
molecules

Review

Thiazoles and Thiazolidinones as
COX/LOX Inhibitors

Konstantinos Liaras ID , Maria Fesatidou ID and Athina Geronikaki *

Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece;
liarasn@gmail.com (K.L.); fesa.maria@gmail.com (M.F.)
* Correspondence: geronik@pharm.auth.gr; Tel.: +30-231-099-7616

Academic Editor: Derek J. McPhee
Received: 28 February 2018; Accepted: 16 March 2018; Published: 18 March 2018

Abstract: Inflammation is a natural process that is connected to various conditions and disorders
such as arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase
isoenzymes (COX-1, COX-2) are responsible for the production of prostaglandins that play
an important role in inflammation, traditional treatment approaches include administration of
non-steroidal anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX
inhibitors. Almost all of them present a number of unwanted, often serious, side effects as a
consequence of interference with the arachidonic acid cascade. In search for new drugs to avoid
side effects, while maintaining high potency over inflammation, scientists turned their interest to
the synthesis of dual COX/LOX inhibitors, which could provide numerous therapeutic advantages
in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular profile
compared to conventional NSAIDs. Thiazole and thiazolidinone moieties can be found in numerous
biologically active compounds of natural origin, as well as synthetic molecules that possess a wide
range of pharmacological activities. This review focuses on the biological activity of several thiazole
and thiazolidinone derivatives as COX-1/COX-2 and LOX inhibitors.
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1. Introduction

Inflammation is a natural process that is connected to various conditions and disorders such as
arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase isoenzymes
(COX-1, COX-2) are responsible for the production of prostaglandins that play an important
role in inflammation, traditional treatment approaches include administration of nonsteroidal
anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX inhibitors [1–3].

It is well established that COX-1 inhibitors, such as acetylsalicylic acid, induce gastrointestinal
irritation, due to the fact that this particular COX isoenzyme is responsible for the production of
gastroprotective prostaglandins. Moreover, this group of drugs can be responsible for increased
bleeding diathesis resulted from inhibiting COX-1 catalyzed production of thromboxane A2 (TXA2).
The severity of side effects caused by COX-1 or combined COX-1/COX-2 inhibitors (e.g., ibuprofen)
concentrated the scientific interest on the production of selective COX-2 inhibitors, inspired by evidence
supporting over-expression of this particular isoenzyme during inflammatory conditions. However,
the hope for this new generation of drugs to be more effective than their predecessors and with less
severe side effects was overshadowed by their association with increased myocardial infarction risk
and cardiovascular thrombotic events. These severe side effects are mainly a result of inhibition of
COX-2 catalyzed production of prostacyclin (PGI2), a prostaglandin possessing vasodilatory and
antiaggregatory properties [4–7].
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In search for new drugs to avoid side effects, while maintaining high potency over inflammation,
scientists turned their interest on leukotrienes and lipoxins, which are produced via the lipoxygenase
(LOX) pathway and are associated with various procedures such as leucocytes activation and adhesion
to vascular endothelium, bronchial asthma pathogenesis, formation of edema and gastric mucosa
damage [2,8,9]. Consequently, dual COX/LOX inhibitors could provide numerous therapeutic
advantages in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular
profile compared to conventional NSAIDs. Therefore, in the recent years, a notable research effort in the
field of dual-acting COX/LOX inhibitors with very promising results has been observed [10,11]. One of
the eminent compounds that was a result of the above-mentioned scientific effort is licofelone (Figure 1),
a dual COX/5-LOX inhibitor that was under production by the pharmaceutical industry, with mixed
results of phase III of clinical trials for osteoarthritis patients [12]. While being a non-selective COX
inhibitor, it simultaneously inhibits 5-lipoxygenase activating protein (FLAP) [13]. It was proved that
polypharmacological activity of licofelone is supported by inhibition of mPGES-1 [14]. Recently, it was
found that licofelone modulates neuroinflammation in the chronic phase of spinal cord injury [15]. It is
believed that this action is due to elevation of levels of endogenous anti-oxidants and anti-inflammatory
metabolites in the lesion site. In another publication, the effect of licofelone in intracerebroventricular
streptozotocin–induced cognitive deficit in rats was observed [16]. Two other compounds that are
mentioned in the literature as dual COX/LOX inhibitors are thiazol-4(5H)-one derivatives: darbufelone
and CI-987 (Figure 1) [17].
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Figure 1. Chemical structures of Licofelone, Darbufelone and CI-987.

