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Abstract: Currently cancer treatment is in large part non-specific with respect to treatment.
Medication is often harsh on patients, whereby they suffer several undesired side effects as a result.
Carbon-based nanoparticles have attracted attention in recent years due to their ability to act as a
platform for the attachment of several drugs and/or ligands. Relatively simple models are often
used in cancer research, wherein carbon nanoparticles are conjugated to a ligand that is specific to an
overexpressed receptor for imaging and drug delivery in cancer treatment. These carbon nanoparticles
confer unique properties to the imaging or delivery vehicle due to their nontoxic nature and their
high fluorescence qualities. Chief among the ongoing research within carbon-based nanoparticles
emerge carbon dots (C-dots) and carbon nanotubes (CNTs). In this review, the aforementioned carbon
nanoparticles will be discussed in their use within doxorubicin and gemcitabine based drug delivery
vehicles, as well as the ligand-mediated receptor specific targeted therapy. Further directions of
research in current field are also discussed.
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1. Introduction

Carbon dots (C-dots) are emerging nanomaterials with incredible versatility. First discovered
in 2004 by Scrivens and co-workers [1], C-dots have had far reaching implications for chemistry,
engineering, biology, medicine, and several other fields [2]. Applications for this emerging material
can be found in areas such as electronics [3], sensor development [4], polymers [5], and imaging [6,7],
of particular interest is the application of C-dots in the medical fields [8]. C-dots are becoming a
prevalent platform for attachment of receptors alongside chemotherapy drugs due to the presence of
rich surface functional groups (i.e., carboxylic and amino groups) [9,10]. C-dots have attracted such
attention in part due to the simplistic materials and plethora of different methods of synthesis; whereby,
complicated machinery is often not necessary [11,12]. Synthesis methods range from using strong acids
to functionalize carbon powder (“top-down” approach) to heating above the melting temperature using
technology as simple as a conventional microwave (“bottom-up” approach) [13,14]. The composition
of C-dots may vary slightly due to different methods in synthesis [15,16]. These variations in synthesis
could lead to differences in the fluorescence, size, and activity. Photoluminescence is perhaps the
most well studied aspect of C-dots, lending itself to straightforward characterization once conjugation
with target molecule is achieved. C-dots are usually excitation-wavelength dependent; their emission
spectra typically range from the mid 300 nm to as high as 700 nm [17,18].
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In conjunction with the development of material science, it is of no surprise that research towards
drug development has grown and will continue to grow at a tremendous rate. An over 400% increase
in cancer survival by 2022 is projected when compared to 1977, the majority of growth occurring in the
long-term (15+ years) survival of patients [19]. This drastic increase is largely due to growing research;
nonetheless, the adaptability and sophisticated heterogeneity cancer possess allow it to develop drug
resistance during treatment, reducing therapeutic effects [20]. Most often several drugs are prescribed
to allow for the possibility of tumor resection. Most anticancer drugs cause tremendous damage
not only to the cancer cells for which its administration was intended, but also to unrelated healthy
somatic cells. Such damage causes many of the common symptoms associated with chemotherapy
patients (hair loss, pale skin, vomiting, etc.) [21]. Improving targeting efficiency of cancer cell lines
with anticancer drugs is one of the dominant frontiers of cancer research. By specifically targeting
cancer cells with the aid of novel nanomaterials, it is expected that overall drug dosages can be lowered
due to higher drug efficacy, causing decreased side effects and increased patient quality of life [22].

To this end C-dots are nontoxic and can inhibit human insulin fibrillation [13]. They have also been
reported to efficiently suppress cancer cell in vitro and can inhibit Hep G2 growth, a liver cancer [23,24].
Similar inhibition has been seen in MCF-7 and MDA-MB-231 cancer cells (breast cancer) where the
cause is believed to be due to generation of great amounts of reactive oxygen species (ROS) [24]. C-dots
are serving as a similar platform for conjugation as widely used polymers such as polyethylene glycol
(PEG); however, C-dots may provide higher receptor binding affinity and improved cell penetration
when conjugated to an antibody [25]. Moreover, conjugated nanoparticles have shown the ability
to be internalized through receptor-mediated endocytosis and accumulate in cells without being
recognized by P-glycoprotein [26]. P-glycoprotein is one of the main contributors to drug resistance
in cells. Furthermore, C-dots have shown to be able to bypass the blood-brain barrier in zebrafish
models, a formidable obstacle for developing efficient treatments for brain-related diseases such as
Alzheimer’s diseases [27]. Several papers have been published wherein an overexpressed receptor in a
specific cancer cells is chosen to be covalently attached to C-dots alongside an anticancer drug, which
constitutes a basic nano-delivery system. These kinds of systems can accumulate anti-tumor agents at
the tumor sites due to enhanced permeability and retention effect [2,28,29].

