leaves of
Ipomoea batatas generated a dramatic increase in the content of flavonoids (anthocyanins, catechins
and flavonols) and phenolic acids (hydroxycinnamic and hydroxybenzoic acids) [40]. In a controllable
photoperiod experiment, the analyses on chemical compositions of Vaccinium myrtillus from Northern
(Lapinjarvi) and Southern (Oulu and Muhos) regions of Finland indicated that the southern clones
produced the highest anthocyanin and its derivatives during a 24-h light period, and in comparison
with a shorter photoperiod (12 h), longer photoperiod (24 h) also enchanced the level of chlorogenic
acid [41]. In general, a long-day sunshine can increase the level of SMs in plants, and further support
the role of flavonoids and phenolic acids in protecting plants to resist light exposure. The effect of
photoperiod change on the content of plant secondary metabolites was illustrated in Table 1.

Table 1. Photoperiod change on the content of various plant SMs.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change Plant Species

Phenols Caffeoylquinic
acids [38]

Short day
of light Decrease X. pensylvanicuim
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Table 1. Cont.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change Plant Species

Phenols Pelargonidin
[39]

Short day
of light Decrease P. contorta

Phenols Catechins [40] Long day
of light Increase I. batatas

Phenols Hydroxybenzoic
acids [40]

Long day
of light Increase I. batatas

Phenols Chlorogenic
acid [41]

Long day
of light Increase V. myrtillus

2.2. Effect of Light Intensity on Plant Secondary Metabolites

As a familiar indole alkaloid [42,43], the SM camptothecin can respond to environmental stresses
and its accumulation rate can change with light irradiation conditions. It is known that overshadowing
can induce biochemical changes in plants, particularly in leaves [44], and heavy shading of only 27% full
sunlight, for example, can elevate the concentration of camptothecin in leaves of Camptotheca acuminata,
whereas substantially reduce that in the lateral roots of this tree [45].

Table 2. Light intensity change on the content of various plant SMs.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change
Plant

Species

Alkaloids Camptothecin
[45]

27% Full
sunlight Increase C. acuminate

Phenols Asiatic acid
[46] 70% Shade Increase C. asiatica

Phenols Asiaticoside
[46] Full sunlight Increase C. asiatica
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Table 2. Cont.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change
Plant

Species

Phenols Chlorogenic
acid [47] Full sunlight Increase V. myrtillus

For Centella asiatica populations with high contents of secondary metabolites, qualitative and
quantitative analyses show that light exposure can affect the content of bioactive triterpenes in these
grasses, and under 70% shade-grown condition they contained the highest amount of asiatic acid but
the lowest amounts of asiaticoside [46]. In addition, the content of flavonoids and chlorogenic acid in
plants are positively correlated to the growth-lighting condition [47]. The exposure to full day sunlight
resulted in an increase in contents of asiaticoside, madecassoside, flavonoids and chlorogenic acid in
the plants compared with those grown under 50% of the shade [48]. These results indicate that the
accumulation of triterpene and phenolic compounds in C. asiatica depends on duration and amount of
daylight. The composition and antioxidant activities of phenolic compounds in Berberis microphylla
were qualitatively and quantitatively evaluated under different light intensities. It is found that high
light intensity can increase the content of monomeric anthocyanin by three times more than that
medium light intensity does. For the content of total polyphenol, however, high light intensity only
gives a slight increase compared with medium light intensity. In the meantime, high light intensity
can activate the higher antioxidant capacity of SMs in plants [49]. The effect of light intensity on the
content of plant secondary metabolites is shown in Table 2.

