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Abstract: A simple and efficient methodology for the nucleophilic aromatic substitution of
nitrogen-containing fused heterocycles with interesting biological activities has been developed
in an environmentally sound manner using polyethylene glycol (PEG-400) as the solvent, leading to
the expected compounds in excellent yields in only five minutes.

Keywords: PEG-400; nucleophilic aromatic substitution; nitrogen fused heterocycles

1. Introduction

Environmentally sustainable practices are increasingly being taken into consideration in
medicinal chemistry and applied as far as possible by the various pharmaceutical companies and
laboratories [1–3]. It is therefore necessary to provide chemists with effective methods for the
development of complex structures under mild and green conditions. Green chemistry refers to
the design of a process that minimizes the use and generation of hazardous substances [4]. As pointed
out in [5–7], the solvent often represents the major part of the mass used in a reaction or a process,
and chemists are therefore encouraged to use greener alternatives [8–11]. In this context, polyethylene
glycols (PEGs), compounds with widespread industrial and medical applications [12,13], have attracted
special attention as green solvents in various chemical transformations [14–16]. These rather
inexpensive polymers are available in a wide range of molecular weights and are mainly produced from
ethylene glycol, a by-product of the petrochemical industry, but can also be obtained from agricultural
waste [17]. PEG400 is a viscous sustainable liquid soluble in water and many organic solvents. It has
the advantage of being readily biodegradable as well as non-toxic, odourless, neutral, non-volatile,
and non-irritating, which explains its use in a variety of pharmaceuticals and medications [12,13,18].

Substituted pyrimidine and pyrazine derivatives are a significant class of nitrogen-fused
heterocycles, which are ubiquitous in many natural products and biologically active compounds
in agrochemistry as well as in the pharmaceutical area. Over the past few decades, more and more
drugs with fused bicyclic pyrimidine and pyrazine scaffolds have been approved by the Food and Drug
Administration (FDA) for their significant biological activities, such as antitumor activities [19–21]
and insomnia disorder [22]. In the major cases, the fused bicyclic pyrimidines exhibit an anticancer
function by targeting different kinases [20,21], such as epidermal growth factor receptor (EGFR),
Bruton’s tyrosine kinase (BTK), Janus kinase (JAK), and phosphatidylinositol 3 kinase (PI3K), (Figure 1).
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Figure 1. Structures of some Food and Drug Administration (FDA) approved drugs with the bicyclic 
scaffold reported in this article. 

These compounds play an important role in drug discovery and development [23,24]. In view 
of our interest in the development of green chemistry procedures [25–34], we report herein the use of 
PEG400 as an efficient medium for nucleophilic aromatic substitution (SNAr) of some nitrogen-
containing fused heterocycles with various amines. SNAr involving amines have been carried out and 
studied in conventional organic solvents [35–39] but also in non-volatile alternative media such as 
ionic liquids [40–44], but, to the best of our knowledge, this reaction has never been reported using 
PEG as the solvent. 

2. Results and Discussion 

For this study the chloro compounds were chosen as starting materials. In all cases the reactions 
were conducted without additional base and the results obtained are given by class of heterocycles. 
In the first attempts, we explored the temperature parameter, however attempts performed below 
120 °C did not give the desired product and this was consistent for all the scaffolds chosen as the 
starting material. This is likely due to the poor solubility problem of the reagents at temperatures 
below 120 °C. 

2.1. From 4-Chloro-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile 

Commercially available 4-chloro-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile was reacted 
with various primary or secondary amines in PEG 400 as the solvent without additional base, initially 
at room temperature. However, these conditions were not appropriate due to the lack of solubility of 
the mixture of starting materials. At 120 °C, all the reactants were soluble and we were pleased to 
observed the formation of 2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile with an amino group in 
position 4 within only 5 min. 

Figure 1. Structures of some Food and Drug Administration (FDA) approved drugs with the bicyclic
scaffold reported in this article.

These compounds play an important role in drug discovery and development [23,24]. In view
of our interest in the development of green chemistry procedures [25–34], we report herein the
use of PEG400 as an efficient medium for nucleophilic aromatic substitution (SNAr) of some
nitrogen-containing fused heterocycles with various amines. SNAr involving amines have been
carried out and studied in conventional organic solvents [35–39] but also in non-volatile alternative
media such as ionic liquids [40–44], but, to the best of our knowledge, this reaction has never been
reported using PEG as the solvent.