Along the same vein carbon nanotubes (CNTs) have also emerged as potent nanocarrier with
ever-growing popularity. CNTs were discovered by Dr. Iijima in 1991 and possess many similar
qualities to C-dots as part of the carbon-based nanoparticle family [30]. These particles are nontoxic,
have excellent optical properties, and can be quite small, with a strong capacity to be attached to
other elements or particles for further functionalization [31]. Certain CNTs within drug delivery
systems have the similar benefit to C-dots in having a well-studied release mechanism, wherein, acidic
environment of tumor facilitates drug release [32]. The degree of functionalization within the surface of
CNTs may be altered and thus the amount of drug released could be more accurately controlled [33,34].
As a result, their application in drug delivery systems has also been broadly studied.

Significant factors affecting the design of targeted drug delivery systems include an efficient
means of delivery, conservation of drug bioactivity, and the enhancement of drug loading and
release kinetics toward the drug targets [35]. In this paper we will first explore the commonly
attached anti-cancer agents, using doxorubicin (Dox), and gemcitabine (gem) as examples; and then
explore future possibilities of dual drug conjugates in carbon nanoparticle mediated delivery systems.
Conjugation and characterization methods will be discussed for each case alongside the mechanism
of action and overall effectiveness. Additionally, recurring ligands chosen for conjugation in carbon
based drug delivery systems (transferrin, folic acid, and hyaluronan) will be subject to examination in
a similar methodology as aforementioned in drug attachment. Finally, a brief overview will be given,
followed by challenges faced, possible areas of interest, and overall outlook of the field.
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2. Drug Usage and Resistances in Cancer Cells

Drugs chosen for cancer treatment must cause significant harm to the targeted cells, and to this
end certain chemotherapy agents’ vehicle of action may be more effective on certain tumors over
others. Removal of cancer stem cells is necessary in order to achieve a successful cancer free prognosis.
Yet these stem cells have the ability of activating multiple drug resistance transporters which may lead
to a constitutively drug-resistant cell [36]. More troubling is how some tumor cells show the capability
of becoming a cancer stem cell in the absence of other cancer stem cells [37]. In this area nano delivery
vehicles may prove more successful than other means of treatment such as conventional chemotherapy,
as the higher percentage of drug reaching tumor cells in these systems allows for an increased instance
of apoptosis to be achieved. The capability to overcome multiple drug resistance transporters have
been shown in in vitro testing; however, in vivo applications have proven to be a true challenge due
to effects elsewhere wherein premature inactivation of the drug may occur due to non-tumor cell
drug resistances [36]. Thus, there is a need to overcome complications arisen from in vivo testing.
Nonetheless, well-designed drug delivery systems are showing progress towards overcoming such
pervasive issues. It should be noted, however, that many drug resistance mechanisms are not fully
understood and subject ongoing research and debate [38].

To conjugate a drug to a carrier, certain criteria must be met. Of which the overall structure
of the drug is foremost. A suitable functional group is often desired for successful attachment to
C-dots. In covalent conjugation approaches, drugs are most often chosen containing free amines or
carboxylic groups [39–42]. As a result, the relative ease of conjugation yields a high drug loading
percentage. Covalent conjugation of drugs with carriers has advantages such as high loading yield,
better controllability; however, it also faces challenges such as slow drug release and may lead to
a new drug entirely ineffective due to conjugation. Finally, the drug candidates must be readily
characterized once conjugated and purified to ensure accurate testing. To this end commonly chosen
drugs for conjugation include Dox and gem; however, other anticancer agents such as paclitaxel,
docetaxel, genes, and others are also seen in conjugation with a drug delivery system to improve their
bioavailability [34,43]. A selective list of the drug delivery vehicles will be mentioned in this paper is
shown below in Table 1.
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Table 1. Selective examples of carbon nanomaterials based drug-targeting systems discussed in this paper.