2.3. Effect of Light Quality on Plant Secondary Metabolites

Light quality can also influence synthesis of bioactive compound and secondary metabolism
of plants. Monochromatic light was more sensitive than combined light to improve antioxidant
phenolic compound of Lactuca sativa ‘Sunmang’. The total content of antioxidant phenols decreased
with increasing the proportion of red light, and each of individual phenolic compounds including
chlorogenic, caffeic, chicoric and ferulic acids as well as kaempferol showed a similar behavior [50].
UV irradiation is such an important abiotic factor that in many cases stimulates the production of
secondary metabolites, and hence has been applied in cell and callus culture [24,51,52]. When the cells
were irradiated with UV-B, the production of catharanthine and vindoline from Catharanthus roseus
was enhanced [53]. The inducing effect of a continuous UV irradiation on the anthocyanin content of
Daucus carota cell cultures was investigated and revealed that the total accumulation of anthocyanin
was significantly enhanced by the UV irradiation [54]. As one of the major components, flavonoids
were isolated from the Cistus exudates [55,56], whereas among various environmental and physical
variables, the UV irradiation was considered to be the major inducer for the enhancement of
flavonoids content [56]. UV irradiation on calluses of several Passiflora species was able to increase
the production of all four glycosyl flavonoids [24]. Regvar et al. [57] comparatively evaluated the
effect of UV irradiation on the concentration of rutin, catechin and quercetin in Fagopyrum esculentum
and F. tataricum, and found a specific increase of quercetin concentration in F. esculentum when
exposed to the enhanced UV irradiation. Warren et al. [58] found that the levels of flavonoids (mainly
kaempferol and quercetin) in Populus trichocarpa leaves increased in response to UV-B irradiation.
Markham et al. [59] compared C-glycosylflavones content of different rice cultivar under UV-B light,
and found that C-glycosylflavones were enhanced in a UV-tolerant rice cultivar but absent in a
susceptible cultivar. With supplemental UV-B, significant differences in flavonols accumulation were
found among T. repens populations, and quercetin glycoside levels increased by 200% on average [60].
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For Hypericum perforatum, a strong correlation between rutin content and the altitude of the grown site
was observed. The amount of rutin in the plants grown at an altitude of 800 m was 4-fold higher than
that in the plants grown at an altitude of 200 m, and this difference was attributed to discrepancy of
solar radiation levels [61]. Therefore, the adjustment of light quality at a specific growth stage should
be considered as a strategic tool for improving yield of SMs. The effect of light quality on the content
of plant secondary metabolites is displayed in Table 3.

Table 3. Light quality change on the content of various plant SMs.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change
Plant

Species

Phenols Ferulic acid
[50]

Increase red
light Decrease L. sativa

Phenols Kaempferol
[50]

Increase red
light Decrease L. sativa

Alkaloids Catharanthine
[53] UV-B Increase C. roseus

Alkaloids Vindoline
[53] UV-B Increase C. roseus

Phenols Rutin [57] UV Increase F. esculentum

Phenols Quercetin
[57] UV Increase F. esculentum

Phenols Catechins
[57] UV Increase F. esculentum

3. Response of Plant SMs to Temperature

During the 20th century, the average global temperature has already increased by 0.74 ◦C,
approximately increased by 0.2 ◦C per decade [62]. According to recent global climate models,
the annual mean temperature in Finland and Northern Europe is predicted to be 1.2–1.5 ◦C higher by
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year 2040 [62,63]. Authoritative simulation estimates that climate warming will cause a considerable
affection on the production of SMs from vegetation.

As one of the major weather variables temperature can significantly influence the composition of
SMs, and in general raising temperature might almost enhance all of SMs in plant species. For instance,
the composition of phenolic compounds (delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, and
myricetin-3-O-glucoside) in three Ribes nigrum cultivars demonstrated the positive correlations with
temperature [64], providing the important guidelines for berry cultivation for commercial exploitation.

The modulation of temperature to alkaloids accumulation was reported, and high temperature
preferable to induce the biosynthesis of alkaloids. The total accumulation of alkaloids (morphinane,
phthalisoquinoline and benzylisoquinoline) in dry Papaver somniferum was restricted at low
temperature [65]. In contrast, the total level of phenolic acids and isoflavonoid (genistein, daidzein
and genistin) in soybean (Glycine max) roots increased after the treatment at low temperature for 24 h,
and among which the highest increase of about 310% was observed in genistin after the treatment at
10 ◦C for 24 h, in comparison to the control [66].

