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Abstract: Due to synergistic effects, combinatorial drugs are widely used for treating complex
diseases. However, combining drugs and making them synergetic remains a challenge.
Genetic disease genes are considered a promising source of drug targets with important implications
for navigating the drug space. Most diseases are not caused by a single pathogenic factor, but by
multiple disease genes, in particular, interacting disease genes. Thus, it is reasonable to consider that
targeting epistatic disease genes may enhance the therapeutic effects of combinatorial drugs. In this
study, synthetic lethality gene pairs of tumors, similar to epistatic disease genes, were first targeted
by combinatorial drugs, resulting in the enrichment of the combinatorial drugs with cancer treatment,
which verified our hypothesis. Then, conventional epistasis detection software was used to identify
epistatic disease genes from the genome wide association studies (GWAS) dataset. Furthermore,
combinatorial drugs were predicted by targeting these epistatic disease genes, and five combinations
were proven to have synergistic anti-cancer effects on MCF-7 cells through cell cytotoxicity assay.
Combined with the three-dimensional (3D) genome-based method, the epistatic disease genes were
filtered and were more closely related to disease. By targeting the filtered gene pairs, the efficiency of
combinatorial drug discovery has been further improved.
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1. Introduction

Human complex diseases, especially cancer, are not caused by single pathogenic factors but
by multiple factors, so the traditional “one drug, one target” therapeutic mode often yields limited
effects on complex diseases [1]. Compared with single-component drugs, combinatorial drugs can
not only target multiple disorder factors but also have many other advantages, such as synergies,
reduced toxicity and delayed drug resistance [1–4]. According to the Drug Combination Database
Version 2.0 (DCDB 2.0, http://www.cls.zju.edu.cn/dcdb/) [4], there have been 1363 combinatorial
drugs collected, including 1033 investigational and 330 approved by the Food and Drug Administration
(FDA). Therefore, combinatorial drugs have become a new trend for treating complex diseases.
However, the traditional methods for combinatorial drug discovery are mainly experiment-based
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and may cause combinatorial explosion with increases in combination numbers, thus making them
time-consuming and costly [5,6]. In addition, experiment-dependent studies are not able to explain the
synergy mechanisms at the molecular level [1]. Thus, it is of great significance to develop theoretical
methods that can direct combinatorial drugs in a reasonable way and make the components synergistic.

Medical genetics reveals the genotype–phenotype links in diseases and therefore provides critical
information for drug discovery and drug repositioning [7–10]. Recently, genome wide association
studies (GWAS) have identified a large number of disease-associated genes that are efficient sources
of drug targets [9]. Recent studies show that targeting multiple disease-associated genes has greater
therapeutic potential [11], and genes often exert functions through molecular interactions [12].
In addition, the therapeutic potential of chemical agents depends largely on the genetic links between
targets and diseases [13]. The factors that can consolidate these links will enhance an agent’s medicinal
potential. Thus, it is reasonable to speculate that targeting interacting disease-related genes (termed
epistatic disease genes) may bring synergistic effects for disease control, and combinatorial drugs
aimed at epistatic disease genes will have higher medicinal potential [14]. In this paper, we first
combined drugs targeting synthetic lethality gene pairs for human tumors, which are similar to
epistatic disease genes. The result showed that the combinatorial drugs that we screened are enriched
with anticancer combinations, which validated our hypothesis. However, the source of synthetic
lethality gene pairs is limited, so we then tried to identify epistatic disease genes from the GWAS
dataset of breast cancer and demonstrated further that epistatic disease genes can be an important
source of targets for combinatorial drugs.