2. Results and Discussion

For this study the chloro compounds were chosen as starting materials. In all cases the reactions
were conducted without additional base and the results obtained are given by class of heterocycles.
In the first attempts, we explored the temperature parameter, however attempts performed below
120 ◦C did not give the desired product and this was consistent for all the scaffolds chosen as the
starting material. This is likely due to the poor solubility problem of the reagents at temperatures
below 120 ◦C.

2.1. From 4-Chloro-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile

Commercially available 4-chloro-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile was reacted
with various primary or secondary amines in PEG 400 as the solvent without additional base, initially at
room temperature. However, these conditions were not appropriate due to the lack of solubility of
the mixture of starting materials. At 120 ◦C, all the reactants were soluble and we were pleased to
observed the formation of 2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile with an amino group in
position 4 within only 5 min.

Compounds 2 to 6 were obtained with good yields (81 to 95%). The lowest yield (70%, entry 6,
compound 1) is due to the strong electro-withdrawing effect of the trifluoromethyl group in the
ortho position of the aniline, which is an amine that is already less nucleophilic than aliphatic
amines (Scheme 1, Table 1). PEG-400 is a very effective solvent to generate these amino substituted
heterobicyclic compounds which can be used as fungicides [45].
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Table 1. Results of the SNAr on 4-chloro-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile with
various amines.

Entry Amine Reagent Product Yield
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These reaction conditions with amine derivative (2 equiv.) in PEG 400 at 120 ◦C for 5 min were
applied to other nitrogen-containing fused heterocycles.

2.2. From 7-Chloro-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine

[1,2,4]Triazolo[1,5-a]pyrimidines are a highly interesting class of fused heterocycles due to
their valuable biological properties. Some [1,2,4]-triazolo[1,5-a]pyrimidines possess herbicidal
activity [46,47], while others can act as antifungal [48,49], antitubercular [50,51] and antibacterial [52]
agents. Polycyclic systems containing a [1,2,4]triazolo[1,5-a]-pyrimidine moiety are reported as
antitumor agents [53,54], as corticotropin releasing factor 1 receptor antagonists [55] or calcium
channel modulators [56] and they can also be used for the treatment of Alzheimer’s disease [57] and
insomnia [58].

The commercially available 7-chloro-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine was submitted
to the same conditions as 4-chloro-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile in PEG-400 as
solvent at 120 ◦C without additional base. In this case also we were able to synthesize the desired
compounds 7 to 10 in only 5 min in good yields (Scheme 2, Table 2).
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2.3. From 8-Chloro-[1,2,4]triazolo[4,3-a]pyrazine

The fused triazole-moiety can be found in a variety of biologically active compounds including
antibacterial [59], anti-inflammatory [60,61], antimicrobial [62], antiplatelet [63], anticonvulsant and
antidiabetic [64] agents. In particular, bicyclic fused 1,2,4-triazole derivatives are an important
group of heterocycles and have been the subject of studies from various academic and industrial
groups in the recent past due to their biological versatility [65]. The commercially available
8-chloro-[1,2,4]triazolo[4,3-a]pyrazine underwent the analogue nucleophilic aromatic substitution
in the same conditions with various amines, leading to the expected compounds in good yields
(73% to 99%). The reactions were rapid as for the previous examples (Scheme 3, Table 3).
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various disease conditions. Thieno[2,3-d]pyrimidine derivatives have been explored for their inhibitory
activities towards various protein kinase enzymes [66]. Furopyrimidine heterocyclic ring systems are
structural analogues of purines which have been subjected to biological investigations to assess their
potential therapeutic usefulness [67]. Furopyrimidines have attracted considerable attention because
of their great practical potential as antiviral [68–70], antimicrobial [71] and antitumor agents [72,73].
Starting from commercially available 4-chlorofuro and thieno[3,2-d]pyrimidine we obtained the same
results, good to excellent yields (71% to 99%), for the desired compounds 15 to 24 under the same
conditions (Scheme 4, Table 4).
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3. Materials and Methods

