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Large Scale Synthesis of Non-Racemic 1,1’-Binaphthyl-2,2’-dicarboxylic acid 6 and Sequence 

Products 7 and 8. (Comparison of methods reported in the literature) 

  

The discussion of preparative scale synthesis yielding enantiopure dihydroazepine 8 via diacid 6 from 

commercially available starting material will focus on practical aspects (Scheme S1 and Table S1). 

The synthesis of enantiomers of 8 requires twelve steps when starting from 2-methylnaphthalene (20) 

and might include one optical resolution procedure (Scheme S1). With this sequence a total yield of 30% 

can be expected based on substrate quantities reported in the literature (Table S1). In early steps the 

reactions were run on typically 40-400 mmol scale with the exception of step d where a 12.7 mmol scale 

was reported. For the late steps h-k up to 15 mmol of substrate could be reacted with usual laboratory 

equipment without problems. 

 

 

Scheme S1: Synthesis of non-racemic 7 and 8 via 6 from 20 (Route A) 

 

Enantiomers: Non-racemic material was commonly obtained by classical optical resolution of 

diastereomeric compounds / salts at the stage of the diacid 6. Three practicable methods g1-g3 should 

be considered. The use of brucine as a resolving agent (g1) is hampered due to high price and toxicity.1 

Method g2 uses the less expensive non-racemic 1-phenylethylamine but requires additional steps to 
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cleave diastereomeric amides.2 In method g3, finally, the preferred formed 1:2 salt crystallizes and was 

separated from the mother liquor. The resolving agent was recovered in good yield but following this 

protocol only one enantiomer of 6 was obtained.3 The yields of all methods are typically in a range of 

40% for each enantiomer. 

An interesting report was published which significantly shortens the synthesis. The oxidation of 

1-bromo-2-methylnaphthalene (21) with O2 catalysed by Co(OAc)2 giving 24 (step m) is conducted in a 

steel autoclave3 and substitutes three steps b-d. The apparently easy operation without purification and 

good yield (87%) on a large scale (482 mmol) makes this protocol very attractive saving time and man 

power (same overall yield as b-d within 1%). Merely, the requirement of a 1L-autoclave which might be 

not generally available is unfavourable. 

 

 

Scheme S2: Synthesis of 6 from 29 (Route B) 

 

An alternative route to non-racemic 6 starts from (R)- or (S)-2,2’-dihydroxy-1,1’-binaphthyl (29) 

which can be obtained by optical resolution using fractional crystallisation of N-benzylcinchonidinium 
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clathrate complexes4,5,6 on a 100 g scale but is also commercially available at a reasonable price. For the 

preparation of 2,2’-dimethyl-1,1’-binaphthyl (31) a Kumada coupling of bistriflate 30 with MeMgCl, 

MeMgBr or MeMgI and Ni(dppp)Cl2 as catalysts worked well.29 The reaction proceeded on a 10-23 

mmol scale without racemisation and was frequently reported.7,8 ,9,10,11Both, 30 and 31 were isolated in 

pure form after simple filtration over silica in >99% and 95-99% yield, respectively.29  

Dimethylbinaphthyl 31 was also obtained from 21 as a racemate or enantioselectively using chiral 

catalysts. The Kumada type biaryl coupling was performed with aryl-Grignard reagents and aryl 

bromides catalysed by Ni complexes to yield racemic 31 (61%, 12.6 mmol scale, 1 mol% Ni(PPh3)2Cl2)12 

or enantioenriched 31 (69%, 13 mmol scale, 1 mol% (S)(R)-PPFOMe, 95%e.e. (R).configuration).13 Other 

protocols (including Suzuki-Miyaura coupling) requiring expensive chiral catalysts and/or starting 

materials, seem less appropriate for multigram preparation.14,15,16,17 

For the stepwise oxidation of 31 to 6 NBS bromination was applied followed by 

hydrolysis/oxidation either via diol 34 or directly from 32 to dialdehyde 33 which was finally treated 

with KMnO4 in acetone/water34 or H2O2, NaClO2, NaH2PO4 in MeCN/water33 to afford 6. Yields are 

good to fair (n-o-p-q-s-t: 63% overall yield or v-p-r-s-t: 47% overall yield). When comparing Route A with 

Route B the latter one will be preferable if non-racemic 6 is desired and enantiopure binaphthol 29 is 

available. Disadvantageous is the need of expensive triflic anhydride in step n.  