The recent flourish in GWAS data has stimulated broad interest in the development of
methodologies for searching gene–gene interactions on a genome-wide scale [14]. During these efforts,
various algorithms, such as linkage disequilibrium (LD) and haplotype-based, data-filtering-based,
data-mining-based, and machine-learning-based algorithms, have been applied [14]. Using one of
these methods, resistance-associated gene pairs in Mycobacterium tuberculosis have been identified
by calculating the interactions of single nucleotide polymorphism (SNP) pairs [15]. In this article,
we tried to identify epistatic disease genes from the GWAS dataset of breast cancer using epistasis
detection software. Through targeting the epistatic disease genes, combinatorial drugs were screened.
Nine groups of these combinatorial drugs were incubated with MCF-7 cells, and five of them showed
synergistical anti-breast cancer activity. Then, all the identified gene pairs were filtered with a
three-dimensional (3D) genome dataset to strengthen the genetic links with diseases. Comparing
combinatorial drugs targeting epistatic disease genes and the filtered genes, the latter were richer
in anti-breast cancer combinations. In conclusion, we showed that taking epistatic disease genes as
targets can narrow the search scope of disease-related targets and greatly improve the efficiency of
combinatorial drug discovery.

2. Results and Discussion

To perform this exploration, we first started with synthetic lethality genes. Synthetic lethality
genes are gene pairs that lead to cellular or organismal death upon simultaneous mutations [15],
which are considered to behave similarly to interacted genes. From the Synthetic Lethality Database
(SynLethDB, https://labworm.com/tool/synlethdb), 19,952 synthetic lethality gene pairs for human
tumors were collected with literature retrieval or theoretical prediction (available upon request) [15].
In a search of the Drug–Gene Interaction database (DGIdb, http://www.dgidb.org/), DrugBank
(http://www.drugbank.ca) and the Therapeutic Target Database (TTD, https://db.idrblab.org/
ttd/) [16–18], we identified combinatorial drugs that can target the synthetic lethality gene pairs.
Through searching the DCDB [4], we found 342 documented combinations containing the predicted
combinatorial drugs, 122 (35.7%) of which are efficient for treating cancer (Table S1). This ratio is
significantly higher than the background ratio of anti-cancer combinatorial drugs in the DCDB [4]
(14.8%, p = 1.3 × 10−31, hypergeometric test) (Figure 1). Therefore, it is concluded that these interacted
genes are efficient sources of targets for combinatorial drugs.

https://labworm.com/tool/synlethdb
http://www.dgidb.org/
http://www.drugbank.ca
https://db.idrblab.org/ttd/
https://db.idrblab.org/ttd/
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BEAM3 [27] failed to identify any significantly associated SNP pairs; pMDR [20] and SNPRuler [24] 
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based on regression algorithms, i.e., GBOOST [21], PLINK [22] and FastEpistasis [23], showed good 
performances. 

Table 1. Performance of software in identifying interacting single nucleotide polymorphism (SNP) 
pairs and gene pairs. 

Software Model Version Cost (days) 9 SNP Pairs Gene Pairs 
GBOOST 1 Regression - <1 670,084 143,008 
PLINK 2 Regression 1.9 <1 427,444 14,850 

FastEpistasis 3 Regression 2.05 <1 498,482 48,189 
pMDR 4 Data Mining 3.0.2 <1 500 0 

AntEpiSeeker 5 Data Mining 1 >30 0 0 
SNPRuler 6 Machine learning - ~21 2 0 

Ranger 7 Machine learning 0.5.0 ~2 0 0 
BEAM3 8 Beyesian 1 ~9 0 0 

1 downloaded from http://bioinformatics.ust.hk/. 2 downloaded from http://www.cog-
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Because of the limited source of synthetic lethality genes, we attempted to identify epistatic
disease genes from a well-defined breast cancer GWAS dataset [19] using epistasis detection tools.
Using the identified epistatic disease genes, we tried to demonstrate further the epistatic effects
on the medicinal potential of combinatorial drugs. The breast cancer GWAS dataset that we used
comprises 528,173 SNPs obtained from 1145 postmenopausal women of European ancestry with
invasive breast cancer and 1142 control women [19] (available upon request). The assessment of
population stratification was performed in a previous study [19]. To identify epistatic disease genes on
a genome-wide scale, eight software packages were used in this study, including parallel multifactor
dimensionality reduction (pMDR) [20], GBOOST [21], PLINK [22], FastEpistasis [23], SNPRuler [24],
AntEpiSeeker [25], Ranger [26] and BEAM3 [27]. Starting from the GWAS dataset mentioned above [19],
we evaluated the performance of eight genetic epistasis detection software packages in regard to their
ability to identify interacting gene pairs. All eight software packages were run using a default
configuration of each tool on the same workstation, and their performances are listed in Table 1.
AntEpiSeeker [25] failed to complete the calculation in one month; Ranger [26] and BEAM3 [27] failed
to identify any significantly associated SNP pairs; pMDR [20] and SNPRuler [24] could not identify
significantly associated drug target pairs. In comparison, conventional methods based on regression
algorithms, i.e., GBOOST [21], PLINK [22] and FastEpistasis [23], showed good performances.