It is well established that compounds that contain sulfur atoms play a significant role in living
organisms [18,19]. In particular, thiazole is a well-known heterocyclic aromatic compound that contains
sulfur and nitrogen atoms at positions 1 and 3 of its five-member ring, respectively [20]. Thiazole moiety
can be found in numerous biologically active compounds of natural origin (e.g., thiamine [19,20],
mycothiazole [21], cystothiazole C [22], as well as synthetic molecules possessing a wide range
of pharmacological activities such as antimicrobial [23–28], antiviral [29,30], antitubercular [23,31],
anti-inflammatory [32–34], anxiolytic [35], anaesthetic [36], anticonvulsant [37–40], etc.). There is
a large number of known marketed drugs containing thiazole rings, such as the anthelmintic
tiabendazole, the antibacterial sulfathiazole, the anticonvulsant riluzole, the anti-ulcer alizatidine,
the antiparkinsonian talipexole, the antischistosomal niridazole, the antiviral ritonavir and the
anti-inflammatory meloxicam.
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Thiazolidinones, on the other hand, are derivatives of thiazolidine, a saturated form of
thiazole, with a carbonyl group at position 2, 4, or 5. The chemistry of thiazolidinones has
drawn scientific interest through the years because this particular ring system is the core
structure in a variety of synthetic compounds with a broad spectrum of biological activities,
such as antimycobacterial [41,42], antifungal [43–46], anti-cancer [47–50], anticonvulsant [51–53],
anti-edematous [54], antidiarrheal [55], anti-HIV [56,57], anti-platelet-activating factor [58],
antidiabetic [59], antihistaminic [60], anti-inflammatory [61–63], analgesic [64,65], antimicrobial [66–69],
antidepressant [70], etc.

This review focuses on the biological activity of several thiazole and thiazolidinone derivatives
as COX-1/COX-2 and LOX inhibitors. Literature references that are included in this review were
found using mainly Google Scholar, Scopus and SciFinder (keywords: thiazoles COX, thiazoles LOX,
thiazolidinones COX, thiazolidinones LOX, NSAIDs, inflammation, thiazoles activity, thiazolidinones
activity, etc.).

2. Thiazoles as COX/LOX Inhibitors

Therien et al. [71] reported the synthesis of a series of 5,6-diarylimidazo[2.1-b]thiazole derivatives
and evaluated their possible inhibitory potential against COX-2 and COX-1 enzymes. As a result,
compound 1 (Figure 2) was identified as a potent, orally active and selective inhibitor of the COX-2
enzyme. This result was confirmed by in vivo evaluation of anti-inflammatory activity.
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Figure 2. Chemical structure of 5,6-diarylimidazo[2.1-b]thiazole derivative 1.

Woods et al. [72] synthesized a series of 4-substituted thiazole analogues of indomethacin, which
were tested as inhibitors of COX-1 and COX-2. It was found that compounds are selective inhibitors
of COX-2 while only moderate COX-1 activity (<57% inhibition at 10 mM) was observed. The most
active compounds as COX-2 inhibitors appeared to be 2a–c (Figure 3) with IC50 values of 0.3, 1 and
7 nM, respectively.
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A series of N-aryl-4-aryl-1,3-thiazole-2-amine derivatives were synthesized by Suh et al. [73]
as direct 5-LOX inhibitors. The SAR and chemical optimization studies revealed that, among
32 synthesized compounds, 3a, N-(3,5-dimethylphenyl)-4-(4-chlorophenyl)-1,3-thiazole-2-amine
(Figure 4), was the most potent LOX inhibitor with 98% inhibition (IC50 = 127 nM) and 98% inhibition
in a cell-based assay. Compounds 3b and 3c (Figure 4), although possessing strong LOX inhibitory
activity, with IC50 values of 35 and 25 nM respectively, cell-based assay results showed rather
moderate potential.
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Carradori et al. [74] reported the synthesis of novel 1-(4-ethyl carboxylate-thiazol-2-yl)-
3,5-di(hetero)aryl-2-pyrazoline derivatives as potential inhibitors of human COX isoenzymes. In vitro
assay displayed promising selectivity against COX-1, with compound 4 (Figure 5) possessing
the strongest activity with IC50 = 29.60 ± 1.58 µM, while none of the compounds exhibited
COX-2 inhibition.
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derivative 4.