Carbon
Nanoparticles Drug Loaded Ligand Attached Cell Targeted Characterization Method Drug Loading Reference

C-dots Dox Nuclear localization signal
peptide A549 AFM, TEM, XPS, UV-Vis, Fluorescence,

Confocal, Flow cytometry, FTIR, NMR - [44]

C-dots Dox - HeLa UV-Vis, Fluorescence, XPS, TEM, FTIR, Zeta - [14]
C-dots Dox - HeLa UV-Vis; Zeta; DLS; PL; TEM 260% [45]
C-dots Dox Transferrin CHLA-266, SJGBM2 Fluorescence, UV-Vis, MALDI-TOF - [41]
C-dots Dox Folic acid HeLa FTIR, UV-Vis, Zeta 85.6% [46]
C-dots - Folic acid HeLa, NIH-3T3, MCF-7 Fluorescence, TEM, UV-Vis - [47]
C-dots - Folic acid HepG-2 UV-Vis, Fluorescence, FTIR, TEM, XPS - [48]
C-dots Gene Hyaluronan HeLa FTIR, NMR, UV-Vis, Fluorescence, TEM - [49]
CNTs Dox - SH-SY5Y, HT-29, HepG-2 FTIR, TEM [33]
CNTs Dox Folic acid HeLa, 3T3 UV-Vis, IR, TEM, Zeta 149.3% [32]
CNTs Dox Folic acid HeLa UV-Vis, TEM - [34]
CNTs Dox Folic acid - UV-Vis, Fluorescence, FTIR, SEM 91% [50]
CNTs Dox Hyaluronan - SEM, TEM, Zeta, FTIR - [51]
CNTs Gem Folic acid Breast cancer cells Electron microscopy, FT-IR, X-ray diffraction - [42]
CNTs Gem - FT-IR, NMR - [52]
CNTs Docetaxel Transferrin A549 AFM, FTIR, TEM, Zeta - [43]
CNTs - Folic acid Hela UV-Vis, TEM, Zeta - [53]
CNTs - Folic acid T24 AFM, TEM, Raman spectra - [54]
CNTs - Folic acid HeLa UV-Vis, AFM, Confocal, Fluorescence, SEM - [55]
CNTs - Hyaluronan Gastric cancer stem cells UV-Vis, Confocal, Flow Cytometry - [56]
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2.1. Doxorubicin-Loaded Carbon-Based Nanoparticles

Doxorubicin (Dox) intercalates into the DNA and inhibits macromolecular synthesis [57–59].
Dox stabilizes topoisomerase II after DNA has been cut during replication, leading to overall cell
degradation [57]. Dox is commonly prescribed to treat certain types of lymphomas, sarcomas, and
leukemia [58], however, many researchers have found success using Dox in other cancers such as breast
cancers and brain tumors [41,59]. It is commonly sold under the trade name Adriamycin. Dox has
found great efficiency in targeting and eliminating cancer cells and is highly prized for its structure and
ease of conjugation. Several C-dots related studies have been published targeting cancers of various
types, many of which with promising result [39–41]. Yang and colleagues found that C-dots-Dox
complexes could efficiently induce apoptosis in human lung adenocarcinoma cells [44]. The in vivo
therapeutic efficacy of this conjugate was investigated in an A549 xenograft nude mice model wherein
the complexes showed an enhanced ability to inhibit tumor growth compared to the free drug alone. In
another study, it was found that C-dots and Dox make for an ideal drug release profile at physiological
and slightly acidic pHs, following first order release kinetics. Furthermore, the receptor mediated
delivery proved to lower the toxicity in normal cells [14]. Such a mechanism would likely find success
in tumors of the early gastrointestinal tract or in patients with acidosis, wherein pH is lower. In a report
by Wang and co-workers, it was found that C-dots-Dox conjugates within the HeLa cell separated
after 6 h and entered the HeLa cell nuclear regions after 8 h in incubation [14,54].

In the same study, Wang and co-workers found that the fluorescence of both C-dots and Dox
was turned off in their conjugated form; however, following separation of the C-dots-Dox conjugate
within the tumor cell, both the fluorescence of the C-dots and Dox were restored, which could be seen
under confocal microscope (Figure 1), this indicates that pH dependent release is a reliable method to
release attached conjugate system [14]. Dox has also been used in pediatric glioblastoma cell lines with
noticeable effects on the tumors [41].
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Methods to bind Dox to its carrier include covalent bonding between the functional groups of
Dox and the carriers. Noncovalent conjugation through passive adsorption of Dox to the carriers
has also been widely reported. The loading percentage could reach as high as 260% as reported
by Sun et al. [45]. Dox is rich in sp2-hybridized carbons which allows for efficient loading onto
C-dots using π-π stacking interaction, since C-dots can also be rich in sp2-hybridized carbons [60].
Dox is easily conjugated to C-dots through the formation of an amide bond between amine of
dox and functionalized C-dots (Figure 2) [41]. In this reaction, C-dots were first activated by
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS), after which
dox was attached to C-dots by forming a stable chemical bond between the two. Such a method leads
to a very stable product, which may mean a decreased amount of drug release or longer time period
for release within the cancer cell.