Table 1. Performance of software in identifying interacting single nucleotide polymorphism (SNP)
pairs and gene pairs.

Software Model Version Cost (days) 9 SNP Pairs Gene Pairs

GBOOST 1 Regression - <1 670,084 143,008
PLINK 2 Regression 1.9 <1 427,444 14,850

FastEpistasis 3 Regression 2.05 <1 498,482 48,189
pMDR 4 Data Mining 3.0.2 <1 500 0

AntEpiSeeker 5 Data Mining 1 >30 0 0
SNPRuler 6 Machine learning - ~21 2 0

Ranger 7 Machine learning 0.5.0 ~2 0 0
BEAM3 8 Beyesian 1 ~9 0 0

1 downloaded from http://bioinformatics.ust.hk/. 2 downloaded from http://www.cog-genomics.org/plink/1.9/.
3 downloaded from http://www.vital-it.ch/software/FastEpistasis. 4 downloaded from https://ritchielab.psu.edu/
software/mdr-download. 5 downloaded from http://nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html.
6 downloaded from http://bioinformatics.ust.hk/. 7 downloaded from https://cran.r-project.org/web/packages/
ranger/. 8 download from http://sites.stat.psu.edu/~yuzhang/. 9 by DELL T7600 Workstation with an Intel Xeon
E5-2630 CPU and a Nvidia Quadro K2000 GPU.

http://bioinformatics.ust.hk/
http://www.cog-genomics.org/plink/1.9/
http://www.vital-it.ch/software/FastEpistasis
https://ritchielab.psu.edu/software/mdr-download
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http://bioinformatics.ust.hk/
https://cran.r-project.org/web/packages/ranger/
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GBOOST [21] yielded 670,084 significant epistatic SNP pairs (p < 1 × 10−5) (available upon
request). Using the SNP-to-gene mapping method of Nelson et al. [28] and drug-target information
derived from the databases DGIdb, TTD and DrugBank (Figure 2a) [16–18], 143,008 significant epistatic
target pairs were identified (Figure 2b and Table S2). It is of interest to examine the functions of genes
that commonly occurred in the target pairs. Disease-related genes were derived from the following
nine databases: Genetic Association Database (GAD, http://geneticassociationdb.nih.gov) [29],
Online Mendelian Inheritance in Man (OMIM, http://omim.org/) [30], Clinvar (http://www.ncbi.
nlm.nih.gov/clinvar/) [31], Orphanet (http://www.orpha.net/consor/cgi-bin/index.php), GWASdb
(http://jjwanglab.org/gwasdb) [32], NHGRI GWAS Catalog (http://www.ebi.ac.uk/gwas/) [33],
DriverDBv2 (http://ngs.ym.edu.tw/driverdb/) [34], the records of Catalogue of Somatic Mutations
in Cancer (COSMIC, http://cancer.sanger.ac.uk/cosmic) [35], and partial data from the Human
Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/index.php), which appeared in
Wang et al.’s work [36] (available upon request). To obtain a sufficiently comprehensive list of breast
cancer-related genes, the Unified Medical Language System (UMLS) [37] was used to standardize
diseases and UMLS::similarity was used to measure disease similarity [38]. As a result, 2341 breast
cancer-related genes were identified (Table S3). The 159 genes with the top 5% occurrence were
collected, 46 (28.9%) of which were shown to be connected with breast cancer (Table S4), indicating a
significant enrichment of breast cancer genes (3.9%, p = 3.57 × 10−27, hypergeometric test). Among
the identified target pairs, it was shown that a small fraction (1.3%) have the ability to be targeted by
985 agents (Table S5). Seventy-six (7.7%) of the 985 agents exhibited clinical anti-breast cancer activity
(p < 1 × 10−4, Permutation test) (Figure 3a) and 21 (2.1%) agents have been approved for breast cancer
therapy (p < 1 × 10−4, Permutation test) (Figure 3b and Table 2) [17,18,39]. The results showed that
the identified interacting target pairs were not random results, and they could be valuable targets for
combinatorial drugs.Molecules 2018, 23, x  5 of 13 