As a continuation of their research on the development of 15-LOX inhibitors [75], a series of new
3,6-diphenylimidazo[2,1-b]thiazol-5-amine derivatives were designed, synthesized and evaluated as
inhibitors of the above enzyme by Tehrani et al. [76]. The study revealed that, among 14 synthesized
and tested derivatives, 5a–5d (Figure 6) appeared to be the most potent with IC50 values ranging
between 11.5–35 µM. Compound 5a, with 2,4,4-trimethylpentan-2-yl pendent group, was the most
active compound, being two times more potent than reference drug quercetin (IC50 = 23 µM).

According to docking studies, 5a interacts properly with target enzyme 15-LOX, with hydrophobic
interactions playing an important role in the binding process.
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Elachkar et al. [77] designed and synthesized two novel thiazole derivatives (Figure 7), namely
compound 6a (N-[4-(4-hydroxy-3-methoxyphenyl)-1,3-thiazol-2-yl]acetamide) and compound 6b
(4-(2-amino-1,3-thiazol-4-yl)-2-methoxyphenol), with aim to analyze their effect on COX isoforms.
It was shown, using cell-stably over-expressing COX-1 and blood platelets, that compound 6a was
a non-selective COX-1/COX-2 inhibitor, while 6b was a selective COX-2 inhibitor with similar
IC50s (IC50s 9.01 ± 0.01 mM and 11.65 ± 6.20 mM). Furthermore, these compounds demonstrated
anti-inflammatory activity according to the dorsal air pouch model of inflammation.

Docking studies revealed that both compounds 6a and 6b bind to the COX-2 active site in a
similar manner as celecoxib.
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and 6b (4-(2-amino-1,3-thiazol-4-yl)-2-methoxyphenol).

Abdelall et al. [17], by modification of the celecoxib molecule, designed and synthesized some
thiazolo-celecoxib analogues (7a–7j, Figure 8) and evaluated their anti-inflammatory, COX-1, COX-2
and 15-LOX inhibitory activity.
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The study of COX-1, COX-2 as well as 15-LOX inhibitory activity revealed that all compounds
possessed COX-1, COX-2 and 15 –LOX inhibitory potency. Compounds 7a, 7b, 7e and 7i were the
most active COX-1 inhibitors, with IC50 values of 4.80–6.30 µM being better than celecoxib, which was
used as a reference drug (IC50 7.60 µM), but not better than aspirin. The same compounds appeared to
be very potent COX-2 inhibitors (IC50s 0.98–1.71 µM) better than aspirin, while compounds 7a, 7b and
7i appeared to also be good 15-LOX inhibitors with IC50s of 3.98–5.41 µM, exhibiting higher potency
than meclofenamate sodium that was used as a reference drug. Nevertheless, two compounds reached
the goal of the authors. Compounds 7a and 7i possessed dual COX-2/15-LOX activity, despite their
good COX-1 potency. This result proved the rationality of the authors’ design.

Oniga et al. [7] designed and synthesized a series of new 2-(trimethoxyphenyl)-thiazoles aiming
to develop new, safer and less toxic compounds as NSAIDs. In order to elucidate their mechanism
of action, the authors performed evaluation of their COX-1/COX-2 inhibitory potency. In addition,
docking studies were performed. It was found that four (8a–8d) out of thirteen tested compounds
were the most active (Figure 9), even though no compound exhibited COX-1/COX-2 activity higher
than reference drugs. Docking studies revealed that compounds 8a and 8c occupied area close to
that of meloxicam, forming hydrogen bonds with the key amino acids Arg120, Ser530 of the active
site of COX-2 enzyme. The similar behavior, regarding a COX-1 active site, was observed for the
above-mentioned compounds. According to the authors, this is due to the homology similarity of
active sites of two enzymes. The SAR studies revealed that substitution in position 4 of the phenyl ring
is very important for the selectivity towards the COX-2 enzyme.
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These compounds were designed and synthesized in order to be tested as COX inhibitors analogously
to mofezolac and FR122047 (Figure 10), which lack a gastric damaging profile.
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These compounds were also evaluated for anti-inflammatory and analgesic activities. This study
revealed that two compounds, 9a and 9b (Figure 11) were the most potent COX-1 inhibitors with IC50

values of 0.42 and 0.32 µM and moderate COX-2 inhibitors with IC50s 10.71 and 9.23 µM, respectively.
The studies concerning ulcerogenicity revealed a significantly tolerable gastric profile.
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Figure 11. Chemical structures of 4,5-diarylthiazoles 9a and 9b.