High temperature incubation led to an instinct rise of 10-hydroxycamptothecin (HCPT) so that a
6-fold accumulation of HCPT in leaves of C. acuminata seedling occurred after the incubation at 40 ◦C
for 2 h [67], indicating HCPT was involved in the defence against heat shock from the environment.
For four consecutive years, higher alkaloid content in six cultivars of Lupinus angustifolius grown
in field conditions was detected in 2006 with higher ambient temperature than other years [68].
Additional experiment in green house at different temperatures (10, 20 and 30 ◦C) also confirmed
that higher temperature resulted in a higher alkaloid content [68]. The investigation on temperature
affecting content of alkaloid in 60-day-old C. roseus seedlings showed that under short-term heat
shock, the contents of vindoline, catharanthine and vinblastine in the seedling leaves were higher
at 40 ◦C than those at 30 ◦C. More specifically, catharanthine content was increased by 40% after
incubation at 40 ◦C for 2 h, while increased slowly at 30 ◦C and reached the highest value at 6 h, and
in a long-term experiment at 35 ◦C, the concentrations of monomeric alkaloids catharanthine and
vindoline showed a sharp increase [69]. When C. roseus leaves were exposed to low temperature, nearly
2-fold and 2–4 folds reduction in levels of catharanthine and vindoline were observed, respectively [70].
Besides, the concentrations of total piperidine alkaloids and two individual piperidine alkaloids in
needles of 1-year-old Norway spruce exposed to high temperature were significantly higher than
those in the needles under ambient temperature. Moreover, elevating temperature resulted in a
decrease in the amounts of total flavonoids in bark as well as total catechins and total acetophenones
in needles [71]. Overall, the regulation of alkaloids metabolism suggested that low temperature
attenuated the regulation of most alkaloids biosynthetic pathway genes [70].

In recent years, the correlation between terpenoid yield and temperature were investigated for
deciduous and coniferous vegetation species. The capacity for isoprene emission of Quercus rubra
and Q. alba in warm conditions was twice that in cold conditions [72]. Analysis of most terpenes in
D. carota root showed increasing values with increasing temperature, except that only α-terpinolene
decreased significantly with increasing temperature [73]. In D. carota, high content of terpenes can
initiate a strong bitterness to be unpleasant to the consumers, and thus it was necessary to avoid the
high growth temperature for the tasty carrots. The emission of sesquiterpene compounds (SQTs) from
seven pine species had a strong temperature dependency, in which the emission of β-caryophyllene,
α-bergamotene, α-farnesene, and β-farnesene increased exponentially with temperature [74]. Also,
the influence of night-time warming on the emission rates of volatile organic compounds (VOC) in
birch (Betula pendula) and aspen (P. tremula) was investigated. In the case of B. pendula, the emissions
of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes except
3,7-guaiadiene were consistently increased with increasing night-time temperature (6–22 ◦C); nearly
100-fold increase in DMNT level was estimated in the birch exposed to 22 ◦C compared with that
exposed to 6 ◦C; and total SQT emissions showed a very significant increase in higher temperatures of
18–22 ◦C. In the case of P. tremula, both DMNT and non-terpenes (NTs) were consistently increased from
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6 to 14 ◦C, the total SQT emissions showed significant increase in the range of 6–18 ◦C, and the emission
of total monoterpene and sesquiterpene reached a peak value at 18 ◦C [75]. In addition, an exponential
increase with increasing temperature was observed in the emissions of many oxygenated monoterpenes
except (E)-β-farnesene in Norway spruce (Picea abies), and besides there was no temperature effect on
the total terpenoid emissions [76,77].

Elevation of temperature has been also confirmed to reduce the concentration of SMs in plants.
Anthocyanin content in leaf sheaths of Zea mays seedlings increased with the severity and duration
of cold, due to the induction of anthocyanin biosynthetic pathway genes [78]. Similarly, low
temperature induced anthocyanin accumulation in leaves and stems of Arabidopsis thaliana, and
facilitated anthocyanin synthesis through the phenylpropanoid pathway associated with increased
transcripts of flavonoid biosynthetic genes including phenylalanine ammonialyase (PAL) and chalcone
synthase (CHS) [79].

Table 4. Temperature change on the content of various plant SMs.

Metabolite
Class Metabolite Name Structural Image Environment

Factor
Concentration

Change
Plant

Species

Alkaloids Morphine [65] Low
temperature Decrease P. somniferum

Phenols Genistein [66] 10 ◦C
for 24 h Increase G. max

Phenols Daidzein [66] 10 ◦C
for 24 h Increase G. max

Alkaloids 10-hydroxycamptothecin
[67] 40 ◦C for 2 h Increase C. acuminata

Alkaloids Vindoline [69] Short-term
heat Increase C. roseus

Alkaloids Catharanthine [69] Long-term
heat Increase C. roseus

Alkaloids Vindoline [70] low
temperature Decrease C. roseus

Terpenes Isoprene [72] High
temperature Increase Q. rubra

Terpenes α-terpinolene [73] High
temperature Decrease D. carota
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Table 4. Cont.