Fluorescence spectroscopy is most commonly used method of characterizing the Dox-C-dots
conjugates, as both possess photoluminescence. C-dots most commonly have peaks around the
high 300 nm to mid-400 nm depending on the synthesis method. By comparison, Dox has a peak
at roughly 600 nm making characterization via this method fairly straightforward [14,41,44,46,61].
UV-Vis spectroscopy displays similar results as aforementioned with Dox having an absorption peak
at 480 nm and most C-dots in the mid to late 300 nm. Furthermore, Dox possesses a positive zeta
potential whereas most C-dots have a negative potential and upon conjugation a noticeable shift tends
to occur [41,62,63].
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Similarly, success in the use of CNTs for drug delivery has also been demonstrated in several
reports [32,34,51]. Certain CNTs may provide excellent fluorescent capabilities or possess some
pro-apoptotic capabilities; however, some CNTs may lack stability within a cell. The study by Huang et
al. demonstrated a means to overcome such obstacles by encapsulating the CNTs-Dox conjugate within
a folic acid-conjugated chitosan, thereby providing increased stability within the cationic chitosan [50].
In a different approach by Satyajit et al., a CNTs drug delivery system was formed by loading with
hyaluronan and Dox [51]. The system demonstrated interesting results in their in vivo studies, wherein,
some mice given a load of free Dox and another subset were given a load of CNTs functionalized with
PEG to form a CNTs-hyaluronan-Dox conjugate system. Mice given the drug delivery system showed
no outward changes and had remarkably reduced toxicity; by comparison, mice treated only with Dox
demonstrated higher levels of toxicity, weight loss, and sluggishness. This demonstrated the potential
of CNTs in improving drug efficacy and quality of life. In the same vein CNTs conjugated to Dox and
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inserted into folic acid attached chitosan at 50 µg/mL were able to decrease tumor cell viability the
same degree compared to 100 µg/mL of Dox alone (Figure 3a) [34]. Improved apoptosis is visible and
can be seen from Figure 3b,c within the free drug and drug delivery vehicle, respectively. The wide
array of published papers indicate Dox as a flexible and potent anti-cancer agent with the ability to
cause cellular apoptosis in nearly any cancer cell line and allow for a timely target delivery.
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apoptosis (reproduced with permission from [34]).

2.2. Gemcitabine-Loaded Carbon-Based Nanoparticles

Gemcitabine (Gem) is a commonly prescribed medication for several different kinds of cancers.
To this end it is highly versatile; in the medical practice it may be prescribed to patients suffering from
mesotheliomas, pancreatic cancers, lung cancers, bladder cancers, cervical cancers, ovarian cancer, and
several others [64]. Commonly marketed under the name Gemzar, it is a nucleoside analog of cytidine.
It attaches to the growing DNA chain during replication and arrests its growth leading to cell apoptosis.
Furthermore, gem also targets ribonucleotide reductase wherein deoxyribonucleotides are fabricated,
thereby leading to cell death [65]. It has been found to be particularly effective against pancreatic
cancers, especially against those underwent successful tumor resections [66]. Carbon nanoparticles
have shown to prevent metastasis as well as impede the growth of tumors once successfully conjugated
to gem and made into a drug delivery vehicle [31,42,52]. Regression of lymph node metastasis was
even found in the study by Yang et al. [52]. Furthermore, in the same study magnetic multi-walled
carbon nanotubes (MWCNTs) were found to be more effective at this than magnetically activated
carbon particles, as shown in Figure 4 [52]. Interestingly, an external magnetic field can be applied to
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increase nanoparticle aggregation in certain areas and thereby increasing drug absorption in mice [61].
Gem is creating much excitement in terms of results as compared to the more commonly used Dox
conjugate; however, as will be discussed, its characterization proves some difficulty as compared
to Dox.
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ug/mL respectively (reproduced with permission from [52]).

The free amine on Gem is often used as a handle for conjugation with drug carriers, however, it
should be noted that this amine is attached to an aromatic ring for which, in principle, the expected
overall yield would be lowered. Gem can be conjugated in a similar way as aforementioned in Dox
conjugation methods, wherein EDC and NHS are used to activate the carboxylic groups on the C-dots
for attachment to gem. π-π stacking conformation with the SWCNTs has been proposed in successfully
conjugated nanotubes. In the study reported by Arsawang et al. they proposed the location of gem to
be within a conjugated SWCNTs with simulated molecular dynamics [67]. Gem offers some difficulty
when it comes to characterizing as commonly used methods such as fluorescence and UV-Vis suffer
due to the lack of photoluminescence in Gem and overlap in absorption between C-dots and Gem.
To this end, NMR is commonly implemented. Mass spectroscopy has also been speculated to be a
successful characterization method. Infrared spectroscopy can be used as an efficient characterization
method as well [68].