As a continuation of their previous research [78], Abdelazeem et al. [79] synthesized a series of
novel diphenyl thiazole derivatives aiming to evaluate their anticancer activity.

Taking into account the growing interest of scientific community in studying the potential
anticancer activity of COX-2 inhibitors, the authors evaluated anti-inflammatory and also COX
inhibitory activity of compounds 10a–10g (Figures 12 and 13) that possessed the best anticancer
profile against a panel of cancer cell lines (MCF-7, HT-29, A549).
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Ottana et al. [80], with the aim to ameliorate the activity of lead compound 
(2R,2′S)3,3′-(1,2-ethanediyl)bis(2-(3,4-dimethoxyphenyl)-thiazolidin-4-one [81], made some 
modifications such as removal of 3-methoxygroups of the benzene ring, retaining the 4-methoxy 

Figure 12. Chemical structures of diphenyl thiazole derivatives 10a–10c.

The most active as COX-1 inhibitor was 10b (IC50 = 4.8 µM), while 10f, the most active anticancer
compound against previously mentioned cell lines (with IC50 = 0.96 µM as COX-2 inhibitor) showed
the highest selectivity index concerning this particular isoenzyme compared to diclofenac. Based on
the fact that all tested compounds showed a good COX-2 selectivity, the authors came to the conclusion
that there might be an important correlation between cancer treatment and the inhibition of the
above-mentioned COX isoform.
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3. Thiazolidinones as COX/LOX Inhibitors

Ottana et al. [80], with the aim to ameliorate the activity of lead compound (2R,2′S)3,3′-(1,2-
ethanediyl)bis(2-(3,4-dimethoxyphenyl)-thiazolidin-4-one [81], made some modifications such as
removal of 3-methoxygroups of the benzene ring, retaining the 4-methoxy groups. The synthesized
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compound 11 (Figure 14) was screened for its anti-inflammatory activity as well as for its
gastrointestinal safety [82]. The authors evaluated the new compound, after corresponding
modifications, for its possible COX-1/COX-2 inhibitory activity. It was found that the novel compound
is a better COX-2 inhibitor than the lead compound of this class, as it was observed inthe human
whole blood assay and computational studies. The selectivity index COX-1/COX-2 appeared to be
more than 30 times higher than that of a previously mentioned lead compound. Based on the findings,
the authors confirmed the well-established fact that overproduction of COX-2 derived prostaglandins
play a role in acute inflammation.

Molecules 2018, 23, x  9 of 22 

 

groups. The synthesized compound 11 (Figure 14) was screened for its anti-inflammatory activity as 
well as for its gastrointestinal safety [82]. The authors evaluated the new compound, after 
corresponding modifications, for its possible COX-1/COX-2 inhibitory activity. It was found that the 
novel compound is a better COX-2 inhibitor than the lead compound of this class, as it was observed 
inthe human whole blood assay and computational studies. The selectivity index COX-1/COX-2 
appeared to be more than 30 times higher than that of a previously mentioned lead compound. 
Based on the findings, the authors confirmed the well-established fact that overproduction of COX-2 
derived prostaglandins play a role in acute inflammation. 

 
Figure 14. Chemical structure of 4-thiazolidinone derivative 11. 

Vigorita et al. [83] performed conformational studies as well as in situ molecular dynamics on 
previously synthesized [81] 3,3′-(1,2-ethanediyl)-bis[2-(3,4-dimethoxyphenyl)-4-thiazolidinones 12 
(Figure 15), which were obtained as racemic mixtures (a) and mesomeric (b) forms RR, SS, RS, in 
order to better understand the binding mode of these forms to the active center of the enzymes. It 
was found that the SS enantiomer exhibited the highest binding affinity score with interaction 
energy of −47.15 kcal/mol, while the RR enantiomer showed low affinity for both COX isoforms. The 
meso form RS, although able to interact with both enzymes, showed, however, higher affinity for 
COX-2 with interaction energy −46.88 kcal/mol. 