Metabolite
Class Metabolite Name Structural Image Environment

Factor
Concentration

Change
Plant

Species

Terpenes β-caryophyllene [74] High
temperature Increase D. carota

Terpenes α-farnesene [74] High
temperature Increase D. carota

Terpenes DMNT [78] Night-time
warming Increase B. pendula

Phenols Pelargonidin [78] Low
temperature Increase Z. mays

On the contrary, high temperature (35 ◦C) reduced the total anthocyanin content of Vitis vinifera
cv. Cabernet Sauvignon to less than half of that in the control berries (25 ◦C), as a result of anthocyanin
degradation and the inhibition of anthocyanin biosynthetic genes transcription [80]. Moreover,
in various plants such as Petunia hybrid [81], Citrus sinensis [82], Rosa hybrida [83], the anthocyanin
accumulation was induced by low temperature and inhibited by high temperature. The effect of
temperature on the content of plant secondary metabolites was shown in Table 4.

4. Response of Plant SMs to Soil Water

Water stress is one of the most important environmental stresses that can regulate the
morphological growth and development of plants, and alter their biochemical properties [84,85].
Severe water deficit has been considered to reduce the plants growth, but several studies have
demonstrated that water stress may be possible to increase the amount of SMs in a wide variety
of plant species.

In a wide range of experiments, it was indicated that when exposed to drought stress plants
indeed accumulate higher concentrations of SMs. Nogués et al. [86] showed that for Pisum sativum cv.
Meteor, the concentration of flavonoid in the plants suffered drought was increased by 45%, and
also anthocyanin significantly increased by drought stress compared with the well-watered controls.
In Rhodiola sachalinensis, maximal yield and content of salidroside were reached under the relative soil
moisture of 55–75% [87]. Due to the vasoactive properties of Crataegus, its polyphenolic constituents
have been attracting more and more attention. Two species of Crataegus (C. laevigata and C. monogyna)
were subjected to water deficit (continuous water deprivation) and surplus (roots immersed in water)
circumstances to assess the effects of water stress on levels of polyphenolics in them, which revealed
that deficient water stress would induce the increases in contents of chlorogenic acid, catechin, and
(−)-epicatechin, but superfluous water cause no net increases in the contents and in some cases,
even a decrease in levels of polyphenolics [88]. Castellarin et al. [89] reported that the biosynthesis
of anthocyanin in ripening fruit was strongly up-regulated by drought stress. Water deficit can
also enhance the production of flavonoids in cell suspension culture of Glycyrrhiza inflata Batal [90].
The effect of drought stress on the concentration of active compounds in roots of Salvia miltiorrhiza
was analyzed by Liu et al. [91], who found a massive increase in all analyzed compounds except for
rosmarinic acid, and among them, the levels of tanshinones increased at a most in severe drought (SD)
condition, including that the tanshinone I increased by 182%, and tanshinone IIA even increased by
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322% in comparison with an increase of 148% in medium drought (MD) situation. Similar to tanshinone,
the increase trend of cryptotanshinone due to SD stress was also observed. In recent years, several
studies have focused on the molecular mechanism of secondary metabolism in response to abiotic
stresses. The activation of genes involved in secondary metabolism and biosynthesis of phenolics.
For example, Lettuce (L. sativa) plants through water stress can activate PAL gene participating in
the biosynthesis of various phenolics and flavonoids [92]. Yuan et al. [93] reported that water deficit
enhanced the expression of several flavonoids biosynthesis genes in Scutellaria baicalensis Georigi roots.
Over-expression of AmDEL gene from Antirrhinum majus, resulting in both peel and flesh of fruit with
intense purple colouration, significantly increased flavonoids accumulation [94]. The over-expression
of AmDEL to Arabidopsis plants and WT plants were incubated for 4 weeks under drought stress to
evaluate the plant response, indicating that the content of total flavonoids was significantly increased
in the tolerant transgenic plants compared to WT plants [95].

As an indole alkaloid to be concentrated in seedlings of C. acuminate, camptothecin was inducible
by progressive drought stress [96]. The influence of drought stress on the content of alkaloid in
P. somniferum was determined after 5 days of cutting off water supply. The comparison to the control
group demonstrated that three sorts of alkaloids (narkotine, morphine, codeine) emerged, and the
peaks of narkotine and morphine became higher after a short period [97]. As compared with the
unstressed control plants, the accumulation of total alkaloids in both shoot and root of C. roseus
significantly increased under the oxidative stress due to drought [98]. The content of glycine betaine
(GB) in C. roseus plants increased due to drought, because the drought stress can induce GB synthesis
by over-expression of betaine aldehyde dehydrogenase, suggesting that this osmolyte played an
important role in protecting plant cell mechanism under condition of drought [98].