3.1. General Methods

All reagents were purchased from commercial suppliers and were used without further
purification. THF was dried with a GT S100 drying station immediately prior to use. The reactions were
monitored by thin-layer chromatography (TLC) analysis using silica gel (60 F254) plates. Compounds
were visualized by UV irradiation. Flash column chromatography was performed on silica gel
60 (230–400 mesh, 0.040–0.063 mm). Melting points (mp (◦C)) were taken on samples in open capillary
tubes and are uncorrected. The infrared spectra of compounds were recorded on a Nicolet iS10
spectrophootometer (Thermo Scientific, Villebon-sur-Yvette, France). 1H- and 13C-NMR spectra were
recorded on an Avance II spectrometer at 250 MHz (13C, 62.9 MHz) and on an Avance III HD nanobay
400 MHz (13C 100.62 MHz) (Bruker, Wissembourg, France). Chemical shifts are given in parts per
million from tetramethylsilane (TMS) or deuterated solvent (MeOH-d4, Chloroform-d) as internal
standard. The following abbreviations were used for the proton spectra multiplicities: b: broad,
s: singlet, d: doublet, t: triplet, q: quartet, p: pentuplet, m: multiplet. Coupling constants (J) are
reported in Hertz (Hz). High-resolution mass spectra (HRMS (ESI)) were performed on a Maxis Bruker
4G by the “Federation de Recherche” ICOA/CBM (FR2708) pFlatform.

3.2. General Procedure for the Synthesis of 1 to 24

A mixture of chloro compound (50 mg) and amine derivative (2 equiv.) in PEG 400 (2 mL) was
stirred at 120 ◦C for 5 min. After completion the reaction was then cooled to room temperature.
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DCM and water were added and the phases were separated. The aqueous phase was extracted with
DCM and the organic phase was dried and filtered. The removal of solvent gave the product as a
white solid.

2-Methyl-4-(piperidin-1-yl)imidazo[1,5-a]pyrimidine-8-carbonitrile (1) [74]. From 4-chloro-2-methyl-
imidazo[1,5-a]pyrimidine-8-carbonitrile (50 mg; 0.260 mmol) and piperidine (44 mg; 0.520 mmol),
(54 mg, 87%), m.p 164–166 ◦C. 1H-NMR (250 MHz, CDCl3) δ 1.74–1.81 (m, 6H), 2.51 (s, 3H),
3.25–3.29 (m, 4H), 6.04 (s, 1H), 7.80 (s, 1H) ppm. 13C-NMR (63 MHz, CDCl3) δ 24.0 (2xCH), 25.2 (2xCH),
50.4 (2xCH), 96.5 (CH), 100.8 (C), 115.1 (C), 123.8 (CH), 145.9 (C), 149.5 (C), 162.7 (C) ppm.

2-Methyl-4-morpholinoimidazo[1,5-a]pyrimidine-8-carbonitrile (2). From 4-chloro-2-methylimidazo[1,5-
a]pyrimidine-8-carbonitrile (50 mg; 0.260 mmol) and morpholine ( 45 mg; 0.520 mmol), (58 mg, 92%),
m.p 178–180 ◦C. 1H-NMR (250 MHz, CDCl3) δ 2.60 (s, 3H), 3.29–3.32 (m, 4H), 3.94–3.98 (m, 4H),
6.11 (s, 1H), 7.88 (s, 1H) ppm. 13C-NMR (63 MHz, CDCl3) δ 25.2 (CH), 49.5 (2xCH), 66.0 (2xCH),
96.9 (CH), 100.0 (C), 114.7 (C), 123.4 (CH), 145.6 (C), 148.8 (C), 162.6 (C) ppm. HRMS: calcd for
C12H14N5O [M + H]+ 244.1193, found 244.1192.

4-((2R,6S)-2,6-Dimethylmorpholino)-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile (3). From 4-chloro-2-
methylimidazo[1,5-a]pyrimidine-8-carbonitrile (50 mg; 0.260 mmol) and cis-2,6-dimethyl-morpholine
(60 mg; 0.520 mmol), (67 mg, 95%), m.p 252–254 ◦C. 1H-NMR (400 MHz, CDCl3) δ 1.27 (d, J = 6.3 Hz,
6H), 2.56 (s, 3H), 2.68–2.73 (m, 2H), 3.44 (d, J = 11.8 Hz, 2H), 3.91–3.95 (m, 2H), 6.08 (s, 1H),
7.84 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3) δ18.7 (2xCH), 25.2 (CH), 54.5 (2xCH), 71.1 (2xCH),
96.9 (CH), 101.4 (C), 114.8 (C), 123.5 (CH), 145.7 (C), 148.4 (C), 162.7 (C) ppm. HRMS: calcd for
C14H18N5O [M + H]+ 272.1506, found 272.1503.