2.3. Other Drug Delivery Systems

Although Dox and Gem show promise as anti-cancer agents and attract most interest in the
context of carbon nanoparticles based drug delivery systems development, other anti-tumor drugs
have also found enhanced success when conjugated to C-dots and CNTs. C-dots conjugated to
paclitaxel and hyaluronan unsurprisingly demonstrated the ability to kill tumor cells; C-dots used in
the study were able to use near infrared light to image the tumor and follow its progression, as well
as release paclitaxel in a pH dependent manner [69]. In a similar vein, CNTs conjugated to paclitaxel
demonstrated improved tumor apoptosis compared to free drug due to the CNTs ability to improve cell
penetration of the drug, increasing intracellular concentration of paclitaxel by over 10 times. Moreover,
the shelf life of paclitaxel was extended within the conjugated CNTs system by prolonging blood
circulation of the drug. Significantly, no noticeable toxic effects were observed in mice [70]. Cisplatin
in CNTs has also shown promise, a study by Ajima et al. reported that cisplatin conjugated with CNTs
had 4–6 times increased anti-cancer efficiency compared to that of free cisplatin in mice [71].

2.4. Dual Drug Delivery and Synergistic Effects

Most promising of all is the prospect of the attachment of several drugs to a single vehicle wherein
cooperation can be achieved. Given the highly adaptable nature of cancer, it is common practice for
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medical professionals treating cancer patients to prescribe several chemotherapy drugs to overcome
drug resistances cancer strains may possess or develop [72]. It is for this reason that greater attention
should be paid to the prospect of using C-dots as a vehicle towards delivering not just one but several
drugs to the patient [73]. Poly(ethylene glycol)-conjugated MWCNTs has been shown to be an efficient
drug carrier for overcoming multi-drug resistance [74]. Research has been done with micelles where
poly(ethylene glycol) has been attached and used for dual drug delivery in several studies [73,75].
Similar research has advanced in other fields such as micelle delivery system wherein aspirin dispersed
poly(vinyl alcohol) (PVA) and Dox were used in a drug delivery system [76]. Dual drug delivery
systems are able to overcome poor therapeutic effect of single drug delivery system and achieve
independent drug release, thereby maintain drug integrity and functionality. This effective delivery
is made in large part possible by the pH differentiation found in endosomes containing lower pH
than surrounding tissues [33]. The extra protons may allow for a higher number of drug agents
to release from their carrier. In a study by Heister et al., CNTs were attached to both doxorubicin
and mitoxantrone, which demonstrated enhanced ability to apoptose tumors as compared to either
free drug alone; however, no ligand was used to improve the targeting efficiency [77]. Impressively
graphene oxide nanocarriers have found success conjugating dox and camptothecin via π-π stacking
and hydrophobic interactions. Remarkably improved toxicity in targeted carcinoma and breast cancer
cells were found as compared to the single drug loaded version and thereby cell death, displaying
possible synergistic effects [78]. Further work is merited specifically within Carbon nanoparticle
systems given their unique capabilities as fluorescent platforms for ligand attachment, moreover
C-dots are non-toxic when tested on urchin embryos unlike larger metal based nanoparticles such as
ZnO that release toxic amounts of ROS [79]. Given the heterogeneity of quantum dots, most exibit
some toxicity, although, the amount can vary heavily specifically within quantum dots such as CdSe
and ZnS based quantum dots [80]. Different techniques can be used to reduce toxicity however, such
as lipid coating.

Other areas of development may include using an anti-cancer drug alongside the new and
lucrative field of small interfering RNA (siRNA) which shows much promise [81]. Given the
relatively recent field of drug delivery, many reported dual and multi-stimuli responsive systems are
proof-of-concept studies only, and thus are often not biodegradable, have low drug loading capacity,
and may not work for in vivo applications [82].

3. Ligand-Receptor Mediated Delivery

Certain receptors can be overexpressed in different kinds of cancer cells; as a result, this
overexpression can allow for the anticancer drug attached to ligands that can facilitate tumor
penetration and do so in a more selective manner. Commonly overexpressed receptors in cancer
cells include growth factor receptors (GFRs) [83]; however, these GFR ligands are difficult and costly
to isolate for use in drug delivery systems. More commonly implemented ligands include transferrin,
folic acid, and hyaluronan which are easily attainable and desirable for test projects due to their
relatively inexpensive cost and ease of access. Although many of these receptors directly or indirectly
induce cell growth and proliferation, there may be synergistic effects due to many chemotherapy drugs
having short half-lives and causing DNA damage during replication; therefore, if receptor-induced
proliferation occurs following ligand endocytosis, cellular apoptosis would be expected to occur due to
the anticancer-agent’s action. This may also explain why single drug carrier systems often outperform
the lone drug in causing tumor death.