In conifer species P. sylvestris and P. abies, total monoterpenes and resin acids in the seedlings of
P. sylvestris suffering from severe drought were 39% and 32% higher than the controls, and they in
P. abies seedlings experiencing severe drought were 35% and 45% higher [99]. Up to now, however,
the few studies have been carried out on the effect of abiotic stresses on primary and secondary
metabolism of S. officinalis. Among them, only two investigations have involved the effect of water
deficit on this species. In the first study, Bettaieb et al. [100] reported the effect of drought on fatty
acids and essential oil composition, and in the second one, Munné-Bosch et al. [101] evaluated the
effect of this stress on diterpenes and tocopherols. S. officinalis under 70% of the optimal water
supply revealed the contents of monoterpenes about 33% higher than those of plants cultivated under
wellwatered conditions [102]. Moreover, the amount of terpenoidphytoalexins in roots of maize
(Z. mays) experiencing the decline of subterranean volumetric water content (VWC) and salt stress
was analyzed. In general, higher quantities of zealexins and kauralexins were contained in roots
exposed to lower water content. The root tissues stressed by 30% VWC had zealexins 4-fold more than
those of the control with 60% VWC. And the kauralexins content significantly increased by 2.2-fold
under more modest drought conditions [103]. Correspondingly, the quantity of phytoalexins gradually
accumulated as drought day continued, but plant vigour appeared to descend throughout the time
course. After 5 days of drought (one-third of the VWC remained), the contents of both zealexin and
kauralexin were significantly induced to elevate by three- and four-fold respectively, and continued to
rise as drought persisted [103]. In a study of C. asiatica, the variation of asiaticoside and madecassoside
contents were reported for different environmental conditions. As humidity and temperature elevated,
samples exhibited the highest content of both asiaticoside and total triterpenes [104]. Another study
reported the content of asiaticoside was higher during the rainy season and lower during the dry
season [105]. More vividly, the effect of soil water on the content of plant secondary metabolites is
displayed in Table 5.



Molecules 2018, 23, 762 13 of 26

Table 5. Soil water change on the content of various plant SMs.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change Plant Species

Phenols Salidroside [87] Soil moisture of
55–75% Increase R. sachalinensis

Phenols Chlorogenic
acid [88] Deficit Increase C. rataegus

Phenols Catechins [88] Deficit Increase C. rataegus

Phenols (−)-epicatechins
[88] Deficit Increase C. rataegus

Phenols Tanshinone [91] Severe drought Increase S. miltiorrhiza

Phenols Cryptotanshinone
[91] Severe drought Increase S. miltiorrhiza

Alkaloids Camptothecin
[96] Drought Increase C. acuminate

Alkaloids Morphine [97] Drought Increase P. somniferum

Alkaloids Codeine [97] Drought Increase P. somniferum

Alkaloids Glycine betaine
[98] Drought Increase C. roseus
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Table 5. Cont.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change Plant Species

Phenols Abietic acid
[99] Severe drought Increase P. sylvestris

Phenols Asiaticoside
[104]

Humidity
increase Increase C. asiatica

5. Response of Plant SMs to Soil Salinity

As one of the most brutal abiotic stresses, salt stress restricted the profitable production of natural
products. In the world-wide, the area of the highly salinized lands has been increased to exceed
800 million hectares [106]. Salinization can induce complex interactions among various morphological,
physiological and biochemical processes [107–109]. Also, Salinization may cause the oxidative stress
due to high production of reactive oxygen species (ROS) so as to alter plant metabolism. In fact, plants
produce a large number of SMs to scaveng or detoxify ROS.