 

 
Figure 2. Pipeline for identifying epistatic target pairs in genome wide association studies (GWAS) 
and relevant combinatorial drugs. (a) The method for detecting significant epistatic target pairs and 
combinatorial drugs. (b) A case study by GBOOST. A total of 132,908 significantly epistatic target 
pairs can be hit by combinatorial drugs. The combinatorial drugs cover 617 of the combinations in the 
Drug Combination Database (DCDB, http://www.cls.zju.edu.cn/dcdb/), and 41 (6.6%) of them have 
clinical effects on breast cancer (p = 1.2 × 10−6, hypergeometric test). 

 

Figure 2. Pipeline for identifying epistatic target pairs in genome wide association studies (GWAS)
and relevant combinatorial drugs. (a) The method for detecting significant epistatic target pairs and
combinatorial drugs; (b) A case study by GBOOST. A total of 132,908 significantly epistatic target pairs
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Figure 3. Frequency of clinically active/approved drugs hitting target pairs derived from GWAS:
(a) for clinically active drugs; (b) for clinically approved drugs. Lines show the frequency of
clinically active/approved drugs hitting target pairs derived from 10,000 random target combinations,
where GBOOST, PLINK and FastEpistasis software were used to identify the epistatic target genes.
Triangles indicate the number of active/approved drugs hitting epistatic target pairs calculated by
GBOOST/PLINK/FastEpistasis software. It is evident that the epistatic target pairs are more promising
as drug targets than random target combinations (p < 1 × 10−4, Permutation test).

Table 2. Clinically active ratio/approval ratio of drugs targeting epistatic target pairs calculated by
PLINK/GBOOST/FastEpistasis.

Software Clinically Active Ratio 1/P 2,3 Approval Ratio 1/P 2,3

GBOOST 76/985 (7.72%)/P < 1 × 10−4 21/985 (2.13%)/P < 1 × 10−4

PLINK 20/181 (11.05%)/P < 1 ×1 0−4 5/181 (2.76%)/P < 1 × 10−4

FastEpistasis 26/364 (7.14%)/P < 1 × 10−4 7/364 (1.92%)/P < 1 × 10−4

1 derived from target pairs calculated by PLINK/GBOOST/FastEpistasis. 2 derived from 10,000 random target
combinations where software PLINK/GBOOST/FastEpistasis were used to identify the interacting target genes. 3

calculated by permutation test

Furthermore, through searching the DCDB [4], it was found that 617 documented combinatorial
drugs contain the drug pairs that target the epistatic target pairs, and 41 (6.6%) of them are efficient
for treating breast cancer (Figure 3b and Table S6). This ratio is higher than the background ratio
of anti-breast cancer combinatorial drugs in DCDB [4] (3.9%, p = 1.2 × 10−6, hypergeometric test)
(Table 3). The analysis using PLINK [22] and FastEpistasis [23] yielded similar results (Table 3 and
Tables S2–S6). Together, it seems that these three methods are effective for identifying the interacting
gene pairs that are responsible for certain diseases on a genome-wide scale, and have the potential to
be used to facilitate GWAS-based combinatorial drug discovery, in particular, compared with single
locus-focused GWAS methods. In fact, from the breast cancer-associated loci originally identified from
the GWAS data by Hunter et al. [19], we could not identify any anti-breast cancer drugs.
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Table 3. Clinically active ratio of combinatorial drugs targeting epistatic target pairs.

