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Abstract: Magnetite (Fe3O4) is a ferromagnetic iron oxide of both Fe(II) and Fe(III), prepared by
FeCl2 and FeCl3. XRD was used for the confirmation of Fe3O4. Via the modification of Tetraethyl
orthosilicate (TEOS), (3-Aminopropyl)trimethoxysilane (APTMS), and Alginate (AA), Fe3O4@SiO2,
Fe3O4@SiO2-NH2, and Fe3O4@SiO2-NH2-AA nanoparticles could be obtained, and IR and SEM were
used for the characterizations. Alkaloid adsorption experiments exhibited that, as for Palmatine
and Berberine, the most adsorption could be obtained at pH 8 when the adsorption time was 6 min.
The adsorption percentage of Palmatine was 22.2%, and the adsorption percentage of Berberine was
23.6% at pH 8. Considering the effect of adsorption time on liquid phase system, the adsorption
conditions of 8 min has been chosen when pH 7 was used. The adsorption percentage of Palmatine
was 8.67%, and the adsorption percentage of Berberine was 7.25%. Considering the above conditions,
pH 8 and the adsorption time of 8min could be chosen for further uses.
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1. Introduction

Although there are many pure phases of iron oxide in nature, the most popular magnetic
nanoparticles (MNPs) are the nanoscale zero-valent iron (nZVI), Fe3O4 and γ-Fe2O3. Magnetite (Fe3O4)
is a ferromagnetic black color iron oxide of both Fe(II) and Fe(III), which has been the most extensively
studied [1]. In 2001, Asher reported co-precipitation method using oleic acid as the surface modification
agent to obtain Fe3O4 nanoparticles (2–15 nm) [2]. NaOH and diethylene glycol could also be used as
the catalyst and reducing agent to fabricate Fe3O4 nanoparticles of 80–180 nm in size [3–5]. However,
Fe3O4 nanoparticles could easily aggregate due to the nanoscale effect and magnetic gravitational
effect. It is an effective method of preventing the aggregate of these nanoparticles to wrap the
surface of Fe3O4 nanoparticles. Fe3O4@SiO2 composite nanoparticles have the desirable properties of
magnetic nanoparticles while also benefiting from the SiO2 shell, such as good hydrophilicity, stability,
and biocompatibility [6–8]. In 2016, Tang reported that (3-aminopropyl)-triethoxysilane (APTES) was
used as surface modification reagents to get Fe3O4@SiO2-NH2, which could be used for selective
removal of Zn(II) ions from wastewater [9]. While Fe3O4@SiO2-NH2 nanoparticles could also be
modified to obtain mercaptoamine-functionalised silica-coated magnetic nanoparticles for the removal
of mercury and lead ions from wastewater [10]. As for the removal of ions, arsenate removal could
be achieved by calcium alginate-encapsulated magnetic sorbent, which was prepared by physical
method [11]. Superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) were used
for removal of malachite green (MG) from aqueous solutions using batch adsorption technique, and the
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Alg-Fe3O4 nanoparticles were synthesized using in situ coprecipitation of FeCl2 and FeCl3 in alkaline
solution in the presence of sodium alginate [12]. While multifunctional alginate microspheres could
also be used for biosensing, drug delivery, and magnetic resonance imaging [13]. To obtain the good
biocompatibility, Fe3O4 nanoparticles need to be modified. Fe3O4@SiO2 composite nanoparticles
have the desirable properties of good hydrophilicity. (3-Aminopropyl)trimethoxysilane (APTMS)
was used as surface modification reagents to get Fe3O4@SiO2-NH2nanoparticles. While calcium
alginate-encapsulated magnetic sorbent could be prepared by physical method. Superparamagnetic
sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) could also be synthesized using in situ
coprecipitation of FeCl2 and FeCl3 in alkaline solution in the presence of sodium alginate. Covalent
modification methods via alginate have been rarely seen. In order to investigate the effects of the
covalent alginate-modified method, alkaloid adsorption experiments were designed to study the
properties of alginate-modified Fe3O4@SiO2-NH2 nanoparticles.