The authors, after in vitro evaluation of COX-1/COX-2 inhibitory activity, concluded that 
affinity order towards COX-1/COX-2 is following the order SS > RS > RR, in agreement with the 
theoretical results as well as previous in vivo data [82]. 

Theoretical results indicated SS > RS > RR affinity order towards COX-2 isoenzyme, in 
agreement with in vitro and previous in vivo pharmacological results. 

 
Figure 15. Chemical structures of racemic mixtures (a) and mesomeric (b) forms of 
3,3′-(1,2-ethanediyl)-bis[2-(3,4-dimethoxyphenyl)-4-thiazolidinone 12. 

As a continuation of their previous work [80], Ottana et al. [84] reported the design and 
synthesis of 2-imino-4-thiazolidinones 13a, 13b and 5-arylidene-2-imino-4-thiazolidinones 14a–14f 
(Figure 16), which were evaluated for their in vivo anti-inflammatory activity by 
carrageenan-induced paw edema and pleurisy assays in rats [85,86]. Compound 14a, 
5-(3-methoxypnenyliden)-2-phenylimino-3-propyl-4-thiazolidine, exhibited very good 
anti-inflammatory activity in this assay. With the aim of investigating their possible mechanism of 

Figure 14. Chemical structure of 4-thiazolidinone derivative 11.

Vigorita et al. [83] performed conformational studies as well as in situ molecular dynamics on
previously synthesized [81] 3,3′-(1,2-ethanediyl)-bis[2-(3,4-dimethoxyphenyl)-4-thiazolidinones 12
(Figure 15), which were obtained as racemic mixtures (a) and mesomeric (b) forms RR, SS, RS, in order
to better understand the binding mode of these forms to the active center of the enzymes. It was
found that the SS enantiomer exhibited the highest binding affinity score with interaction energy of
−47.15 kcal/mol, while the RR enantiomer showed low affinity for both COX isoforms. The meso
form RS, although able to interact with both enzymes, showed, however, higher affinity for COX-2
with interaction energy −46.88 kcal/mol.

The authors, after in vitro evaluation of COX-1/COX-2 inhibitory activity, concluded that affinity
order towards COX-1/COX-2 is following the order SS > RS > RR, in agreement with the theoretical
results as well as previous in vivo data [82].

Theoretical results indicated SS > RS > RR affinity order towards COX-2 isoenzyme, in agreement
with in vitro and previous in vivo pharmacological results.
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ethanediyl)-bis[2-(3,4-dimethoxyphenyl)-4-thiazolidinone 12.

As a continuation of their previous work [80], Ottana et al. [84] reported the design and
synthesis of 2-imino-4-thiazolidinones 13a, 13b and 5-arylidene-2-imino-4-thiazolidinones 14a–14f
(Figure 16), which were evaluated for their in vivo anti-inflammatory activity by carrageenan-induced
paw edema and pleurisy assays in rats [85,86]. Compound 14a, 5-(3-methoxypnenyliden)-2-
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phenylimino-3-propyl-4-thiazolidine, exhibited very good anti-inflammatory activity in this assay.
With the aim of investigating their possible mechanism of action, their ability to inhibit COX-1
and COX-2 was assessed in the murine monocyte/macrophage J774 cell line [87]. Finally, the most
promising among the tested compounds, 14d, was successfully docked into the active site of COX-2
enzyme, having as reference the known selective COX-2 inhibitor SC-558.

In this assay, compounds 13a and 13b exhibited only a weak inhibition of COX-1 isoform in all
tested doses, without inhibiting COX-2. The introduction of a (Z)-5-arylidene group generally gave
rise to the inhibition of COX-2 without reaching, however, the levels of the reference drugs.
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2-imino-4-thiazolidinone derivatives 14a–14f.