Software Clinically Anti-Breast Cancer Ratio 1 Background Ratio 1 p2

GBOOST 41/617 (6.6%) 53/1363 (3.9%) 1.2 × 10−6

PLINK 31/270 (11.5%) 53/1363 (3.9%) 8.0 × 10−11

FastEpistasis 36/355 (10.1%) 53/1363 (3.9%) 2.5 × 10−10

1 derived from Drug Combination Database (DCDB, http://www.cls.zju.edu.cn/dcdb/). 2 calculated by
hypergeometric test

To further verify our hypothesis, nine groups of predicted combinatorial drugs by PLINK,
GBOOST and FastEpistasis were screened randomly (Table S7). The six single drugs contained
in the nine combinatorial drugs were first incubated with the human breast cancer cell line, MCF-7,
with increasing concentrations for 48 h to evaluate their cytotoxic effects [40]. All the drugs showed
dose-dependent cytotoxicity in MCF-7 cells, and the median effective doses of the drugs (Dm)
analogous to the IC50 are shown in Figure S1 [40]. According to the Dm value ratios over 48 h,
the drugs were then combined at a fixed dose ratio, and the dose–effect relationships for the nine
combinatorial drugs are shown in Figure S2 (Table S7) [40].

Combination indices (CI) were calculated to evaluate the anti-breast cancer effects of
the combinations. Five of nine groups—dasatinib+vorinostat (3:1), gefitinib+vorinostat (10:1),
cladribine+dasatinib (5:1), gefitinib+dasatinib (5:1) and cladribine+gefitinib (1:1)—exhibited synergistic
effects on anti-MCF-7 cells; in particular, the first three groups exerted strong synergistic
anti-cancer effects (CI < 1) (Table S7) [40]. The other three groups—sorafenib + vorinostat
(2:1), sorafenib + everolimus (1:2) and cladribine+sorafenib (6:1)—produced antagonistic effects,
and gefitinib + sorafenib (5:1) exhibited slight antagonistic effects (CI > 1) (Table 4, Table S7) [40].
Additionally, the synergistic activities of dasatinib + vorinostat, cladribine+dasatinib and
cladribine+gefitinib were analyzed in detail. The results of the analysis showed that these three
combinatorial drugs exert synergistic anti-cancer effects on MCF-7 cells by inducing cell cycle
arrest, reactive oxygen (ROS) production and apoptosis through mitochondrial-mediated endogenous
pathways [41,42].

Table 4. Combination index of combinatorial drugs targeting epistatic genes.

Combinatorial Drugs Combination Index 1 Software

Dasatinib + Vorinostat 0.439 BOOST/FastEpistasis
Gefitinib + Vorinostat 0.502 BOOST/FastEpistasis

Cladribine + Dasatinib 0.539 BOOST/FastEpistasis
Dasatinib + Gefitinib 0.628 BOOST/PLINK
Cladribine + Gefitinib 0.723 BOOST
Gefitinib + Sorafenib 1.288 BOOST/PLINK

Cladribine + Sorafenib >1 BOOST/FastEpistasis
Everolimus + Sorafenib >1 BOOST/PLINK
Sorafenib + Vorinostat >1 BOOST/PLINK/FastEpistasis

1 Combination index > 1: synergistic effect; Combination index < 1: antagonistic effect

The results above fully indicate that targeting interacting disease genes can improve the efficiency
of combinatorial drug discovery. At present, researchers have established a number of gene association
maps that promote the identification of gene function [12]. Wenran et al. assumed that genes whose
promoters are co-open for transcription factors on 3D structures tend to be co-active before transcription
and exert functional interactions [43]. Therefore, they constructed a gene co-opening network that
captured the correlation of the chromatin accessibility genes and validated the proposition that the
genes were related to the same biological processes or diseases that tend to be linked in this network [43].
It is supposed that the genetic links between the functionally-related epistatic disease genes and breast
cancer are stronger than the epistatic disease genes. To verify our hypothesis, we filtered all of the