2. Experimental Section

2.1. Materials and Physical Measurements

(3-Aminopropyl)trimethoxysilane (APTMS), N-Hydroxysuccinimide (NHS) and 1-(3-
Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) were purchased from Shanghai
source Biological Technology Co., Ltd. (Shanghai, China). Alginate (AA) was purchased from Solarbio
Life Science (Beijing Solarbio Biological Technology Co., Ltd., Beijing, China). All commercially
available chemicals and solvents were of reagent grade and used without further purification.
X-ray powder diffraction (XRD) intensities were measured on a Rigaku D/max-IIIA diffractometer
(Cu-Kα, λ = 1.54056 Å). Changes in morphology and size could be characterized by Scanning
Electronic Microscopy (SEM) (KAI MEIKE CHEMICAL Co., Ltd., Liaocheng, China).

XPS spectra were recorded using a Kratos Axis Ultra DLD spectrometer (KAI MEIKE CHEMICAL
Co., Ltd.) employing a monochromated Al-Kα X-ray source (hv = 1486.6 eV). The vacuum in the main
chamber was kept above 3 × 10−6 Pa during XPS data acquisitions. General survey scans (binding
energy range: 0–1200 eV; pass energy: 160 eV) and high-resolution spectra (pass energy: 40 eV) in the
regions of N1s were recorded. Binding energies were referenced to the C1s binding energy at 284.60 eV.

The adsorption data were obtained by RP-HPLC (Reversed phase high performance liquid
chromatography). The HPLC system was from Agilent Technologies 1260 Infinity (Agilent
Technologies, SantaClara, CA, USA), and was equipped with a quaternary pump and UV-Vis detector
(Agilent Technologies). The chromatographic separation was carried out on an ACE Super C18 column
(250 × 4.6 mm i.d., 5 µm, FLM, Guangzhou, China). Mobile phase consisted of 50% solution (v/v)
of acetonitrile in water (0.1% H3PO4 and 0.1% SDS). The flow rate was 1 mL/min and the column
temperature was set to 40 ◦C. The effluent was monitored at 265 nm and the injection volume was
20 µL.

2.2. Preparation and Modification of Fe3O4 Nanoparticles

Magnetite nanoparticles were prepared and modified with TEOS, APTMS, and AA to get
Fe3O4@SiO2, Fe3O4@SiO2-NH2, and Fe3O4@SiO2-NH2-AA nanoparticles, respectively (Figure 1).

2.2.1. Preparation of Fe3O4 Nanoparticles

Briefly, 7.5 mL of 0.12 M FeCl2 and 7.5 mL of 0.2 M FeCl3 solutions were mixed in a 100-mL flask.
The whole reaction system was completed under nitrogen protection. After the magnetic stirring was
uniform, the reaction system was heated to 55 ◦C, which maintained for 15 min. 7.2 mL of 3 M NaOH
solution was then added to the reaction system. The reaction system was kept at 55 ◦C for 40 min.
Then the reaction system was stirred at 90 ◦C for 30 min and cooled to room temperature. The black
precipitate was collected by magnetic decantation and washed with deionized water repeatedly until
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the washings were neutral. The obtained black precipitate was then dried over vacuum at 40 ◦C
overnight, which could be used for XRD measurement [14,15].

2.2.2. Preparation of Fe3O4@SiO2

Fe3O4 (10 mg) was acidized by HCl (0.1 mol/L) under the 100 W of ultrasound for 20 min.
The supernatant was discarded after adsorption by the magnet. The residue was washed with
ultrapure water for twice, and resuspended in ethanol/ultrapure water (20 mL:5 mL). NH3·H2O
(250 µL) was added to the samples of Fe3O4, and the mixture was reacted for 20 min under the 100 W
of ultrasound. TEOS (32 µL) was added into the samples. And then the samples were oscillated at
37 ◦C and 140 r/min for 6 h, followed by adsorption by the magnet. The supernatant was discarded,
and the residue was washed with ethanol for twice to yield Fe3O4@SiO2, which was resuspended in
ethanol (4 mL) [16].