Taranalli et al. [88] synthesized 11 thiazolidine-4-one compounds, 15a–h (Figure 17), and
tested their anti-inflammatory activity in vitro (COX-1 and COX-2 inhibition) and in vivo
(carrageenan-induced paw edema and cotton pellet-induced granulomas in rats). Most of the
compounds showed significant inhibition of edema and granuloma dry weight, and, concerning
in vitro COX-1 and COX-2 inhibition, half of the compounds tested showed maximum inhibition of
COX-2, comparable to nimesulide. However, all tested compounds did not inhibit the COX-1 enzyme.
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In their study, Geronikaki et al. [89] reported the computer aided design, synthesis and biological
evaluation of nine novel 5-arylidene-4-thiazolidinone derivatives that were chosen as candidates out
of 22 compounds predicted to be COX/5-LOX dual inhibitors. It was found that compounds 16a,
16b (Figure 18) were dual COX-1/LOX inhibitors (IC50s 158 µM/116 µM and 125 µM/125.9 µM,
respectively), while compound 16c appeared to be the COX-1 inhibitor (IC50 = 141 µM).
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Figure 18. Chemical structures of 5-arylidene-4-thiazolidinones 16a–c.

Hofmann and co-workers [90] reported the design, virtual screening for LOX inhibitory activity
and synthesis of a series of 35 5-benzylidene-2-phenylthiazolinones. These compounds were evaluated
in intact polymorphonuclear leukocytes (PMNL) and a cell-free assay.

It was found that compound 17a (Figure 19) caused potent inhibition of 5-LOX product formation
in intact PMNL and in cell-free PMNL S100 with IC50 values of 2 and 0.5 µM, respectively. In order to
improve activity, the authors made several modifications on the parent compound that led to several
derivatives, among which the most potent was found to be compound 17b (Figure 19), exhibiting the
strongest LOX inhibitory activity with IC50s 0.09 µM and 0.28 µM in both assays (intact PMNL and in
cell-free PMNL S100).
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Hofmann et al. [91], taking into account their previous promising findings regarding ligand-based
virtual screening of 5-benzylidene-2-phenyl-5H-thiazol-4-one derivatives [92] as LOX inhibitors,
introduced structural modifications on compound 17a. This led to the discovery of derivative 18
(Figure 20), which was investigated for its molecular pharmacological properties.
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A pharmacological profile was studied both in a cell-based system using human PMNL and
cell-free assays utilizing PMNL homogenates, S100 preparations of the homogenates and partially
purified recombinant 5-LOX. It was found that derivative 18 seems to be a promising novel 5-LOX
inhibitor with IC50 values in the nM concentrations range in intact cells and cell-free assays. It would
be interesting to point out that compound 18 had a completely different mode of action compared
to previously studied inhibitors of this class. Nevertheless, this compound appeared to be highly
selective for 5-LOX.

As a continuation of their previous work [89], Eleftheriou and co-workers [93], based
on the knowledge that balanced modulation of several targets is crucial in the treatment of
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multifactorial diseases and knowing the inflammation mechanisms, proposed that balanced
inhibition of COX-1/COX-2 and LOX enzymes could be a promising approach for the treatment of
inflammation. Thus, a fragment–based library, focused on COX-1, COX-2 and LOX inhibition, by using
chemoinformatics assays was created. As a result, 23 new benzothiazol-2-yliminothiazolidin-4-ones
were designed and synthesized in order to evaluate their inhibitory activity on the above-mentioned
enzymes. The evaluation of inhibitory activities revealed that most of the compounds showed potency
against COX-1, with the best being compounds 19a, 19b and 19c (Figure 21), with IC50 values of 0.018,
0.31 and 0.51 mM, respectively. Regarding COX-2, it was observed that the strongest inhibitory effect
was exhibited by compound 19a (58.8% inhibition), while, as far as LOX inhibition was concerned,
almost all tested thiazolidinones were more potent than their thiazolyl analogues [89], having as a
more potent compound 19d with IC50 = 17.7 µM.
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Unsal-Tan et al. [94] reported the design of a series of novel 2-aryl-3-(4-sulfamoyl/
methylsulfonylphenylamino)-4-thiazolidinones with the aim to develop new selective
cyclooxygenase-2 inhibitors using molecular modeling studies by the MOE program. The designed
thiazolidinone derivatives with reasonable binding modes and high docking scores were synthesized
and evaluated for their COX-1/COX-2 inhibitory activities with NS-398 and indomethacine used as
reference compounds. The activity of these thiazolidinones was relatively moderate against COX-1
enzyme, with the best activity demonstrated by compound 20a (IC50 = 38.9 µM). On the other hand,
COX-2 inhibitory activity appeared to be slightly better than COX-1, with the best activity shown by
compound 20b (IC50 = 14.4 µM) followed by compound 20c (IC50 = 20 µM). The above-mentioned
compounds are presented in Figure 22.
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Based on their previous studies [89], Apostolidis and co-workers [95] described the synthesis of
novel 5-arylidene-2-(1,3-thiazol-2-ylimino)-1,3-thiazolidin-4-ones introducing different substituents in
position 4 of thiazole ring and evaluated their anti-inflammatory, COX-1/COX-2 and LOX inhibitory
activities. In general, all compounds showed moderate to low inhibitory activity against all three
enzymes. Nevertheless, compounds 21a and 21b (Figure 23) demonstrated good activity against
COX-1 with IC50s 16 and 10 µM, respectively.
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Abdelazeem et al. [96] synthesized and evaluated the in vivo and in vitro anti-inflammatory
activity of a series of diphenylthiazole–thiazolidinone hybrids. The evaluation of COX-1/COX-2
inhibitory potency revealed that, in general, all compounds demonstrated moderate to high activity.
It was shown that the potency of compounds depends on the substituent on the thiazolidinone
ring. Thus, replacement of five membered thiophene ring with pyridine or phenyl rings significantly
increased the COX-1 inhibitory activity and selectivity.