http://www.cls.zju.edu.cn/dcdb/
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epistatic target pairs identified by GBOOST [21] PLINK [22] and FastEpistasis [23] with linked genes
in co-opening network (Figure 4). As a result, we obtained 346 functionally-related epistatic target
pairs whose numbers were reduced by three orders of magnitude (Table S8). Then, 49 combinatorial
drugs in the DCDB were shown to contain the predicted combinations which target the target pairs
after filtration, and 10 (20.4%) of them were shown to be clinically efficacious for anti-breast tumors
(Table S9). This ratio is higher than the background ratio of anti-breast cancer combinatorial drugs in
the DCDB [4] (3.9%, p = 8.6 × 10−6, hypergeometric test) and is also much higher than combinatorial
drugs that simply target epistatic target pairs (6.9%, p = 9.8 × 10−4, hypergeometric test) (Figure 5).
These results indicate that filtering epistatic target pairs with the co-opening network, constructed
based on the 3D genome dataset, can screen out target pairs that are more closely related to disease
than epistatic target pairs, so combinatorial drugs targeting these filtered target pairs are more likely to
have medicinal potential.
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Figure 4. Pipeline for filtering epistatic target pairs by the co-opening network. Epistatic target pairs 
detected by three software packages were filtered with gene links that were considered to be 
functionally-related in the gene co-opening network. Then, a smaller number of functionally-related 
epistatic target pairs were left over. Finally, by targeting the filtered target pairs, drugs were combined 
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(http://www.drugbank.ca) and the Therapeutic Target Database (TTD, https://db.idrblab.org/ttd/). 

 

Figure 5. The clinically active ratio of combinatorial drugs targeting different target pairs. According
to the DCDB, there are 53 (3.9%) combinatorial drugs that have been shown to have an anti-breast
cancer effect in clinical trials. Targeting all the epistatic target pairs identified by GBOOST, PLINK and
FastEpistasis, the predicted combinatorial drugs cover 651 combinations in the Drug Combination
Database (DCDB, http://www.cls.zju.edu.cn/dcdb/), and 45 (6.9%) of the documented combinations
were shown to be efficient for treating breast cancer. For targeting functionally-related epistatic
target pairs, the predicted combinatorial drugs cover 49 combinations in DCDB and 10 (20.4%) of the
documented combinations were shown to be efficient for treating breast cancer.
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3. Materials and Methods

3.1. Breast Cancer-Related GWAS Dataset

Sample genotypes from 2287 individuals of European ancestry provided by Hunter et al. [19]
were used in this study. This dataset comprises 528,173 SNPs obtained from 1145 postmenopausal
women with invasive breast cancer and 1142 control women [19]. Using the SNP-to-gene mapping
method, described by Nelson et al. [28], 18,531 genes were identified, 1939 of which appeared in the
list of 2341 breast cancer genes mentioned above (available upon request). This information was used
to assess the significance of enriched breast cancer genes in the interacting target pairs.

3.2. Breast Cancer Genes

We collected 2341 breast cancer genes by combining nine sources: 933 breast cancer genes were
identified in GAD [29], 99 breast cancer genes were identified in OMIM [30], 29 breast cancer genes
were identified in Clinvar [31], 21 breast cancer genes were identified in Orphanet, 484 breast cancer
genes were identified in the GWASdb & NHGRI GWAS Catalog [32,33], 972 breast cancer genes were
identified in DriverDBv2 [34], 49 breast cancer genes were identified in COSMIC [35], and 77 breast
cancer genes were identified in partial data from HGMD that appeared in Wang et al.’s work [36].

