Supporting information

Homooxacalix[3]arene-based Ditopic Receptor for Alkylammonium Ions Controlled by Ag⁺ Ions

Xue-Kai Jiang ¹, Yusuke Ikejiri ¹, Chong Wu ¹, Shofiur Rahman ², Paris E. Georghiou ², Xi Zeng ³, Mark R. J. Elsegood ⁴, Thomas G. Warwick ⁴, Carl Redshaw ⁵, Simon J. Teat ⁶, and Takehiko Yamato ¹.*

- ¹ Department of of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502 Japan; jxk1215@163.com (X.K.J.); k1xshamgod@gmail.com (Y.I.); wuchong214@163.com (C.W.); yamatot@cc.saga-u.ac.jp (T.Y.)
- ² Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada; mdrahman71@yahoo.com (S.R.); parisg@mun.ca (P.E.G.)
- ³ Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China; zengxi1962@163.com(X.Z.)
- ⁴ Chemistry Department, Loughborough University, Loughborough, LE11 3TU, UK; M.R.J.Elsegood@lboro.ac.uk (M.R.J.E.); Thomas.Warwick@nottingham.ac.uk (T.G.W.)
- ⁵ School of Mathematics and Physical Sciences, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK; C.Redshaw@hull.ac.uk (C.R.)
- ⁶ ALS, Berkeley Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA; sjteat@lbl.gov (S.J.T.)

Table of contents

1. ¹ H-NMR spectrum of the synthesized receptor <i>cone</i> - 1 Figure S1
2. ¹³ C-NMR spectrum of the synthesized receptor <i>cone-</i> 1 Figure S2
3. ¹ H-NMR titration experiments for <i>cone</i> -1 with <i>t</i> -BuNH ₃ ⁺ and Ag ⁺ Figure S3
4. ¹ H-NMR titration experiments for <i>cone</i> - 1 with <i>n</i> -BuNH ₃ ⁺ and Ag ⁺ Figure S4
5. Molar ratio of Ag ⁺ with host receptor <i>cone</i> -1Figure S5
6. K_a (association constants) for <i>cone</i> - 1 Ag ⁺ Figure S6
7. Summary of crystal data for <i>cone</i> - 1 ·3MeOH·H ₂ O and <i>cone</i> - 1 ·2.5MeOHTable S1
8. Crystal structure of <i>cone</i> -1·2.5MeOH, side viewFigure S7
9. Crystal structure of <i>cone</i> -1·2.5MeOH, top viewFigure S8
10. Geometry-optimized Top view ball-and-stick <i>cone-</i> $1 \supset n$ -BuNH ₃ ⁺ complexFigure S9
11. Geometry-optimized <i>cone</i> - $1 \supset n$ -BuNH ₃ ⁺ complexFigure S10
12. Geometry-optimized Top view ball-and-stick <i>cone-</i> $1 \supset tert$ -BuNH ₃ ⁺ complexFigure S11
13. Geometry-optimized <i>cone</i> - $1 \supset tert$ -BuNH ₃ ⁺ complexFigure S12
14. Geometry-optimized <i>cone-</i> $1 \supset Ag^+$ complex view from upper-rimFigure S13
14. Calculated distances for selected parameters for the backbones of the host <i>cone</i> -1 and complexes with Ag^+ and <i>n</i> -BuNH ₃ ⁺ ions (Distance in Å)

Figure S1. ¹H-NMR spectrum of receptor *cone-*1 (300 MHz, CDCl₃, 293 K).

Figure S2. ¹³C-NMR spectrum of receptor *cone*-1 (100 MHz, CDCl₃, 293 K).

Figure S3. Partial ¹H-NMR spectral titration of receptor *cone*-1/t-BuNH₃⁺ (H/G = 1:1); solvent: CDCl₃/CD₃CN (10:1, v/v).