4-(Dibutylamino)-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile (4) [74]. From 4-chloro-2-methyl-
imidazo[1,5-a]pyrimidine-8-carbonitrile (50 mg; 0.260 mmol) and di-n-butylamine (67 mg; 0.520 mmol),
(60 mg, 81%), m.p 145–147 ◦C. 1H-NMR (250 MHz, CDCl3) δ 0.9 (t, J = 7.3 Hz, 6H),1.22–1.38 (m, 4H),
1.53–1.65 (m, 4H), 2.51 (s, 3H), 3.29–3.35 (m, 4H), 6.01 (s, 1H), 7.85 (s, 1H) ppm. 13C-NMR (63 MHz,
CDCl3) δ 13.7 (2xCH), 20.1 (2xCH), 25.1 (CH), 29.0 (2xCH), 50.2 (2xCH), 96.9 (CH), 100.6 (C), 115.2 (C),
123.9 (CH), 146.6 (C), 148.2 (C), 162.3 (C) ppm.

4-(((3s,5s,7s)-Adamantan-1-yl)amino)-2-methylimidazo[1,5-a]pyrimidine-8-carbonitrile (5). From 4-chloro-2-
methylimidazo[1,5-a]pyrimidine-8-carbonitrile (50 mg; 0.260 mmol) and adamantylamine (78 mg;
0.520 mmol), (68 mg, 85%), m.p 293–295 ◦C. 1H-NMR (400 MHz, CDCl3) δ 1.74–1.81 (m, 6H),
2.13 (s, 6H), 2.25 (s, 3H), 2.54 (s, 3H), 4.88 (s, 1H), 6.03 (s, 1H), 7.90 (s, 1H) ppm. 13C-NMR (100.6 MHz,
CDCl3) δ 25.6 (CH), 29.4 (3xCH), 35.9 (2xCH), 41.8 (3xCH), 54.07 (C), 80.0 (CH), 90.3 (CH), 100.2 (C),
115.3 (C), 120.2 (CH), 142.12 (C), 145.9 (C), 161.93 (C) ppm. HRMS: calcd for C18H22N5 [M + H]+

308.1869, found 308.1870.

2-Methyl-4-((2-(trifluoromethyl)phenyl)amino)imidazo[1,5-a]pyrimidine-8-carbonitrile (6). From 4-chloro-2-
methylimidazo[1,5-a]pyrimidine-8-carbonitrile (50 mg; 0.260 mmol) and 2-trifluoromethylaniline
(83 mg; 0.520 mmol), (57 mg, 70%), m.p 205–207 ◦C. 1H-NMR (400 MHz, CDCl3) δ 2.23 (s, 3H),
5.25 (s, 1H), 6.94 (d, J = 7.9 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 7.8 Hz,
1H), 8.25 (s, 1H), 10.30 (s, 1H) ppm.13C-NMR (100.6 MHz, CDCl3) δ 19.0 (CH), 90.6 (CH), 92.4 (C),
114.9 (C), 122.1 (CH), 123.4 (CH), 126.8 (C), 126.9 (CH), 126.9 (C), 127.5 (CH), 132.7 (CH), 139.2 (C),
143.5 (C), 146.2 (C), 146.4 (C) ppm. 19F-NMR (376 MHz, CDCl3) δ −61.9 ppm. HRMS: calcd for
C15H11F3N5 [M + H]+ 318.0961, found 318.0964.

5-Methyl-7-(piperidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidine (7) [75]. From 7-chloro-5-methyl-[1,2,4]triazolo
[1,5-a]pyrimidine (50 mg; 0.297 mmol) and piperidine (50 mg; 0.594 mmol), (51 mg, 79%),
m.p 153–155 ◦C. 1H-NMR (400 MHz, CDCl3) δ 1.71–1.79 (m, 6H), 2.52 (s, 3H), 3.62 (s, 1H),
3.71–3.75 (m, 3H), 6.09 (s, 1H), 8.24 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3) δ24.2 (CH), 25.1 (2xCH),
25.4 (CH), 49.4 (2xCH), 94.4 (CH), 150.4 (C), 154.0 (CH), 157.3 (C), 164.5 (C) ppm.
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4-(5-Methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)morpholine (8) [76]. From 7-chloro-5-methyl-[1,2,4]triazolo
[1,5-a]pyrimidine (50 mg; 0.297 mmol) and morpholine (52 mg; 0.594 mmol), (57 mg, 88%),
m.p 164–166 ◦C. 1H-NMR (400 MHz, methanol-d4) δ 2.55 (s, 3H), 3.90 (s, 8H),6.49 (s, 1H),
8.32 (s, 1H) ppm. 13C-NMR (100.6 MHz, methanol-d4) δ 23.3 (CH), 65.9 (4xCH), 94.4 (CH), 150.4 (C),
152.9 (CH), 156.7 (C), 165.5 (C) ppm.