3.3. Information on Drugs

Drugs and their targets were collected from DGIdb, DrugBank, and TTD [16–18]. Of these,
10,941 drugs covering 3090 targets were collected from DGIdb [16], 4797 drugs covering 2244 targets
were collected from DrugBank [17], and 5208 drugs covering 569 targets were collected from TTD [18].
By integrating the three datasets, we obtained 30,326 drug–target associations, including 14,125 drugs
and 3231 target genes (available upon request). The indication information for the drugs were collected
from DrugBank, TTD, and ClinicalTrials [17,18,39]. In total, we acquired 5716 drugs as well as their
corresponding 90,549 drug–disease pairs (covering 665 types of diseases) and 15,965 drug–target pairs
(covering 2289 target genes) (available upon request).

3.4. Information on Combinatorial Drugs

Combinatorial drugs and their indications were collected from the DCDB [4]. For each
combination, the DCDB provides detailed annotations: indications, possible mechanisms,
drug interactions between the components and the clinical stage. In this study, we used the current
version, DCDB 2.0, which contains 1363 combinatorial drugs (330 approved and 1033 investigational).

3.5. Gene Co-Opening Network

The gene co-opening network was constructed by Wenran et al. [43]. They downloaded
raw sequencing data from 628 DNase-Seq experiments from the ENCODE Project [12], Roadmap
Epigenomics Project [44], and Pritchard lab [45]. Then, the transcription start sites (TSS) locations were
mapped to the human genome. For each experiment, the chromatin accessible peaks were identified
and used to build the co-expression network. The network they obtained consists of 11,461 genes and
271,900 interactions. The genes connected in the network are considered to be involved in the same
biological process or disease.

3.6. Genetic Epistasis Detection in GWAS

In this study, the breast cancer-related GWAS dataset comprising 528,173 SNPs was used to detect
genetic epistasis. All the SNPs with a missing genotype rate < 0.1, MAF > 0.05, a Hardy-Weinberg
equilibrium (HWE) p > 0.001, and a pair-wise R2 < 0.8 were retained. In total, 498,847 SNPs were used
for detecting genetic epistasis (available upon request). The eight most widely cited genetic epistasis
detection software packages, including pMDR [20], GBOOST [21], PLINK [22], FastEpistasis [23],
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SNPRuler [24], AntEpiSeeker [25], Ranger [26], and BEAM3 [27], were used to detect SNP-SNP
interactions. All eight software packages were run using the default configuration on a machine with
an Intel Xeon E5-2630 CPU and an Nvidia Quadro K2000 GPU.

3.7. Permutation Test

To assess whether the identified interacting target pairs were random results, a permutation test
was performed. Ten thousand samples were generated by random shuffling of significantly associated
target pairs derived from GWAS. Then, we calculated the frequency of clinically active/approved drugs
hitting target pairs derived from the 10,000 random target combinations. The frequency distributions
were compared with the real frequencies of the clinically active/approved drugs, derived from the
interacting target pairs calculated using the software GBOOST/PLINK/FastEpistasis [21–23].

3.8. Cytotoxicity Assays

3.8.1. Cell culture and Reagents

MCF-7 cells were obtained from the China Center for Type Culture Collection (Wuhan, Hubei,
China). Cells were cultured in RPMI-1640 medium (Gibco, Waltham, MA, USA) with 10% newborn
bovine serum, in a humidified 5% CO2 incubator, at 37 ◦C. All drugs (purity > 98%) were purchased
from Haoyuan Chemexpress Co., Ltd. (Shanghai, China) and dissolved in sterile dimethyl sulfoxide
(DMSO) at 100 mmol/L (gefitinib, sorafenib and everolimus) or 200 mmol/L (cladribine, dasatinib
and vorinostat ) stock solutions.