Figure S4. Partial ¹H-NMR spectral titration of receptor *cone*-**1**/guest complex (H/G = 1:1); a) free receptor *cone*-**1**; b) receptor *cone*-**1** \supset 0.2 equiv. of *n*-BuNH₃⁺; c) receptor *cone*-**1** \supset 0.4 equiv. of *n*-BuNH₃⁺; d) receptor *cone*-**1** \supset 0.6 equiv. of *n*-BuNH₃⁺; e) receptor *cone*-**1** \supset 0.8 equiv. of *n*-BuNH₃⁺; f) receptor *cone*-**1** \supset 1.0 equiv. of *n*-BuNH₃⁺; g) receptor *cone*-**1** \supset 1.0 equiv. of *n*-BuNH₃⁺; g) receptor *cone*-**1** \supset 1.0 equiv. of *n*-BuNH₃⁺ \supset </sup> 0.2 equiv. of Ag⁺; h) receptor *cone*-**1** \supset 1.0 equiv. of *n*-BuNH₃⁺ \supset </sup> 0.5 equiv. of Ag⁺; i) receptor *cone*-**1** \supset 1.0 equiv. of Ag⁺; j) receptor *cone*-**1** \supset 1.0 equiv. of *n*-BuNH₃⁺ \supset </sup> 0.5 equiv. of Ag⁺; i) receptor *cone*-**1** \supset 1.0 equiv. of *n*-BuNH₃⁺ \supset </sup> 0.7 equiv. of *n*-BuNH₃⁺ \supset </sup> 0.8 equiv. of Ag⁺; j) receptor *cone*-**1** \supset 1.0 equiv. of *n*-BuNH₃⁺ \supset </sup> 1.0 equiv. of *n*-BuNH₃⁺ \supset 1.0 equiv. of *n*-BuNH₃⁺ \supset </sup> 1.0 equiv. of *n*-BuNH₃⁺ \supset 1.0 equiv.

Figure S5. Molar ratio of Ag⁺ with host receptor *cone-***1**.

Figure S6. Bensei-Hilderbrand plot of receptor *cone*-**1** with varied concentrations of Ag⁺ at 298 K. The associate constant (K_a) was calculated to be 3.4 × 10⁴ M⁻¹.

X-ray crystallography

Parameter	<i>cone</i> - 1 ·3MeOH·H ₂ O <i>cone</i> - 1 ·2.5MeOH		
Formula	C57H66N6O9 3(COH4) H2O	C57H66N6O9 2.5(COH4)	
Formula weight	1093.30 1059.26		
Space group	C2/c	C2/c	
a [Å]	26.1641(11)	26.308(2)	
<i>b</i> [Å]	15.4995(6)	15.6159(14)	
<i>c</i> [Å]	28.5153(11)	28.644(3)	
β [°]	94.063(3)	94.1811(15)	
Volume (Å ³)	11534.8(8)	11736.3(18)	
Ζ	8	8	
Wavelength [Å]	0.7085	0.71073	
$D(\text{calc}) [\text{g.m}^{-3}]$	1.259	1.199	
Temperature [K]	100(2)	150(2)	
Measured reflns	113193	67896	
Unique reflns	22109 17827		
Obsd reflns $[I > 2\sigma(I)]$	16974 11159		
Parameters	747 718		
$R_{ m int}[m mm^{-1}]$	0.074 0.053		
$R [I > 2\sigma(I)]^{a}$	0.067 0.059		
$wR [I > 2\sigma(I)]^{b}$	0.205	0.178	
GOF on F^2	1.03	1.03 1.07	

 Table S1 Summary of crystal data for cone-1.^{a,b}

^{*a*}Conventional *R* on *F*_{hkl}: $\Sigma ||Fo| - |Fc||/\sigma|Fo|$. ^{*b*} Weighted *R* on $|F_{hkl}|^2$: $\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]^{1/2}$

Figure S7. Crystal structure of *cone*-1·2.5MeOH; side view. MeOH of crystallization and H atoms not involved in H-bonding omitted for clarity.

Figure S8. Crystal structure of *cone*-1·2.5MeOH; top view. MeOH of crystallization and H atoms not involved in H-bonding omitted for clarity.

Figure S9. Geometry-optimized (PBE0/LANL2DZ) structures (Ball-and-stick) of *cone*-1 and as its complex with *n*-BuNH₃⁺. Top: view of the *cone*-1 \supset *n*-BuNH₃⁺ complex (*tert*-butyl groups at the upper rim and the pyridyl groups at the lower rim have been omitted for clarity). For bond distance values, see Table S2.

Figure S10. Geometry-optimized (PBE0/LANL2DZ) structures of *cone*-1 and as its complex with *n*-BuNH₃⁺. *Left*: The free *cone*-1. *Right*: 1:1 *cone*-1 \supset *n*-BuNH₃⁺ complex. Colour code: carbon = drack grey, oxygen atom = red, nitrogen = blue and nitrogen (*n*-BuNH₃⁺) = magenta. For bond distance values, see Table S2.