(2R,6S)-2,6-Dimethyl-4-(5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)morpholine (9). From 7-chloro-5-
methyl-[1,2,4]triazolo[1,5-a]pyrimidine (50 mg; 0.297 mmol) and cis-2,6-dimethyl-morpholine (68 mg;
0.594 mmol), (65 mg, 89%), m.p 166–168 ◦C. 1H-NMR (250 MHz, CDCl3) δ 1.26 (d, J = 6.3 Hz, 6H),
2.56 (s, 3H), 2.67–2.76 (m, 2H), 3.84–3.95 (m, 2H), 4.35 (d, J = 11.6 Hz, 2H), 6.11 (s, 1H), 8.27 (s, 1H) ppm.
13C-NMR (63 MHz, CDCl3) δ 18.8 (2xCH), 25.2 (CH), 53.1 (2xCH), 71.2 (2xCH), 94.4 (CH), 149.9 (C),
154.2 (CH), 157.2 (C), 164.9 (C) ppm. CAS: 950030-11-2; Distributor Name: Aurora Fine Chemicals Ltd.,
A-8010 Graz, Austria.

N,N-Di butyl-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (10). (69 mg, 88%), m.p 130–132 ◦C.
1H-NMR (400 MHz, CDCl3) δ 0.94 (t, J = 7.4 Hz, 6H), 1.33–1.39 (m, 4H), 1.66 (s, 2H), 2.50 (s, 3H),
3.64 (s, 2H), 3.74–3.78 (m, 4H), 5.90 (s, 1H), 8.18 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3) δ

13.8 (2xCH), 20.0 (2xCH), 25.1 (CH), 30.1 (CH), 51.6 (2xCH), 70.5 (CH), 92.3 (CH), 149.1 (C), 153.7 (CH),
157.9 (C), 163.7 (C) ppm. HRMS: calcd for C14H24N5 [M + H]+ 262.2026, found 262.2027.

8-(Piperidin-1-yl)-[1,2,4]triazolo[4,3-a]pyrazine (11). From 8-chloro-[1,2,4]triazolo[4,3-a]pyrazine (50 mg;
0.323 mmol) and piperidine (55 mg; 0.646 mmol), (61 mg, 92%), m.p 180–182 ◦C. 1H-NMR (400 MHz,
CDCl3) δ 1.68 (s, 6H), 4.24 (s, 4H), 7.25 (d, J = 4.5 Hz, 1H), 7.36 (d, J = 4.5 Hz, 1H), 8.68 (s, 1H) ppm.
13C-NMR (100.6 MHz, CDCl3) δ 24.7 (CH), 26.2 (2xCH), 47.4 (2xCH), 106.0 (CH), 129.8 (CH), 136.6 (CH),
140.5 (C), 147.9 (C) ppm. CAS:1878022-44-6; Distributor Name: Sigma-Aldrich, F 38297 Saint-Quentin
Fallavier, France.

(2R,6S)-4-([1,2,4]Triazolo[4,3-a]pyrazin-8-yl)-2,6-dimethylmorpholine (12). From 8-chloro-[1,2,4]-triazolo
[4,3-a]pyrazine (50 mg; 0.323 mmol) and cis-2,6-dimethyl-morpholine (74 mg; 0.646 mmol), (74 mg,
99%), m.p 172–174 ◦C. 1H-NMR (400 MHz, CDCl3) δ 1.22 (d, J = 6.3 Hz, 6H), 2.73–2.81 (m, 2H),
3.57–3.59 (m, 1H), 3.66–3.73 (m, 2H), 5.33 (s, 1H), 7.27 (d, J = 4.5 Hz, 1H), 7.41 (d, J = 4.5 Hz, 1H),
8.71 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3) δ 18.8 (2xCH), 71.9 (2xCH), 106.8 (CH), 129.5 (CH),
136.7 (CH), 140.3 (C), 147.7 (2xCH), 160.6 (C) ppm. CAS: 2127319-44-0; Distributor Name: Aurora Fine
Chemicals Ltd., A-8010 Graz, Austria.