Finally, a two step sequences from 29 to 6 might be considered as well. In an early report the 

bistriflate 30 was methoxycarbonylated under Pd(II)/dppp catalysis to afford the dimethylester of 6 in 

83% yield.18 The use of CO and requirement of noble metal catalysis obviously hampered upscaling and 

broad use of this protocol. Two other processes working on gram scale were recently reported. After 

transformation of 29 to 2,2’-diethylphosphate 35 (quant. yield) this was treated with Li-naphthalenide 

at -78 °C to give the di-lithio compound which reacted with CO2 to afford 6 in up to 89% yield (3.6 mmol 

scale). The need of a column chromatography to purify 6 makes up-scaling more difficult (5 mmol scale 

reported).19 In an other report triflate 30 was converted to diphenylester 36 using phenylformiate as CO 

source and Pd(OAc)2/DPPP as catalyst which was followed by hydrolysis to afford 6.20 It is worth noting 

that both processes can be performed stereoconservative, i.e. without racemisation. 

Summarizing, for multigram synthesis of 1,1’-binaphthyl-2,2’-dicarboxylic acid (6) two 

comparable routes are available, starting from either 2-methylnaphthalene (20) (Route A, Scheme S1) or 

2,2’-dihydroxy-1,1’-binaphthyl (29) (route B, Scheme S2). Preference will be given depending on the need 

of racemic or non-racemic material. In the first case Route A is more convenient and requires 4 steps (if 

reaction m can be performed) or 6 steps with an overall yield of 66-67%. If at this stage an optical 

resolution is performed the yield will drop to 25-26% for each enantiomer of 6. In this case Route B is 

superior yielding 63% of non-racemic 6. In contrast, the asymmetric biaryl coupling (Scheme S2, v) 

requiring expensive catalysts and long reaction time is less appropriate particularly for large scale 
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preparations. An evaluation of both routes based on time and manpower requirement is rather difficult 

as the reported time for each step in Table S1 is a rough estimate on the published procedures and do 

not include preparation/drying/evaporation of solvents. Nevertheless, for the preparation of 5-10 g of 6 

an approximate time frame with 10-12 days for Route A and 7-9 days more for optical resolution (g2), 

and 10-11 days for route B will be a valid approximation. 

 

Comments on Table S1 

 

a: While the bromination of 2-methylnaphthalene (20) with Br2 in CS2 yields up to 91% of 21 after 

distillation, we found the use of HBr/H2O2 a more convenient method which could be upscaled to 0.5 

mol yielding 95% of the desired product without purification (> 98%, NMR) and sufficiently pure for 

the next step.  

b: Treatment with excess NBS / AIBN in benzene or CCl4 gave the tribromide 22 in excellent yield. 

c: The conversion to aldehyde 23 proceeds smoothly and should also work on multigram scale. 

d: Although KMnO4 oxidation performs satisfying the absence of heavy metal residues with the system 

NaClO2/KH2PO4 makes it more appropriate. 

e: For esterification of 24 several protocols can be applied. Due to price and toxicity of MeI e2 is limited 

to small scale preparations. The cheapest one is obviously the combination SOCl2/MeOH. No 

chromatography is needed. 

f: Many binaphthyl coupling methods are known but from the practical point of view the classical 

Ullmann coupling in DMF is still attractive due to simplicity of the procedure, easy work-up and good 

yields. Copper powder was activated by treatment with EDTA solution.21 The crude dimethyl 1,1’-

binaphthalene-2,2’-dicarboxylate was immediately hydrolysed and after extractive purification is 

sufficiently pure. 

g: At this stage an optical resolution may be performed. 

h-k: These steps were already published for enantiomerically pure substrates and largely omit 

chromatographic purification. Only for step k the mother liquor from the crystallisation was 

chromatographed. Repetition with racemic substrate gave comparable yields (±2%). 

i: Reaction with aqueous ammonia yielded exclusively the secondary amine 8, provided the reaction 

temperature was kept at 60 °C. No tertiary amine or spiro-ammonium compound was detected. 
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Table S1. Synthesis of Diiodoazepine 8 from 2-Methylnaphthalene 22 (Overview) 

 