Figure S11. Geometry-optimized (PBE0/LANL2DZ) structures (Ball-and-stick) of *cone*-1 and as its complex with *tert*-BuNH₃⁺. Top: view of the *cone*-1 \supset *tert*-BuNH₃⁺ complex (*tert*-butyl groups at the upper rim and the pyridyl groups at the lower rim have been omitted for clarity). For bond distance values, see Table S2.

Figure S12. Geometry-optimized (PBE0/LANL2DZ) structures of *cone*-1 and as its complex with *tert*-BuNH₃⁺. *Left*: The free *cone*-1. *Right*: 1:1 *cone*-1 \supset *tert*-BuNH₃⁺ complex. Colour code: carbon = drack grey, oxygen atom = red, nitrogen = blue and nitrogen (*tert*-BuNH₃⁺) = magenta. For bond distance values, see Table S2.

Figure S13. Geometry-optimized (PBE0/LANL2DZ) structures (space-filled) of *cone*-1 and as its complex with Ag^+ from the wide-rim showing the compressed cavity entrance, due to the crowding of the three *tert*-butyl groups, in particular the one group which in pointing inwards towards an opposite aromatic ring. The lower-rim functional groups of the *cone*-1 Ag^+ complex have been have been omitted for clarity).

Parameter	<i>cone-</i> 1 Distance (Å)	<i>cone-</i> 1⊃Ag⁺ Distance (Å)	n-BuNH ₃ +⊂ [<i>cone</i> - 1⊃Ag +] Distance (Å)	<i>cone-</i> 1 ⊃ <i>n</i> -BuNH ₃ ⁺ Distance (Å)	<i>cone-</i> 1 ⊃ <i>tert</i> -BuNH ₃ ⁺ Distance (Å)
$N_6 - N_{48}$	5.0247	4.2956	4.130	7.100	7.427
$N_6 - N_{132}$	8.3503	3.8462	3.991	4.989	4.932
$N_{48} - N_{132}$	13.111	3.768	3.761	8.006	7.936
$O_9 - O_{35}$	4.9912	3.1731	3.224	3.373	3.330
$O_9 - O_{33}$	4.9425	3.1865	3.000	4.940	4.920
$O_{35} - O_{53}$	8.1903	6.2554	5.862	7.239	6.983
O ₁₂ -O ₂₇	4.7736	4.2434	3.532	5.053	5.099
O ₁₂ -O ₄₄	4.2481	4.7334	4.674	5.054	5.281
O ₂₇ – O ₄₄	5.182	4.8133	4.139	4.995	5.108
$O_{22} - O_{40}$	6.2249	6.0583	5.061	3.836	3.842
O ₂₂ -O ₅₇	5.636	5.9854	5.113	3.875	3.730
$O_{40} - O_{57}$	7.0824	7.2396	4.950	3.748	3.684
N ₆ -Ag ₁₅₆	-	2.4331	2.448	_	-
N ₄₈ -Ag ₁₅₆	_	2.3271	2.364	-	-
$N_{132} - Ag_{156}$	_	2.4413	2.468	_	-
O ₉ -Ag ₁₅₆	_	2.3706	2.360	_	-
O ₃₅ - Ag ₁₅₆	_	4.693	4.494	-	-
O ₅₃ -Ag ₁₅₆	-	2.7364	2.617	_	-
$H_{144} - O_{22}$	_	_	2.382	2.524	3.237
$H_{144} - O_{27}$	_	_	2.234	2.088	2.116
$H_{145} - O_{27}$	_	_	2.233	2.340	2.508
$H_{145} - O_{40}$	-	_	2.678	2.576	2.567
$H_{145} - O_{44}$	_	_	1.906	1.938	1.966
$H_{145} - O_{12}$	_	_	3.069	2.468	2.549
$H_{145} - O_{44}$	_	_	2.896	2.857	3.270
$H_{146} - O_{57}$	_	_	3.209	2.443	2.680
$H_{146} - O_{57}$	-	_	1.818	1.828	2.058

Table S2. The calculated distance for selected parameters for the backbones of the host *cone-1* and complexes with Ag^+ and *n*-BuNH₃⁺ ions in the gas phase at PBE0/LANL2DZ basis set (Distance in Å).