Carbon nanosystems, as previously discussed, possess the ability to be functionalized with
different functional groups and even drugs or ligands [84]. The degree of functionalization can often be
controlled by limiting the reaction time or amount of functional groups. And by controlling the degree
of functionalization, the amount of drug delivered can be modulated [33]. Table 2, below, provides a
list of the drug delivery vehicles discussed in this section.
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Table 2. Selective ligand-mediated drug delivery systems discussed in this section.

Carbon Source Drug Loaded Ligand Attached Targeted Cell Reference

C-dots Dox Transferrin CHLA-266, SJGBM2 [41]
C-dots Dox Folic acid HeLa [46]
C-dots - Folic acid HeLa, NIH-3T3, MCF-7 [47]
CNTs Docetaxel Transferrin A549 [43]
CNTs Gem Folic acid Breast cancer cells [42]
CNTs - Folic acid Hela [53]
CNTs - Folic acid T24 [54]
CNTs Dox Folic acid HeLa [34]
CNTs - Folic acid HeLa [55]
CNTs - Hyaluronan Gastric cancer stem cells [56]
CNTs Dox Hyaluronan - [51]

3.1. Transferrin-Based Targeted Delivery

Iron is a critical component to many proteins, forming the heme groups, which are known for
their ability to bind and transport oxygen. Iron is also needed for several metabolic processes, which
include electron transport and deoxyribonucleic acid (DNA) synthesis [85]. Transferrin Receptor 1
is responsible for the uptake of iron into the cell via the use of clathrin-coated pits and, once iron is
released, the receptors are recycled out alongside transferrin without iron bound (apotransferrin) as
shown in Figure 5 [86]. Tumors in mice have been shown to have an increased uptake of transferrin [87].
Coupling DNA to transferrin via a carrier can serve as a potential alternative to common viral vector
for gene therapy [88]. Transferrin is of particular interest when target tumors include areas of the brain.
Transferrin can bypass the blood-brain barrier, a common obstacle for many other promising delivery
vehicles [89]. Transferrin conjugated chemotherapy drugs such as Dox have been shown to be able
to overcome multiple drug resistances in carcinoma, leukemia, and glioblastoma cell lines [90–93].
Transferrin shows growing promise in areas involving brain cancers as new drug delivery systems
emerge. Within pediatric tumors, C-dots conjugated to Dox and transferrin were able to cause
tumor death at higher instances compared to free drug alone and shown to bypass the blood-brain
barrier [27,41]. Moreover, transferrin may prove especially lucrative for bioimaging due to its natural
capacity to carry iron; as a result, MRI imaging may allow for a clearer tumor outline and thereby be of
aid during surgical resection, especially when conjugated alongside magnetic C-dots [94].

Transferrin is a rather large protein with a mass of about 79 kDa. As a result, it can be easily
purified via a size-exclusion column [26]. Transferrin can be readily conjugated via the commonly
utilized EDC/NHS chemistry wherein the C-dots are functionalized and binding to an amine group
within the transferrin polypeptide occurs. It should be noted that its exact binding location would be
difficult to pinpoint, as there may be more than one; furthermore, depending on location of binding,
transferrin may be entirely inactivated. Transferrin is not highly fluorescent with a small peak around
346 nm, which is much lower than most C-dots with broad peaks around 400 nm by comparison.
Given its large size, characterization can be readily accomplished using mass spectroscopy. Matrix
assisted laser desorption/ionization-time of flight (MALDI-TOF) can be used to prove a successful
conjugation as well [26,41].

CNTs in lung cancer were able to use transferrin to achieve a 136 fold more efficient system as
compared with free docetaxel alone, a chemotherapy agent [43]. However, CNTs with transferrin on
its surface have been found to contribute to oxidative damage, which leads to cell death or possible
tumor formation/progression [95]. Moreover, MWCNTs of 50 nm in diameter are known carcinogens
and there are limited studies on the effects of drug delivery systems within normal cells [95]. Although
several carbon-based nanoparticles are reported as nontoxic, this does not necessarily indicate they
cannot contribute to tumor progression. Given that drug delivery vehicles improve drug efficacy
and lower overall drug damage, a comparison between possible tumors caused by free CNTs, free
chemotherapy agents, and CNTs based delivery systems would be interesting.
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Figure 5. Diferric transferrin binds to transferrin receptor 1 at the cell surface, and the complex is
endocytosed using clathrin-coated pits. Iron is released from transferrin and transported out of the
endosome through divalent metal transporter 1 into the cytosol. Apotransferrin and transferrin receptor
1 return to the cell surface where they dissociate at neutral pH and are available for another iron cycle
(reproduced with permission from [86]).