In duration of Aegiceras corniculatum treated by 250 mM NaCl, polyphenol content significantly
increased more than double as compared to control plants, suggesting that the accumulation of
polyphenols played a role as protective metabolites [110]. In two Tunisian accessions of Cakile maritima
(Jerba and Tabarka), the accumulation of polyphenols in Jerba was significantly increased by 56% and
30% in response to the treatment of 100 mM and 400 mM NaCl respectively, while that in Tabarka
declined due to the NaCl treament [111]. After the treatment with moderate salinity (25–50 mM NaCl),
the phenolic content in leaf of Cynara cardunculus was dramatically enhanced to reach the peak value
corresponding to NaCl concentration of 50 mM [112]. The stresses of various salinity resulted in the
accumulation of phenolic compounds in F. esculentum to be 57%, 121% and 153%, higher than that of the
control treated with 10, 50, and 100 mM for 7 d, respectively. Moreover, the accumulation of phenolic
compounds was primarily caused by an increase in the contents of four major compounds including
isoorientin, orientin, rutin and vitexin [113]. The increasing salinity was also found to stimulate the
biosynthesis of phenols and oleuropein in four olive cultivars, especially in leaves. The increase of total
phenols content was abrupt at 125 mM NaCl which was more than double to that of control plants
occurred in all cultivars. Due to the highest salinity treatment the concentration of Oleuropein was
18.5, 5.5, 2.5 and 3.8 folds greater than those of the control plants for ‘Zard’, ‘Ascolana’, ‘Koroneiki’
and ‘Arbequina’, respectively. However, the variation trend of leaf hydroxytyrosol concentration
was different from that of oleuropein. When exposed to 125 mM NaCl, the hydroxytyrosol in each
one of the all cultivars decreased abruptly below the values of the control plants [114]. Among
three chloride salts (NaCl, KCl and CaCl2), KCltreatment showed a more pronounced effect on
the contents of total phenolics and flavonoids in leaves of artichoke (C. cardunculus) and cardoon
(C. cardunculus var. altilis) [115]. Moreover, the rapeseed (Brassica napus var oleifera) under increasing
salinity was sprouted to evaluate the effect of salinity on total phenolics (TP), non-flavonoids (NF),
tannins (TAN), phenolic acids (PAs). In early sprouts, TP increased by 35% with salinity up to 50 mM
NaCl, as compared with control and then decreased slightly, the maximum increase of total-NF (30%)
was showed in corresponding to the treatment of 25 mM NaCl, and total-TAN increased with salt
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concentration up to 50 mM and remained such high in response to the treatment of 100 and 200 mM
NaCl, while salinity did not give a clear effect on total-Pas content. Overall, a moderate salinity
in 25–50 mM NaCl caused the highest relative increase in phenolic concentration [116]. However,
the accumulation of phenolic compounds in plants by salinity stress would also depend on the plant
species, so that phenolic compounds failed to be accumulated in some plant species. With respect to
the control plants, salinity stressed also led to a decrease of phenolic compounds (chlorogenic and
sinapic acid derivatives and flavonoids) in leaves of broccoli (B. oleracea var. italica cv. Marathon) and
the loss was higher for flavonoids than for sinapic acid derivates [117]. Furthermore, salinity stress can
change the chemical contents of various phenolic compounds in rice cultivars (tolerant and susceptible
varieties), causing a large increase in total phenolics and the content of vanillin and protocatechuic acid
in tolerant varieties, whereas in contrast, a markedly reduce is found in the susceptible cultivar [118].
The effect of NaCl concentration on total phenolic content in S. macrosiphon showed that all the
treatments with different concentration of NaCl elicited a remarkable reduction of total phenolic
content in the leaf which decreased with the treatment of increasing NaCl concentration. After induced
with 6.8 dS m−1 NaCl, the content of total phenolics was reduced by 2.6 times as compared to control
leaves [118]. However, NaCl salinity increased total antioxidant activity in methanolic extract of the
leaf, probably due to the increasing activity of peroxidase (POD) under salt stress conditions [119].

Jaleel et al. [98] reported that the content of indole alkaloidin C. roseus increased due to the
treatment of 80 mM NaCl as compared to unstressed control plants. After C. roseus treated with
150 mM NaCl for 2 months, the content of vincristine in this plant significantly increased as compared
with the control sample, but declined with further increasing salinity in a long-term treatment [120].
The yields of alkaloids in C. roseus increased gradually with the duration of seawater stress, and the
plants treated by 5% seawater gave the yields of alkaloids higher than those treated by 10% seawater.
Among the four kinds of alkaloids, the concentration of vindoline, catharanthine and vincristine in the
plants treated by 5% seawater significantly increased as compared to the control. In consideration of
industrial production, the treatments using 5% seawater can potentially reduce the cost of producing
alkaloids [121]. In the medium of salinity equivalent to 100 mM NaCl, the accumulation of total
alkaloids exceeded over that of non-saline control, and found to be maximal in roots of C. roseus [122].