Step Reagent/conditions Scale (Mmol) Purification Time Yield Notes 

a22 HBr/H2O2 1 no 2 d 95% a 

b123 NBS/ABIN 42.5 chrom. 2 d 97%  

b224 NBS/ABIN 10 chrom. 2 d 95%  

c123 CaCO3/water 41 cryst. 1 d 95%  

c224 AgOAc/acetone-water 10 chrom. 2 d 95%  

d25 NaClO2/KH2PO4 12.7 no 1 d 94%  

e126 H2SO4/MeOH 1 no 1 d 72%  

e227 K2CO3/MeI 100 chrom. 1 d 95%  

e33 SOCl2/MeOH 419 no 8 h 96%  

f3 1. Cu/DMF, 2. KOH/ MeOH ~401 extract. 3 d 84% b 

g11 Brucine 88 cryst. 4-5 d 40(R)/45(S)% c 

g22 
1. (S)-1-phenylethyl-amine, DCC/THF, MeCN 

2. SOCl2, MeOH, KOH 
43.8 cryst. ~7 d 39(S)/38(R)% c, d 

g33 (R)-CHEA,Me2NH/MeOH 30 cryst. 2 d 38(R)% c, e 

h28 n-BuLi, TMP, Me3SiCl, THF 15 precip. 2 d 84% f, g 

i28 BH3/THF 15 no 2 d 84% f, g 

j28 ICl/DCM 15 no 1 d 90% f, g 

k28 PBr3/DCM, THF 15 cryst. 2 d 78% f, g, h 

 HBr/HOAc 5 no 4 h 96% this paper 

l NH3/CH3CN  precip. 2 d 80-90% this paper i 

m3 O2, Co(OAc)2/butanone, HOAc 482 no 1 d 87%  

n29 Tf2O, 2,6-dimethylpyridine/DCM 24 chrom., cryst. 1 d 99%  

o29 MeMgBr, DPPP/NiCl2/cyclohexane 23.6 chrom., cryst. ~3 d 90-92%  

p29 NBS, AIBN, h/cyclohexane 14.2 chrom., cryst. 1 d 88%  

q30 1. NaHCO3/DMSO, 2. PDC/DCM 2.5 chrom. 2 d 70%  

r31 1. KOAc, Bu4NBr/DMF, 2. KOH/dioxane-H2O 8 cryst. 4 d 88%  

s32 MnO2/toluene 1.6 no 1 d 99%  

t33 H2O2, NaClO2, NaH2PO4/H2O, MeCN 30 no 2 h 91%  
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u12 Ni(PPh3)2Cl2, 21-Mg/benzene/Et2O 12.6 distil. 2 d 61% k 

v13 NiBr2, (S)(R)-PPFOMe, 21-Mg/toluene/Et2O 10 chrom. 5 d 68% 95%e.e.l 

w19 ClP(O)(OEt)2, NaH/THF 3.5 chrom. 4 h quant. m 

x19 Li-naphthalene/THF then CO2 3.5 chrom. 6 h 89% m 

y20 phenyl formiate, Pd(OAc)2/DPPP, iPr2EtN/neat 4.0 chrom. 3 d 63% m 

z20 KOH/MeOH, water 0.4n chrom. 2 d 89% m 

Legend: a Pure by NMR (>98%). b Two steps, no purification of intermediate. c Optical resolution. d Two steps. e Only one enantiomer isolated. f Yields reported 

for enantiomerically pure material. g Synthesis was conducted on a 15 mmol scale with unchanged yield.34 h Mother liquor was chromatographed. i 

Alternatively purified by crystallisation. j After two crystallisations. k Excess of Grignard reagent of 21 used. l Excess of 21 used; 99%e.e. after one cryst. m 

Reported for enantiopure starting material, no racemisation was observed. n In the paper the hydrolysis step is reported only on a 0.4 mmol scale but might 

be upscaled without problems. 
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1H- and 13C-NMR spectra (If not otherwise noted spectra are recorded at room temperature in CDCl3) 
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X-ray Analysis 

 

Experimental data and CCDC-Codes can be found in Table S2. Crystal data, data collection parameters, 

and structure refinement details are given in Tables S3 to S10. Crystal structures visualized in Figure S1 

to S4. 

 

Table S2: Experimental parameter and CCDC-Code. 

Sample Machine Source Temp. 
Detector 

Distance 

Time/ 

Frame 
#Frames 

Frame 

width 
CCDC 

 Bruker  [K] [mm] [s]  [°]  

3a D8/ Kryoflex Mo 100 40 100 735 0.55 1825002 

8 D8/ Kryoflex Mo 100 35 6.4 3372 0.40 1825003 

16 D8/ Oxford Mo 

 

100 50 15 3532 

 

0.35 1825004 

17b D8/ Kryoflex Cu 100 34 50 1830 0.70 1825005 
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(S,R*)-2',6'-Diphenyl-3',5,5',7-tetrahydrospiro[dibenzo[c,e]azepine-6,4'-dinaphtho[2,1-c:1',2'-e]azepin]-