3.2. Folic Acid-Based Targeted Delivery

Folic acid (FA) is readily sold and consumed as a B vitamin. FA plays a major role in the production
of purines and pyrimidine synthesis and thereby can regulate cell division and growth [64]. Basic drug
delivery mechanism shown using folate receptor targeting in Figure 6 wherein carbon nanoparticles
could potentially serve the role of polymeric carriers to deliver anti-cancer drugs into the cell [96].
Leamon and Low are credited with conceiving the idea to use the folate receptor for targeted cell
therapy and since a great quantity of research has emerged [97]. FA and conjugated FA bind with
great specificity to the folate receptor shown in several studies using competition tests as described
by Low et al. [98]. The folate receptor is overexpressed in epithelial, ovarian, cervical, breast, lung,
kidney, colorectal, and brain tumors [99,100]. By comparison, sarcomas, lymphomas, and cancers
of the pancreas, testicles, bladder, prostate, and liver usually do not show elevated levels of folate
receptors. In normal tissues folate receptor expression is limited to the lungs, kidneys, placenta, and
choroid plexus cells; wherein, receptors are found on the apical surface of polarized epithelia within
the aforementioned cells [100].

C-dots functionalized with FA show great potential in detecting cancerous cells that overexpress
FA as they are able to be endocytosed at a greater frequency as compared to normal cells [47,48]. In the
same vein, C-dots when attached to an anti-cancer agent such as Dox show a similar ability with the
added benefit of causing tumor death [46]. This specific system, interestingly, employed the use of
bovine serum albumin to improve biocompatibility and increase drug loading [46]. Folate receptor is a
more heavily varied receptor, unlike the more specialized transferrin receptor, with applications being
found for drug delivery systems in a multitude of cancer studies.

FA contains an amine attached to an aromatic ring as well as several carboxyl groups. Thus
it is readily conjugated with the carboxylic rich C-dots once functionalized using EDC/NHS
chemistry [34,47]. A similar approach has been implemented functionalizing FA with NHS and
dicyclohexyl-carbodiimide (DCC) filtered, then mixed with C-dots at a pH of 10 [47]. A commonly
used purification method is dialysis, as well as centrifugation. As for characterization, atomic force
microscopy (AFM) and transmission electron microcopy (TEM) are common methods used to ensure a
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successful conjugation [34,47,53–55]. UV-Vis spectroscopy provides the most common method due to
the very evident peak seen in FA at the 283 nm mark which would generally not overlap with most
C-dots [34,47].

A 2011 study tested FA-functionalized MWCNTs magnetic nanoparticle hybrids as contrast agents
and found that MWCNTs when conjugated to FA serve as ideal targeting agents for magnetic resonance
imaging (MRI) [53]. In another study, MWCNTs were targeted to cancer cells via the folate receptor
using a novel imaging approach. Confocal Raman microscopy was used unlike the typically used
confocal fluorescence microscopy, which uses fluorescently labeled CNTs, the researchers were able to
monitor cellular uptake in carcinoma cells [54]. Several studies back the efficacy of folate receptor when
conjugated carbon nanoparticles and attached to a drug [34,47,53,54]. Interestingly, researcher found
that using SWCNTs can cause cell destruction when conjugated with the folate receptor and exposed
to near-infrared (NIR) light (700–1100 nm) due to excessive heating within carbon nanotube once
aggregated near areas of high folate receptor density [55]. Overall, folate receptor is a very promising
prospect for anti-cancer targeted drug delivery systems [101].
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3.3. Hyaluronan-Based Targeted Delivery

CD44 receptor binds hyaluronan or hyaluronic acid and functions as an adhesion regulator, where
it is understood to function in hematopoiesis and lymphocyte activation [102]. Certain tumors that
are otherwise mobile such as lymphomas have been shown to contain high levels of CD44 [102].
Not surprisingly hyaluronan is commonly sold for those with joint problems, as hyaluronan is a
major component of the extracellular matrix and is a glycosaminoglycan that can be very large with a
molecular weight at times reaching into the millions [103]. Studies have shown that for hyaluronan
to interact with the CD44 receptor a minimum length of 6-8 units must be achieved and typically
smaller sized conjugates work best. Hyaluronan has been shown to contribute significantly to cell
replication and growth, migration, and can be frequently involved in the progression of some tumors
as shown in Figure 7 due to its vast array pf downstream effectors [104,105]. Of particular interest is
the downstream activation of Ras and phosphoinositide 3-kinase (PI-3K), two relatively well studied
proteins found very frequently mutated in cancers [37]. This can prove a powerful ligand for targeting
malignancies and as a marker [106,107]. CD44 has been found to be overexpressed in several cells such
as breast cancers, intestinal cancers, colon cancers, leukemia prostate cancers, and pancreatic cancer
due to its role in mediating receptor tyrosine kinases within the cell [108,109].
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eventual endocytosis (adapted with permission from [104]).