2.2.3. Preparation of Fe3O4@SiO2-NH2

APTMS (50 µL) was dropwise added to the samples of Fe3O4@SiO2 obtained previously,
and the mixture was reacted for 24 h. After rinsing with ethanol for twice, the samples named
as Fe3O4@SiO2-NH2 were vacuum-dried at 80 ◦C overnight [17].

2.2.4. Preparation of Fe3O4@SiO2-NH2-AA

An AA solution (5 mg/mL in MES buffer, pH 6.0) was mixed with N,N-dimethylformamide
(DMF; 3:1, v/v). Then the AA solution (3.75 mg/mL) was converted to N-hydroxysuccinimide esters by
sequential reaction with EDC (36.3 mg/mL in MES buffer, pH 6.0) for 15 min and NHS (10.95 mg/mL
in MES buffer, pH 6.0) for 60 min. The solution was finally introduced to the freshly Fe3O4@SiO2-NH2

nanoparticles and reacted overnight at room temperature. After washing by ethanol, the samples of
Fe3O4@SiO2-NH2-AA could be obtained by vacuum-dried process [18].
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Figure 1. The diagram of surface modification stages.

2.3. Alkaloid Adsorption Test

2.3.1. Preparation of Calibration Standards

100 µg/mL standard solutions in methanol of Palmatine and Berberine were obtained from
Solarbio (Beijing, China), and then further diluted in pattern of 1:2 to produce the working solutions
with a series of concentrations. The concentration range of calibration standards for Palmatine were
50 µg/mL, 25 µg/mL, 12.5 µg/mL, 6.25 µg/mL, 3.125 µg/mL, 1.5625 µg/mL, 0.78125 µg/mL, while the
concentration range of calibration standards for Berberine were 25 µg/mL, 12.5 µg/mL, 6.25 µg/mL,
3.125 µg/mL, 1.5625 µg/mL, 0.78125 µg/mL.

2.3.2. Influence from pH

Approximate 8 mL of mixed standard stock solution (0.5 µg/mL, in methanol, pH 5, 6, 7,
8, 9), 10 mg of Fe3O4@SiO2-NH2-AA nanoparticles was ultrasonic shocked for 6 min, and then
the supernatant and magnetic nanoparticles were obtained by magnetic separation. The magnetic
nanoparticles were washed by deionized water (1 mL × 2). The supernatant and detergent were
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combined. 1.5 mL of the mixture was dried by nitrogen blower at 80 ◦C. The residue was redissolved
in 400 µL of methanol, which was filtered (0.22 µm) for subsequent HPLC analysis.

2.3.3. Influence from Adsorption Time

Approximate 8 mL of mixed standard stock solution (0.5 µg/mL, in methanol), 10 mg of
Fe3O4@SiO2-NH2-AA nanoparticles was ultrasonic shocked for a certain time (2 min, 4 min, 6 min,
8 min, 10 min), and then the supernatant and magnetic particles were obtained by magnetic separation.
The magnetic nanoparticles were washed by deionized water (1 mL × 2). The supernatant and
detergent were combined. The mixture was dried by nitrogen blower at 80 ◦C. The residue was
redissolved in 400 µL of methanol, which was filtered (0.22 µm) for subsequent HPLC analysis [19–21].

3. Results and Discussion

3.1. XRD Analysis of Fe3O4 Nanoparticles

The XRD pattern of Fe3O4 nanoparticles is shown in the Figure 2. The peaks at 2θ values of 30.1◦,
35.4◦, 43.1◦, 53.4◦, 56.9◦ and 62.5◦ are indexed as the diffractions of (220), (311), (222), (422), (511) and
(440) respectively, which resembles the standard diffraction spectrum of Fe3O4 (JCPDSPDF#19-0629)
with respect to its reflection peaks positions [5].
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of Fe3O4).