3.8.2. Cytotoxicity Assays

Cytotoxicity assays of drugs on MCF-7 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay (Sigma-Aldrich, St. Louis, MO, USA) [46]. Cells were
seeded in 96-well plates at a density of 6 × 103 cell/well. After overnight incubation, the cells were
treated with drugs individually, and in combination, for 48 h, with 0.1% dimethyl sulfoxide DMSO
as negative control. The drugs and combinatorial drugs were from stock solutions of each drug, and
the maximal concentration of DMSO in media was less than 0.1% (v/v). About 10 µL of 5 mg/mL
MTT solution was then added to the cells in 96-well plates and incubated for more than 4 h at 37 ◦C.
In order to calculated inhibitory concentration 50% (IC50), the absorbance was detected at 492 nm
using a Thermo Multiskan MK3 (Thermo Fisher, Waltham, MA, USA). According to the ratios of IC50,
the ratios of combinatorial drugs were determined. All samples were measured in five replicates,
and the experiments were repeated at least three times. The interaction between two drugs was
analyzed according the median-effect principle, proposed by Chou and Talalay [47,48]. Dm and CI
were calculated by CompuSyn software (version 1.0). A CI value represented synergism, additive
effect, and antagonism, respectively, when it was below 1, equal to 1, and greater than 1, respectively.

4. Conclusions

Through working synergistically, combinatorial drug therapy can overcome disadvantages,
such as poor efficacy, side effects, and drug resistance caused by a single drug [1–4]. However,
selecting combinatorial drugs with desired activities is still a challenge [5,6]. Previous studies have
revealed that genetic disease genes can provide valuable clues for drug activity prediction [7–10]. In
addition, there are studies showing that targeting multiple disease genes may have more therapeutic
potential [11], and the genes exert their functions by interaction [12]. Genetic links between the targets
and diseases are critical factors for the treatment effects of combinatorial drugs [13]. Therefore, we
speculated that targeting interacting genes that are disease-related will provide us with information on
combinatorial drugs. In this study, by applying a therapeutic effects analysis to combinatorial drugs
which target synthetic lethality genes or epistatic disease genes, we verified our hypothesis. The cell
cytotoxicity assay indicated that there are five predicted combinatorial drugs showing synergistic
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anti-cancer effects on MCF-7 cells. Additionally, this study indicated that strengthened genetic links,
produced by a 3D genome-based method, between target genes and diseases can also improve the
medicinal potential of combinatorial drugs. This study revealed that epistatic disease genes are
invaluable sources of drug targets. The method for detecting epistatic disease genes from a breast
cancer GWAS dataset as targets can not only facilitate anti-breast cancer combinatorial drug discovery
but can also be extended to combinatorial drug discovery for other complex diseases.

In addition, genetic epistasis is important in the pathogenesis of complex diseases and has
recently attracted much attention [49–51]. However, due to various experimental, statistical and
computational challenges, the true effectiveness of the methods for detecting epistasis is difficult to
evaluate. In this work, using a well-defined breast cancer GWAS dataset, we assessed the performance
of eight well-known genetic epistasis detection tools based on their drug enrichment efficiency.
The results showed that the regression algorithm-based methods, such as GBOOST [21], PLINK [22]
and FastEpistasis [23], performed consistently better than the other methods. Together, this study not
only demonstrates the potential of epistatic disease genes as drug targets but also suggests a chemical
biological method for evaluating epistatic disease gene-detecting methods.

Supplementary Materials: The following are available online, Figure S1: Anti-breast cancer effects of the six
drugs contained in nine predicted combinatorial drugs; Figure S2 Synergistic anti-breast cancer effects of nine
predicted combinatorial drugs. Table S1: Combinatorial drugs targeting synthetic lethality gene pairs, Table S2:
Breast cancer-associated epistatic gene pairs calculated by software PLINK/GBOOST/FastEpistasis (p < 1 × 10−5),
Table S3: Breast cancer-associated genes, Table S4: Genes with top 5% occurrence in epistatic gene pairs calculated
by software PLINK/GBOOST/FastEpistasis (p < 1 × 10−5), Table S5: Drugs targeting epistatic target pairs
calculated by software PLINK/GBOOST/FastEpistasis (p-value < 1 × 10−5), Table S6: Combinatorial drugs
targeting epistatic gene pairs calculated by software PLINK/GBOOST/FastEpistasis (p < 1 × 10−5), Table S7:
Combinatorial drugs screened for cell cytotoxicity assay, Table S8: Functionally-related epistatic gene pairs filtered
by gene co-opening network, Table S9: Combinatorial drugs targeting functionally-related epistatic gene pairs.
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