Recent studies have demonstrated that carbon nanoparticles can be used to effectively target
cancer cells with CD44 overexpression when conjugated to hyaluronan [51,56,110,111]. Within C-dots,
hyaluronan conjugated C-dots have shown the capacity to not only carry drugs but genes as well,
thereby contributing to gene therapy as well as the usual cell imaging demonstrated by many
studies [49]. The C-dots used in the study were synthesized from polyethylenimine; significantly, when
toxicity between starting material and C-dots is compared, the C-dots show remarkably decreased
toxicity, indicating C-dots as a potential way to decrease toxicity and maintain certain characteristics
of desired material [49].

Hyaluronan contains several carboxylic groups that can serve for attachment of C-dots. In CNTs,
common methods employ the use of DCC and ethylenediamine, whereby the surface for the nanotube
is functionalized with amines. Then EDC and hyaluronan are added whereby conjugation is proven
successful after brief dialysis [110]. C-dots by comparison first used hyaluronan activated by dopamine
for attachment followed by dialysis [111]. Common methods to characterize a successful conjugation
include NMR, FTIR, XPS, and to some extent fluorescence spectroscopy. Interestingly in FTIR several
C–O–C bands of hyaluronan were observed after conjugation at 1046, 1078, 946, and 1150 cm−1,
respectively [110]. Though this method of characterization may prove an issue since these readings
fall in the fingerprinting region and different C-dots possess different fingerprinting regions, leading
to possible misinterpretations.
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Imaging in both in vivo using mice as well as in vitro has displayed a great possibility for
CNTs within a photodynamic approach to treatment [110,111]. Such a method involves cell death
by heating nanoparticles with infrared light and causing cells containing the carbon nanoparticle
to apoptose via the activation of certain proteins such as heat shock proteins (hsp) and caspases.
Interestingly researchers have found that hematoporphyrin monomethyl ether when attached to
carbon nanoparticles and hyaluronan can be used for both photodynamic and photothermal therapy,
thereby producing synergistic effects [110]. Furthermore, some of these studies have shown that when
used in conjunction with an anti-cancer drug, tumor metastasis is severely hindered or impeded
and growth inhibition is increased in some cases by up to five times when compared to inhibition in
free drug alone [51,56]. Challenges in using hyaluronan arise in its variability in size. Furthermore,
while the targeted CD44 may indeed be overexpressed and effectively bind hyaluronan, other cells
in the body use hyaluronan in areas such as the joints; therefore, clinical studies would prove a
difficult accomplishment.

4. Summary and Outlook

Cancer is becoming an increasingly prominent forefront of research and to this end carbon
nanoparticles can serve as a powerful system for drug delivery. As these fields grow, carbon-based
nanoparticles have been shown to be an effective means towards a drug delivery system in the effort
to combat cancer. To this end, C-dots alongside similar carbon particles are nontoxic, unlike several
other heavier, metal-based nanoparticles, and they possess functional groups similar in number and
quantity to that of polymers like polyethylene glycol (PEG) commonly implemented in the field.

Continuing research will prove fruitful towards the development of an efficient drug delivery
system, and carbon nanoparticles are becoming increasingly useful in targeted therapy. Dox and Gem
studies have shown promising results when used in conjunction with carbon nanoparticles. These
two chemotherapy agents haven been approved for medical use in 1974 and 1995, respectively, and
are likely to be replaced by new emerging drugs currently under clinical trials [112]. Research into
novel drugs is growing as information grows. Possible anti-cancer agents such as siRNA are proving
effective in cancer treatment. New and possibly more lethal drugs will lead to greater need for C-dots
in producing drug delivery systems, wherein drug dosages can be lowered due to discriminatory
targeting of cancer; furthermore, successful targeting would lead to increased drug efficacy. Dual drug
delivery systems, by contrast, are in their infancy and not fully developed. Few papers have been
published as it relates to carbon nanoparticles and low drug loading onto carbon functional groups
may prove a challenge. Nonetheless, the continuing development of dual drug delivery in C-dots will
prove of great importance in the continuing fight against cancer.
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