3.2. FTIR Spectra Analysis of Nanoparticles

The Fe3O4@SiO2-NH2 and Fe3O4@SiO2-NH2-AA nanoparticles were obtained after the surface
modification steps. It is apparent that the IR spectra contains not only the peaks in spectra of Fe3O4

nanoparticles (Fe-O, 567 cm−1) [15]. 1560 cm−1 (C-N vibration) reflected that APTMS was successfully
modified onto Fe3O4@SiO2nanoparticles [22]. A strong IR peak appears at 1648 cm−1, corresponding to
the strong bending vibration of the amide I group, which showed that the modification was successful
and Fe3O4@SiO2-NH2nanoparticles were indeed coated with AA (Figure 3) [17,23,24].

3.3. XPS Analysis of Nanoparticles

Figure 4a shows the low-resolution XPS survey spectra of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2-NH2

and Fe3O4@SiO2-NH2-FA samples, all of which are semiquantitative. The low-resolution XPS survey
spectra (Figure 4a) of Fe3O4@SiO2-NH2 have peaks of N1s, which showed that APTMS have been
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modified successfully. High-resolution C1s XPS spectra of the Fe3O4@SiO2-NH2 samples have peaks
at 284.603 eV (C-H/C-C) and 285.459 eV (C-O/C-N) (Figure 4b). High-resolution C1s XPS spectra
of the Fe3O4@SiO2-NH2-AA samples have peaks at 284.605 eV (C-H/C-C), 285.891 eV (C-O/C-N),
and 287.916 eV (O-C=O/O=C-NH) (Figure 4c), which showed that amide reaction was successful [25].
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3.4. SEM Analysis of Nanoparticles

Figure 5a–c show SEM images of Fe3O4, Fe3O4@SiO2-NH2, and Fe3O4@SiO2-NH2-AA
nanoparticles. Small particle size of Fe3O4 particles is obvious, while a good dispersion effect could
be achieved by Fe3O4@SiO2-NH2 nanoparticles. As for Fe3O4@SiO2-NH2-AA nanoparticles, no good
dispersion could be achieved, while better morphology could be achieved, which showed that AA
was successfully modified onto Fe3O4@SiO2-NH2 nanoparticles [22]. Almost all particle size of
Fe3O4 particlesis below 100 nm, as for Fe3O4@SiO2-NH2 nanoparticles and Fe3O4@SiO2-NH2-AA
nanoparticles, particle size is becoming larger and larger, which could also prove that the modification
is successful.
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3.5. Analysis of Alkaloid Adsorption Test

Electrostatic interactions between alkaloids and charged surfaces, therefore, often play a major
role in the adsorption behavior of alkaloids. Therefore, Palmatine and Berberine were selected for
alkaloid adsorption assay in the current study.

Figure 6a is the chromatogram associated with the concentrations of the standard curve,
which belongs to Palmatine. Figure 6b is the chromatogram associated with the concentrations
of the standard curve, which belongs to Berberine. The Equation process is as follows:

CV2

V1
× V0 = m (1)

Ap =
C0V − m

C0V
(2)

V0 = 10 mL, V1 = 1.5 mL, V2 = 0.4 mL, m is the capacity of alkaloid in the supernatant and
detergent, C is the concentration of the supernatant and detergent, which could be obtained by the
standard curve.

C0 = 0.5 µg/mL, V = 8 mL, Ap is the adsorption percentage of alkaloid.
From Table S1, as for Palmatine and Berberine, the most adsorption could be obtained at pH 8.