Consequently, compounds 22a and 22b (Figure 24) appeared to be the most potent COX-1
inhibitors with IC50 values of 3.51 and 2.03 µM, respectively. The introduction of the bulky naphthyl
group in position 5 of thiazolidinone ring resulted in compound 22c (Figure 24) with strong COX-2
inhibition (IC50 = 3.84 µM). These in vitro results are in accordance with results of in vivo experiments
and molecular docking.
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As part of their ongoing studies on the synthesis of safe anti-inflammatory agents,
Abdellatif et al. [97] designed and synthesized two series of new thiazolidin-4-ones as potential COX-2
selective inhibitors. Among the synthesized compounds, 23a and 23b (Figure 25) exhibited in general,
the strongest in vitro COX-2 potential (IC50s 2.3 and 1.9 µM, respectively) and selectivity (SIs 4.56 and
5.68, respectively). Nevertheless, these two compounds showed good COX-1 inhibitory activity (IC50s
10.5 and 10.8 µM, respectively) as well. It should be noted that these results were in agreement with
in vivo and molecular docking data.
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Ashour et al. [98] presented the synthesis and evaluation of in vitro/in vivo anti-inflammatory
activity of new pyrazolyl benzenesulfonamides linked to polysubstituted pyrazoles and
thiazolidinones. Among these two series of compounds, thiazolidinone derivatives and specifically
compounds 24a and 24b (Figure 26) appeared to be the most potent COX-1/COX-2 inhibitors (IC50s
5.6/1.52 and 4.5/1.06 µM, SIs 3.68 and 4.24, respectively). It should be mentioned that, in general,
the enzymatic inhibitory activity coincided with the results of the rat paw edema assay.
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Fourteen 2-imino-4-thiazolidinone derivatives have been synthesized and evaluated by
Ali et al. [99] for their in vivo anti-inflammatory activity. In order to elucidate the mechanism of
action, docking on the COX-2 enzyme has been performed for all compounds. Based on docking
results, three compounds, 25a, 25b and 25c (Figure 27) were chosen for testing their COX-1/COX-2
inhibitory activity. The evaluation revealed that compound 25c, with the highest anti-inflammatory
activity and best glide energy among these three, appeared to also be the strongest COX-2 inhibitor
with IC50 = 3.29 µM and SI = 29.00.
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Geronikaki et al. [100] used docking analysis to predict the effectiveness of new designed
compounds (26a–26k, Figure 28) by insertion of adamantanyl moiety to previously synthesized
and tested as COX/LOX inhibitors 2-thiazolylimino-5-arylidene-4-thiazolidinones [89]. It was found
that compound 26c had the best estimated binding energies to LOX and COX-2 (−12.57 kcal/mol and
−12.54 kcal/mol), while the best estimated binding energy to COX-1 was observed for compound
26d (−12.13 kcal/mol). It should be mentioned that, in all seven pairs of previously synthesized and
new adamantanyl derivatives (26a–26f and 26i), the estimated binding energy of the adamantanyl
derivatives was lower than that of the non-substituted analogues for all three enzymes, showing a
better predicted activity for the adamantanyl compounds.
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Figure 28. Chemical structures of 4-adamantanyl-2-thiazolylimino-5-arylidene-4-thiazolidinones.