N,N-Dibutyl-[1,2,4]triazolo[4,3-a]pyrazin-8-amine (13). From 8-chloro-[1,2,4]triazolo[4,3-a]pyrazine
(50 mg; 0.323 mmol) and di-n-butylamine (83 mg; 0.646 mmol),(58 mg, 73%), m.p 106–108 ◦C. 1H-NMR
(400 MHz, CDCl3) δ 0.92 (t, J = 7.4 Hz, 6H), 1.34–1.41 (m, 4H), 1.67 (t, J = 7.7 Hz, 4H), 4.00 (s, 4H),
7.27 (d, J = 4.5 Hz, 1H), 7.32 (d, J = 4.5 Hz, 1H), 8.67 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3)
δ14.0 (3xCH), 20.1 (2xCH), 30.4 (CH), 49.5 (2xCH), 105.3 (CH), 130.1 (CH), 136.5 (CH), 140.4 (C),
148.0 (C) ppm. HRMS: calcd for C13H22N5 [M + H]+ 248.1870, found 248.1871.

N-(2-(Trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-a]pyrazin-8-amine (14). From 8-chloro-[1,2,4]triazolo-
[4,3-a]pyrazine (50 mg; 0.323 mmol) and 2-trifluoromethylaniline (104 mg; 0.646 mmol), (68 mg, 75%),
m.p 169–171 ◦C. 1H-NMR (400 MHz, CDCl3) δ 7.29 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 4.7 Hz, 1H),
7.60 (d, J = 4.7 Hz, 1H), 7.63 (t, J = 7.9 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 8.39 (s, 1H), 8.53 (d, J = 8.3 Hz,
1H), 8.82 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3) δ109.2 (CH), 121.0 (C), 124.3 (2xCH), 125.4 (C),
126.6 (CH), 129.2 (CH), 132.7 (CH), 135.6 (C), 137.4 (CH), 139.2 (C), 145.4 (C) ppm. 19F-NMR (376 MHz,
CDCl3) δ −60.7 ppm. HRMS: calcd for C12H9F3N5 [M + H]+ 280.0805, found 280.0805.

4-(Piperidin-1-yl)furo[3,2-d]pyrimidine (15). From 4-chlorofuro[3,2-d]pyrimidine (50 mg; 0.323 mmol)
and piperidine (55 mg; 0.646 mmol), (65 mg, 99%), m.p 140–142 ◦C. 1H-NMR (400 MHz, CDCl3) δ
1.64–1.73 (m, 6H), 3.94–3.98 (m, 4H), 6.80 (d, J = 2.2 Hz, 1H), 7.68 (d, J = 2.2 Hz, 1H), 8.41 (s, 1H)
ppm.13C-NMR (100.6 MHz, CDCl3) δ 24.7 (CH),26.0 (2xCH), 46.3 (2xCH), 107.8 (CH), 134.4 (C),
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147.1 (CH), 148.4 (C), 151.0 (C), 153.4 (CH) ppm. HRMS: calcd forC11H14N3O [M + H]+ 204.1131,
found 204.1135.

4-(Piperidin-1-yl)thieno[3,2-d]pyrimidine (16). From 4-chlorothieno[3,2-d]pyrimidine (50 mg; 0.293 mmol)
and piperidine (50 mg; 0.586 mmol), (55 mg, 86%), m.p 154–156 ◦C. 1H-NMR (400 MHz, CDCl3)
δ 1.10–1.61 (m, 6H), 3.87–3.90 (m, 4H), 7.33 (d, J = 5.6 Hz, 1H), 7.62 (d, J = 5.6 Hz, 1H), 8.49 (s, 1H) ppm.
13C-NMR (100.6 MHz, CDCl3) δ 24.7 (CH), 26.1 (2xCH), 47.4 (2xCH), 114.2 (C), 125.1 (CH), 131.1 (CH),
154.2 (CH), 157.8 (C), 161.0 (C) ppm. CAS: 679394-37-7; Distributor Name: SIA Enamine, LV-1035
Riga, Latvia.