Similarly, salinization can significantly alter the accumulation of secondary metabolite of rosemary
(Rosmarinus officinalis), mainly inducing a pronounced effect on monoterpenes composition. It was
founded that the solution of NaCl at 100 mM considerably increased the relative abundance of
cineole and camphor, but slightly decreased those of borneol, α-terpineol, nopol, and camphene [123].
Moreover, the root tissues of maize exposed to salt stress can also increase the concentrations of acidic
terpenoid phytoalexins, such that the immersion of the root tissues in the solution of NaCl at 500 mM
dramedically enhance the quantity of zealexins by about five fold, while the treatment with lower
concentration solution of NaCl (100 mM) significantly induce the content of kauralexins to raise by
twofold in comparison with the control plants in the medium of 0 mM NaCl [103]. The effect of salinity
stress on the content of plant secondary metabolites is exhibited in Table 6.

Table 6. Soil salinity change on the content of various plant SMs.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change Plant Species

Phenols Isoorientin
[113]

NaCl
(10–100 mM) Increase F. esculentum
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Table 6. Cont.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change Plant Species

Phenols Rutin [113] NaCl
(10-100 mM) Increase F. esculentum

Phenols Vitexin [113] NaCl
(10–100 mM) Increase F. esculentum

Terpenes Oleuropein
[114] NaCl (125 mM) Increase O. europaea

Alkaloids Catharanthine
[121] 5% Seawater Increase C. roseus

Phenolic Chlorogenic
acid [117] Salinity Decrease

B. oleracea var.
italica cv.

Marathon

Phenolic Vanillin [118] Salinity Increase S. macrosiphon

Phenolic Sinapic acid
[117] Salinity Decrease

B. oleracea var.
italica cv.

Marathon

Phenolic Protocatechuic
acid [118] Salinity Increase S. macrosiphon

Terpenes Borneol [123] NaCl (100 mM) Decrease R. officinalis

Terpenes Cineole [123] NaCl (100 mM) Increase R. officinalis

Terpenes Camphene
[123] NaCl (100 mM) Decrease R. officinalis
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Table 6. Cont.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change Plant Species

Terpenes Camphor [123] NaCl (100 mM) Increase R. officinalis

Terpenes α-terpineol
[123] NaCl (100 mM) Decrease R. officinalis

Terpenes Hydroxytyrosol
[114] NaCl (125 mM) Decrease O. europaea

6. Response of Plant SMs to Soil Fertility

Supplemental plant mineral nutrition may provide a means not only to stimulate plant growth
but also influence the content of SMs. Increasing studies have disclosed that the availability of plant
nutrients can be an important factor in determining secondary metabolism and antioxidant activity
within plants. Unfortunately, it should be mentioned that most fertilizers used in these studies were
generally highly water-soluble simple fertilizers consisting of only one or two elements of N, P, or K,
and therefore, inconsistent results have been reported.

A large number of experiments have been proposed that nutrient deficiencies of plants is
characterized by an accumulation of flavonoids, notably the anthocyanins. The inverse relationship
between the availability of both nitrogen and phosphate availability and the content of flavonol in
Arabidopsis and tomato seedling tissues was noted to be highly significant, and the concentration of
quercetin, kaempferol and isorhamnetin was increased in response to either nitrogen or phosphate
stress in both species [124]. Ibrahim et al. [125] found that nitrogen levels had a significant
impact on the production of total phenolics and flavonoids in Labisia pumila Benth. As more
nitrogen was invested steadily from 0 to 270 kg N ha−1 soil, less amount of phenolics and
flavonoids was produced. The fertilizer at ratio of N:P:K = 1:0.6:1.2 can reduce the flavonoid
content but increased polyphenol content in B. microphylla. Moreover, the antioxidant activities
were slightly increased with the increment of fertilizing amount [49]. In the leaves of tomato
(Lycopersicon esculentum) with N-dedicient rhizosphere condition, anthocyanins and one of flavonols
consistently increased by 2- to 3-fold, while total non-anthocyanin flavonoids increased by 14% only,
comparable to wild type plants. In addition, N-deficiency stress can also induce different effects on
expression of genes encoding flavonoid biosynthetic enzymes, so that mRNA levels for chalcone
synthase (CHS) and dihydroflavonol-4-reductase (DFR) increased while mRNA levels of a chalcone
isomerase—homologous band (CHI) decreased in response to N stress [126]. As compared with
the availability of fertilization, only nitrogen-free fertilization allowed to obtain the highest total
polyphenols content and can exert a positive anti-radical activity and allowed to obtain the highest
content of total polyphenols, although were not accompanied by an increase in terms of the main
phenolic compounds [127,128].