6-ium bromide (3a)  

 

 
Figure S1: Crystal structure of 3a, drawn with 50% displacement ellipsoids. The asymmetric unit  is built up by 1 

and 2*1/2 independent molecules of 3a. The 2*1/2 molecules, one counter ion and CHCl3 molecules are omitted for 

clarity. All three moieties form the same chiral arrangement. The centrosymmetric space group forces the inverse 

chiral form. Four voids with each 451.2 Å 3 (9.6% of unit cell) had to be excluded from refinement. The corresponding 

value of electrons is 109.5 each. We could not find satisfactory positions for solvent atoms.  

Table S3: Sample and crystal data of 3a. 

Chemical formula C50H38BrCl6N Crystal system monoclinic 

Formula weight [g/mol] 945.42 Space group C2/c 

Temperature [K] 100 Z 16 

Measurement method \f and \w scans Volume [Å3] 18676.7(11) 

Radiation (Wavelength 

[Å]) 
MoKα (λ = 0.71073) 

Unit cell 

dimensions  [Å] 

and [°] 

32.9747(11) 90 

Crystal size / [mm3] 0.118 × 0.03 × 0.019   33.7652(11) 119.5218(14) 

Crystal habit clear colourless needle   19.2774(7) 90 

Density (calculated) / 

[g/cm3] 
1.345 

Absorption 

coefficient / [mm-

1] 

1.258 

Abs. correction Tmin    0.6858 
Abs. correction 

Tmax 
0.7452 

Abs. correction type     multiscan F(000) [e-] 7712 
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Table S4: Data collection and structure refinement of 3a. 

Index ranges 
-39 ≤ h ≤ 39, -40 ≤ k ≤ 

40, -23 ≤ l ≤ 23 

Theta range for 

data collection [°] 
4.426 to 50.784 

Reflections number              134422 
Data / restraints / 

parameters 
17153/0/1049 

Refinement method Least squares 
Final R indices 

all data R1 = 0.0870, wR2 = 0.1394 

Function minimized Σ w(Fo2 - Fc2)2  I>2σ(I) R1 = 0.0529, wR2 = 0.1249 

Goodness-of-fit on F2 1.035 
Weighting 

scheme 

w=1/[σ2(Fo2)+(0.0583P)2+67.0953P] 

Largest diff. peak and 

hole [e Å-3] 
1.46/-1.15 where P=(Fo2+2Fc2)/3 
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2,6-Diiodo-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (8) 

 

Figure S2: Crystal structure of 8, drawn with 50% displacement ellipsoids. The asymmetric unit is built up by 2 

independent molecules of 8. Counter Ion, CHCl3 and second independent moiety omitted for clarity. The two 

moieties form different chiral arrangements. Anyhow the chiral space group is proofed by Flack Parameter = 

0.000(2). 
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Table S5: Sample and crystal data of 8. 

Chemical formula C24H18BrCl6I2N Crystal system monoclinic 

Formula weight [g/mol] 866.8 Space group P21 

Temperature [K] 100 Z 4 

Measurement method \f and \w scans Volume [Å3] 2927.7(3) 

Radiation (Wavelength 

[Å]) 
MoKα (λ = 0.71073) 

Unit cell 

dimensions  [Å] 

and [°] 

11.8178(7) 90 

Crystal size / [mm3] 0.253 × 0.217 × 0.204   17.2708(10) 94.2551(19) 

Crystal habit clear colourless block   14.3841(8) 90 

Density (calculated) / 

[g/cm3] 
1.967 

Absorption 

coefficient / [mm-

1] 

4.076 

Abs. correction Tmin    0.6217 
Abs. correction 

Tmax 
0.746 

Abs. correction type     multiscan F(000) [e-] 1648 

 

 

Table S6: Data collection and structure refinement of 8. 

Index ranges 
-16 ≤ h ≤ 16, -24 ≤ k ≤ 

24, -20 ≤ l ≤ 20 

Theta range for 

data collection [°] 
3.456 to 60.186 

Reflections number              185276 
Data / restraints / 

parameters 
17236/1/629 

Refinement method Least squares 
Final R indices 

all data R1 = 0.0229, wR2 = 0.0496 

Function minimized Σ w(Fo2 - Fc2)2  I>2σ(I) R1 = 0.0215, wR2 = 0.0491 

Goodness-of-fit on F2 1.048 
Weighting 

scheme 

w=1/[σ2(Fo2)+(0.0231P)2+2.2240P] 

Largest diff. peak and 

hole [e Å-3] 
1.09/-0.68 where P=(Fo2+2Fc2)/3 
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(S,S)-2,6-Diiodo-3,3',5,5'-tetrahydro-4,4'-spirobi[dinaphtho[2,1-c:1',2'-e]azepin]-4-ium bromide (16) 

 

Figure S3: Asymmetric unit of 16, drawn with 50% displacement ellipsoids. CHCl3 omitted for clarity. The chiral 

space group is proofed by Flack Parameter = 0.059(3). 