Moreover, new adamantanyl derivatives, 26g and 26h were designed and evaluated using
docking analysis. These two compounds did not have pairs with previous synthesized compounds.
It was found that their predicted binding energies to COX and LOX enzymes was low, especially for
compound 26g (−12.22 kcal/mol). The evaluation of LOX inhibitory activity revealed that compounds
26c–26e, 26g, 26h and 26k exhibited good activity with IC50s 38, 98, 45, 34, 60 and 56 µM, respectively.
As far as COX-1 inhibition is concerned, the best activity was found to possess compounds 26d and 26b
(IC50s 39 µM and 50 µM respectively). Thus, experimental results coincide with docking, confirming
the rational design of these thiazolidinone derivatives.

4. SAR

The analysis of the structure–activity relationship of thiazole derivatives used in this review
revealed that thiazole based thiazolidinones were moderate to good COX-1/LOX inhibitors. The most
favorable substituents in benzene ring appeared to be 4-NO2, 3-NO2 and 3-Cl. Introduction of a methyl
group in positions 4 and 5 of thiazole rings led to compounds with only COX-1 inhibitory activity.
LOX activity was lost. The introduction of adamantanyl substituent in position 4 of thiazole ring
showed good LOX inhibitory activity. Furthermore, the presence of 2-NO2, 4-NO2, 3-Cl, 4-Cl and
4-OH-3,5-OMe substituents in benzene rings increased LOX inhibition compared to unsubstituted
rings. Introduction of 2 phenyl rings in positions 4,5 of thiazole rings led to COX-1/COX-2
inhibitors with the prevalence of COX-2 inhibition. The best activity against COX-2 was observed
for compounds with bulky naphthalene group. Thiazolidinone derivatives with hydrazinocarbonyl
pyrazolo benzensulfonamide group led to compounds with good COX-2 and moderate COX-1 potency.
Introduction of phenylin position 4 of thiazolidin-4-one as well as benzensulfonamide group linked to
nitrogen of the ring resulted in compounds with good COX-2 and moderate COX-1 activity. Linkage
of two 3,4-dimethoxyphenylthiazolidine-4-one molecules together through the ethane link resulted in
good COX-2 inhibitors with a high COX-1/COX-2 selectivity index.

The benzothiazole based thiazolidinones were much better as COX-1 inhibitors compared to
thiazole-based thiazolidinones as well as better LOX inhibitors. The most favorable substituents on the
benzene ring for COX-1 inhibition were 2-Cl, 4-Cl and 4-NO2,, while, for LOX, the substituents that
improved activity were 2-NO2, 3-OH, 4-OH, 4-OMe, 4-OH, 3-OMe and 4-OH, 3,5-OMe. Replacement
of the benzothiazole ring with benzoisothiazole resulted in less active compounds as COX-1 inhibitors,
but substituents 2-NO2, 4-NO2, 4-Cl, 4-OH and 4-OH-3-OMe substantially increased the LOX activity.
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It was observed that, in general, the hybride molecules with thiazole and other heterocycles
with bulky and lipophilic substituents expressed good COX-2 inhibitory potency. The same good
activity resulted from a combination of thiazole with celecoxib, as well as phenyl substituted fused
thiazole derivatives.

5. Conclusions

Over recent decades, much effort was dedicated to the development of new COX/LOX inhibitors.
Specifically, there is a significant amount of publications concerning the synthesis and evaluation of
thiazoles and thiazolidinones with potential COX/LOX inhibitory activity. Nevertheless, although
a great amount of synthesized compounds were found to be potent as COX/LOX inhibitors, only a
portion of them revealed a safer pharmacological profile, compared to marketed anti-inflammatory
drugs. However, from the above-mentioned studies, it is clear that thiazole and thiazolidinone
derivatives can be promising targets for future research in the field of COX/LOX inhibitors in order to
discover new, more effective and safer anti-inflammatory drugs.
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