Considering the effect of alkaline on liquid phase system, the adsorption conditions of pH 8 has
been chosen. The adsorption percentage of Palmatine was 22.2%, and the adsorption percentage
of Berberine was 23.6%. At pH 8, the carboxylic acid of Fe3O4@SiO2-NH2-AA nanoparticles was
converted to a negatively-charged carboxylate ion. Therefore, quaternary ammonium alkaloids were
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significantly adsorbed onto the carboxylic acid-rich surface, possibly due to electrostatic interactions.
The results from this study seem to fit well with a previous report on the study of the charge interaction
of alkaloids and polyelectrolyte films.

From Table S2, as for Berberine, the most adsorption could be obtained at 8 min. While the most
adsorption could be obtained at 10 min for Palmatine. Considering the effect of adsorption time on
liquid phase system, the adsorption conditions of 8 min has been chosen. The adsorption percentage
of Palmatine was 8.67%, and the adsorption percentage of Berberine was 7.25%.

The effect of pH was greater than that of adsorption time. Considering the above conditions, pH 8
and the adsorption time of 8 min could be chosen for further uses.
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Figure 6. (a) Concentration gradient chromatogram for Palmatine. (Standrad curve: y = 5.41437 +
61.51865x, R = 0.99958, linear range: 0.78125–50 µg/mL); (b) Concentration gradient chromatogram for
Berberine. (Standard curve: y = −3.38806 + 53.63054x, R = 0.99899, linear range: 0.78125–25 µg/mL);
(c) HPLC charomatograms of the supernatant after adsorption. Conditions: pH adjustment was as
follows: 5, 6, 7, 8, 9; adsorption time was 6 min; (d) HPLC charomatograms of the supernatant after
adsorption. Conditions: adsorption time adjustment was as follows: 2 min, 4 min, 6 min, 8 min, 10 min,
while pH 7 was used.

4. Conclusions

In conclusion, magnetite (Fe3O4) could be prepared by FeCl2 and FeCl3, which is a
ferromagnetic black color iron oxide of both Fe(II) and Fe(III). XRD was used for the determination
of Fe3O4 nanoparticles. The peaks at 2θ values of 30.1◦, 35.4◦, 43.1◦, 53.4◦, 56.9◦ and 62.5◦

resemble the standard diffraction spectrum of Fe3O4 (JCPDSPDF#19-0629) with respect to its
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reflection peaks positions. Fe3O4 could be used for modification at the subsequent trials.
Fe3O4@SiO2 nanoparticles were successfully obtained by TEOS. Fe3O4@SiO2-NH2 nanoparticles
were prepared by APTMS, while Fe3O4@SiO2-NH2-AA nanoparticles were obtained by activated
AA via amidation reaction. IR, XPS and SEM analysis were used for the characterizations of
Fe3O4@SiO2-NH2 and Fe3O4@SiO2-NH2-AA nanoparticles. Alkaloid adsorption experiments implied
that Fe3O4@SiO2-NH2-AA nanoparticles as a absorbent could be used for the adsorption of the
alkaloids. At pH 8, the carboxylic acid of Fe3O4@SiO2-NH2-AA nanoparticleswas converted to a
negatively-charged carboxylate ion. Therefore, quaternary ammonium alkaloids were significantly
adsorbed onto the carboxylic acid-rich surface, possibly due to electrostatic interactions. As for
Palmatine and Berberine, the most adsorption could be obtained at pH 8 when the adsorption time
was 6 min. The adsorption percentage of Palmatine was 22.2%, while the adsorption percentage of
Berberine was 23.6% at pH 8. As for the effect of adsorption time on liquid phase system, the adsorption
conditions of 8 min has been chosen when pH 7 was used. Considering the above conditions, pH 8
and the adsorption time of 8 min could be chosen for further uses. This work demonstrates the
potential of AA modification in a Fe3O4-based alkaloid adsorption study. In further experiments,
when the amidation reaction is performed, residual carboxyl groups from AA on the modified
Fe3O4@SiO2-NH2-AA nanoparticles may be used for bio-molecule immobilization.

Supplementary Materials: The supplementary materials are available online.
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