Nutrient deficiencies in soil can affect the alkaloid concentration in seed of lupin (L. angustifolius).
Under the condition of severe potassium deficiency, the alkaloid concentrations in the seeds of sweet
varieties of lupins drastically increased by 205%. Over the range of K content from 0 to 240 mg kg−1

soil, lupanine was the predominant alkaloid in sweet varieties, whereas 13-hydroxylupanine prevailed
in bitter variety [129]. Conversely, nitrogenous fertilizers significantly increased the content of alkaloids
by 9–17%, and the greatest increase was found when NH4NO3 was applied [130]. Similar pattern
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of alkaloids in response to nitrogen supplement was also initiated in L. albus [131]. Simultaneous
application of magnesium and nitrogen decreased the content of alkaloids in seeds [130]. The effect of
Sangral compound fertilizer at rates of 0–800 kg ha−1 on the content of alkaloid in Datura innoxia plants
was also investigated, indicating that the content of total alkaloids content increased with increasing
the fertilization rate, reached a peak value at 600 kg ha−1, and then decreased at 800 kg ha−1 [132].

Owing to the application of the high concentration of ammonium nitrate fertilizer, Douglas-fir
(Pseudotsuga menziesii) showed the increasing of monoterpenoid concentrations [133]. Compared with
the high fertilizing amount of 400 mg, the application of 200 mg N-fertilizer increased the concentration
of monoterpenoid in Thuja plicata during the active growing season (August), and when plant growth
began to subside by September, however, the high fertilizing amount generated higher monoterpenoid
concentration [134] as additional nutrient sources shifted toward terpenoid synthesis [135]. More
intuitively, the effect of soil fertility on the content of plant secondary metabolites is showi in Table 7.

Table 7. Soil fertility change on the content of various plant SMs.

Metabolite
Class

Metabolite
Name Structural Image Environment

Factor
Concentration

Change
Plant

Species

Phenols Quercetin
[124]

Nitrogen and
phosphate Increase L. esculentum

cv. Chaser

Phenols Kaempferol
[124]

Nitrogen and
phosphate Increase L. esculentum

cv. Chaser

Phenols Isorhamnetin
[124]

Nitrogen and
phosphate Increase L. esculentum

cv. Chaser

7. Conclusions

Plant adaptability to environmental stresses is a widespread ecological behavior in Nature. As a
phenotypic and explicit behavior, plant morphological adaptability to environment is relatively easy
to observe and recognize, while as an intrinsic and implicit behavior, plant biochemical adaptability
is relatively hard to discover and not fully understood yet. Based on the relevant literature reports
and data, the above review focuses on the response of important plant secondary metabolites such
as phenolics, flavonoids, terpenoids and alkaloids produced from various biochemical processes to
crucial environmental stresses, including light irradiation, temperature, soil water, soil fertility and
salinity, etc.

Here, we have provided a great deal of evidence to demonstrate the diversified and changeable
responses of various plant secondary metabolites to different environmental stresses, What’s more
interesting is that the individual environmental stress can selectively enhance the content of several
SMs in plants. Thus it can be deduced that the synthesis of some natural products can be altered
by diverse abiotic factors. As well known, some SMs have found commercial applications as drugs,
flavours, fragrances, insecticides, etc. Such fine chemicals are extracted and purified from plant
materials, but their production is often dependent on the physiological and developmental stage of
the plant, and normally their content is too low to meet the requirements in the market of health care
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products, so the optimization of plant growth conditions to improve the concentrations of high value
SMs becomes crucial and essential. This documentary analysis has suggested a theoretical basis to
obtain consistent and high levels of SMs from plants. Prospectively, the use of environmental stresses
may provide a potential and profitable way to increase the accumulation of bioactive compounds,
improve quality, and reduce over-harvesting pressures of medicinal plants.

Despite this review focused on the adaptability of secondary plant products in response to
each individual environmental factor, the actual synthesis and accumulation of various SMs were
frequently induced and/or modulated by a number of environmental factors simultaneously [41,49,71,
136–138]. In other words, an individual factor can generally interact with other factors (e.g., a high
irradiation is frequently accompanied with elevated temperature and water deficiency) Thus, we must
further investigate and understand a synergistic effects of multiple environmental factors on plant
secondary metabolism.
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