4-Morpholinofuro[3,2-d]pyrimidine (17). From 4-chlorofuro[3,2-d]pyrimidine (50 mg; 0.323 mmol) and
morpholine (56 mg; 0.646 mmol), (65 mg, 99%), m.p 185–187 ◦C. 1H-NMR (400 MHz, CDCl3)
δ 3.81–3.85 (m, 4H), 4.00–4.04 (m, 4H), 6.84 (d, J = 2.2 Hz, 1H), 7.72 (d, J = 2.2 Hz, 1H), 8.46 (s, 1H) ppm.
13C-NMR (101 MHz, CDCl3) δ 45.5 (2xCH), 66.84 (2xCH), 107.96 (CH), 134.3 (C), 147.6 (CH), 148.43 (C),
151.5 (C), 153.3 (CH) ppm. HRMS: calcd for C10H12N3O2 [M + H]+ 206.0924, 206.0926 found.

4-(Thieno[3,2-d]pyrimidin-4-yl)morpholine (18) [77]. From 4-chlorothieno[3,2-d]pyrimidine (50 mg;
0.293 mmol) and morpholine (51 mg; 0.586 mmol), (58 mg, 90%), m.p 141–143 ◦C. 1H-NMR (400 MHz,
CDCl3) δ 3.78–3.82 (m, 4H), 3.91–3.97 (m, 4H), 7.39 (d, J = 5.6 Hz, 1H), 7.69 (d, J = 5.6 Hz, 1H),
8.56 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3) δ 46.3 (2xCH), 66.7 (2xCH), 114.4 (C), 125.3 (CH),
131.5 (CH), 154.2 (CH), 158.2 (C), 161.6 (C) ppm.

(2R,6S)-2,6-Dimethyl-4-(thieno[3,2-d]pyrimidin-4-yl)morpholine (19). From 4-chlorothieno[3,2-d]pyrimidine
(50 mg; 0.293 mmol) and cis-2,6-dimethyl-morpholine (67 mg; 0.586 mmol), (60 mg, 83%),
m.p 142–144 ◦C. 1H 1H-NMR (400 MHz, CDCl3) δ 1.25 (d, J = 6.3 Hz, 6H), 2.79–2.85 (m, 2H),
3.61–3.73 (m, 2H), 4.60 (d, J = 13.0 Hz, 2H), 7.39 (d, J = 5.6 Hz, 1H), 7.69 (d, J = 5.6 Hz, 1H), 8.54 (s, 1H)
ppm. 13C-NMR (100.6 MHz, CDCl3) δ18.8 (2xCH), 51.3 (2xCH), 71.8 (2xCH), 114.3 (C), 125.2 (CH),
131.5 (CH), 154.1 (CH), 157.8 (C), 161.3 (C) ppm. CAS: 676119-22-5; Distributor Name: Aurora Fine
Chemicals Ltd., A-8010 Graz, Austria.

N,N-Dibutylthieno[3,2-d]pyrimidin-4-amine (20). From 4-chlorothieno[3,2-d]pyrimidine (50 mg;
0.293 mmol) and di-n-butylamine (76 mg; 0.586 mmol), (74 mg, 96%), m.p 121–123 ◦C. 1H-NMR
(400 MHz, CDCl3) δ 0.92 (t, J = 7.4 Hz, 6H), 1.32–1.40 (m, 4H), 1.64 (dd, J = 6.6, 16.9 Hz, 4H),
3.64–3.68 (m, 4H), 7.31 (d, J = 5.6 Hz, 1H), 7.62 (d, J = 5.6 Hz, 1H), 8.45 (s, 1H) ppm. 13C-NMR
(100.6 MHz, CDCl3) δ 13.9 (2xCH), 20.1 (2xCH), 30.8 (2xCH), 49.3 (2xCH), 113.3 (C), 124.9 (CH),
130.9 (CH), 154.3 (CH), 157.5 (C), 160.6 (C) ppm. HRMS: calcd for C14H22N3S [M + H]+ 264.1529,
found 264.1532.