 

Table S7: Sample and crystal data of 16. 

Chemical formula C47H36BrCl6I2N Crystal system orthorhombic 

Formula weight [g/mol] 1161.18 Space group P212121 

Temperature [K] 100 Z 4 

Measurement method \f and \w scans Volume [Å3] 4402.1(5) 

Radiation (Wavelength 

[Å]) 
MoKα (λ = 0.71073) 

Unit cell 

dimensions  [Å] 

and [°] 

8.9851(5) 90 

Crystal size / [mm3] 0.161 × 0.152 × 0.048   11.0959(7) 90 

Crystal habit clear colourless block   44.154(3) 90 

Density (calculated) / 

[g/cm3] 
1.752 

Absorption 

coefficient / [mm-

1] 

2.736 

Abs. correction Tmin    0.6645 
Abs. correction 

Tmax 
0.747 

Abs. correction type     multiscan F(000) [e-] 2272 
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Table 8: Data collection and structure refinement of 16. 

Index ranges 
-14 ≤ h ≤ 14, -18 ≤ k ≤ 

18, -72 ≤ l ≤ 69 

Theta range for 

data collection [°] 
4.598 to 71.546 

Reflections number              168354 
Data / restraints / 

parameters 
20447/0/523 

Refinement method Least squares 
Final R indices 

all data R1 = 0.0360, wR2 = 0.0736 

Function minimized Σ w(Fo2 - Fc2)2  I>2σ(I) R1 = 0.0318, wR2 = 0.0721 

Goodness-of-fit on F2 1.085 
Weighting 

scheme 

w=1/[σ2(Fo2)+(0.0296P)2+5.3285P] 

Largest diff. peak and 

hole [e Å-3] 
1.42/-2.32 where P=(Fo2+2Fc2)/3 
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(R,S*)-2,6-Di(naphthalen-2-yl)-4-(((S,R*)-2'-(naphthalen-2-ylmethyl)-[1,1'-binaphthalen]-2-yl)methyl)-

4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (17b)  

 

 

Figure S4: Asymmetric unit of 17b, drawn with 50% displacement ellipsoids. CH2Cl2 omitted for clarity. 
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Table S9: Sample and crystal data of 17b. 

Chemical formula C77H57Cl6N Crystal system triclinic 

Formula weight [g/mol] 1208.93 Space group P-1 

Temperature [K] 100 Z 2 

Measurement method \f and \w scans Volume [Å3] 3019.4(5) 

Radiation (Wavelength 

[Å]) 
CuKα (λ = 1.54178) 

Unit cell 

dimensions  [Å] 

and [°] 

12.3238(10) 71.502(2) 

Crystal size / [mm3] 0.259 × 0.198 × 0.098   13.5521(11) 86.172(4) 

Crystal habit clear colourless block   19.1746(19) 84.204(3) 

Density (calculated) / 

[g/cm3] 
1.33 

Absorption 

coefficient / [mm-

1] 

2.952 

Abs. correction Tmin    0.6112 
Abs. correction 

Tmax 
0.7536 

Abs. correction type     multiscan F(000) [e-] 1256 

 

Table S10: Data collection and structure refinement of 17b. 

Index ranges 
-15 ≤ h ≤ 13, -16 ≤ k ≤ 

16, -23 ≤ l ≤ 23 

Theta range for 

data collection [°] 
6.902 to 146.862 

Reflections number              31469 
Data / restraints / 

parameters 
11696/15/766 

Refinement method Least squares 
Final R indices 

all data R1 = 0.0750, wR2 = 0.1912 

Function minimized Σ w(Fo2 - Fc2)2  I>2σ(I) R1 = 0.0707, wR2 = 0.1869 

Goodness-of-fit on F2 1.084 
Weighting 

scheme 

w=1/[σ2(Fo2)+(0.0876P)2+5.0094P] 

Largest diff. peak and 

hole [e Å-3] 
1.30/-1.38 where P=(Fo2+2Fc2)/3 
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