N-((3s,5s,7s)-Adamantan-1-yl)thieno[3,2-d]pyrimidin-4-amine (21). From 4-chlorothieno[3,2-d]-pyrimidine
(50 mg; 0.293 mmol) and adamantylamine (88 mg; 0.586 mmol), (64 mg, 77%), m.p 238–240 ◦C.
1H-NMR (400 MHz, CDCl3) δ 1.70–1.77 (m, 6H), 2.14 (s, 3H), 2.24 (d, J = 2.6 Hz, 6H), 4.52 (s, 1H),
7.36 (d, J = 5.4 Hz, 1H), 7.61 (d, J = 5.4 Hz, 1H), 8.57 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3)
δ29.6 (3xCH), 36.4 (3xCH), 41.9 (3xCH), 53.6 (C), 115.6 (C), 125.6 (CH), 129.7 (CH), 154.6 (CH), 156.9 (C),
159.5 (C) ppm. HMRS: calcd for C16H20N3S [M + H]+ 286.1372, found 286.1375.

N-(2-(Trifluoromethyl)phenyl)thieno[3,2-d]pyrimidin-4-amine (22). From 4-chlorothieno[3,2-d]-pyrimidine
(50 mg; 0.293 mmol) and 2-trifluoromethylaniline(94 mg; 0.586 mmol), (61 mg, 71%), m.p 122–124 ◦C.
1H-NMR (400 MHz, CDCl3) δ7.37 (t, J = 7.7 Hz, 1H), 7.45 (d, J = 5.4 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H),
7.71–7.75 (m, 2H), 7.99 (d, J = 8.1 Hz, 1H), 8.70 (s, 1H), ppm. 13C-NMR (100.6 MHz, CDCl3) δ122.5 (C),
124.2 (C), 124.5 (C), 125.1 (CH), 126.0 (CH), 126.7 (CH), 127.8 (CH), 132.6 (CH), 132.9 (CH), 135.3 (C),
154.5 (CH), 155.9 (C), 161.5 (C) ppm. 19F-NMR (376 MHz, CDCl3) δ −60.8 ppm. HRMS: calcd for
C13H9F3N3S [M + H]+ 296.0464, found 296.0467.

Methyl 4-(thieno[3,2-d]pyrimidin-4-ylamino)benzoate (23). From 4-chlorothieno[3,2-d]pyrimidine (50 mg;
0.293 mmol) and methyl 4-aminobenzoate (88 mg; 0.586 mmol), (66 mg, 79%), m.p 227–229 ◦C. 1H-NMR
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(400 MHz, CDCl3) δ 3.93 (s, 3H), 6.97 (d, J = 19.8 Hz, 1H), 7.51 (d, J = 5.4 Hz, 1H), 7.84–7.79 (m, 3H),
8.09 (d, J = 8.7 Hz, 2H), 8.82 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3) δ 29.7 (C), 52.1 (CH), 116.2 (C),
120.5 (2xCH), 125.6 (CH), 130.9 (2xCH), 132.1 (CH), 142.4 (C), 154.6 (CH), 154.9 (C), 161.2 (C), 166.6 (C)
ppm. HRMS: calcd forC14H12N3O2S [M + H] + 286.0644, found 286.0646.

N-(4-Methoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (24) [78]. From 4-chlorothieno[3,2-d]pyrimidine
(50 mg; 0.293 mmol) and methyl 4-methoxyaniline (72 mg; 0.586 mmol),(66 mg, 88%), m.p 154–156 ◦C.
1H-NMR (400 MHz, CDCl3) δ 3.85 (s, 3H), 6.93–6.95 (m, 2H), 7.36 (d, J = 5.4 Hz, 1H), 7.39–7.41 (m, 2H),
7.64 (d, J = 5.4 Hz, 1H), 7.93 (s, 1H), 8.60 (s, 1H) ppm. 13C-NMR (100.6 MHz, CDCl3) δ 55.5 (CH),
114.3 (2xCH), 114.4 (C), 124.6 (2xCH), 128.2 (CH), 129.7 (C), 133.2 (CH), 154.6 (CH), 157.3 (C), 158.6 (C),
161.2 (C) ppm.

4. Conclusions

We have developed an efficient, environmentally sound method for the nucleophilic
aromatic substitution in PEG400 of chlorine atoms by primary and secondary amines on various
nitrogen-containing fused heterocycles. The salient feature of our method is the facile introduction
of amino derivatives on commercially available starting materials in an environmentally friendly
alternative solvent. Several precursors of potential biologically active compounds have been
synthetized in good to excellent yields and the conditions used are applicable to a large panel of
heterocycles and amines, with similar yields and reaction time.
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