Supporting Information

Synthesis and Magnetic Properties of Stable Radical Derivatives Carrying a Phenylacetylene Unit

Shogo Miyashiro, Tomoaki Ishii, Youhei Miura, and

Naoki Yoshioka*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan E-mail: yoshioka@applc.keio.ac.jp

Table of contents	
Synthetic procedure	S2
EPR spectra	S7
Crystallographic parameter	S8
Distributions of SOMO and spin density	S9

Synthetic procedure

tert-butyl 2-phenyl-2-chlorocarbonylhydrazinecarboxylate 7

To a solution of **6** (1.04 g, 5.0 mmol) in toluene, pyridine (400 μ L, 5.0 mmol, 1.0 eq.) was added at –78 °C under N₂. A solution of triphosgene (740 mg, 2.5 mmol, 0.50 eq.) in toluene was added slowly. The mixture was stirred at room temperature for 16 h, and the solvent was removed under vacuum. The solid was diluted with water and AcOEt, and the organic layer was dried over Na₂SO₄ and evaporated under vacuum. The white residue was purified by column chromatography on silica gel using AcOEt : *n*-hexane = 1 : 4 as the eluent to afford a white solid. Yield: 1.16 g, 86%; *R*_f value: 0.3 (AcOEt : *n*-hexane = 1 : 4); mp: 96-98 °C; ¹H-NMR (CDCl₃, 300 MHz) δ (ppm): 7.45-7.41 (m, 5H), 1.50 (s, 9H); ¹³C-NMR (CDCl₃, 75 MHz) δ (ppm): 154.0, 140.9, 129.1, 127.7, 124.1, 123.7, 82.7, 28.0; IR (KBr pellet, cm⁻¹): 3275 (v_{N-H}), 1759 (v_{C=O}), 1709 (v_{C=O}).

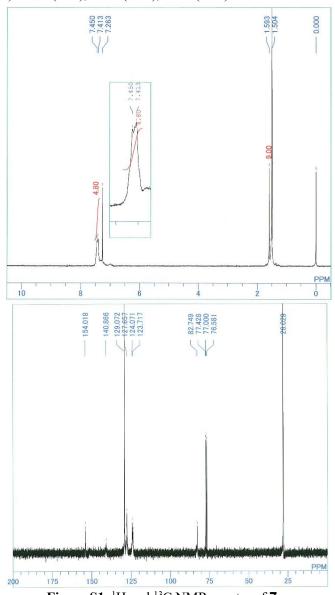


Figure S1. ¹H and ¹³C NMR spectra of 7.

di-tert-butyl-2, 2'-cabonylbis-(2-phenylhydrazinecarboxylate) 8

A mixture of **7** (1.16 g, 4.3 mmol) and **6** (1.79 g, 8.6 mmol, 2.0 eq.) was solved in toluene under N₂. The solution was stirred at 110 °C for 16 h, and water and AcOEt were added to the solution. The organic layer was dried over Na₂SO₄ and evaporated under vacuum. The residue was purified by column chromatography on silica gel using AcOEt : *n*-hexane = 1 : 2 to afford a white solid. Yield: 1.33 g, 70%; R_f value: 0.5 (AcOEt : *n*-hexane = 1 : 2); mp: 178-179 °C; ¹H-NMR (aceton-d₆, 300 MHz) δ (ppm): 7.34 (d, *J* = 6.6 Hz, 4H), 7.08 (t, *J* = 6.9 Hz, 4H), 6.92 (t, *J* = 6.6 Hz, 2H), 1.49 (s, 18H); ¹³C-NMR (CDCl₃, 75 MHz) δ (ppm): 157.5, 155.8, 142.6, 128.4, 125.8, 124.4, 81.8, 28.2; LRMS (MALDI-TOF): m/z = 441 [M-H]; IR (KBr pellet, cm⁻¹): 3327 (v_{N-H}), 1714 (v_{C=O}).

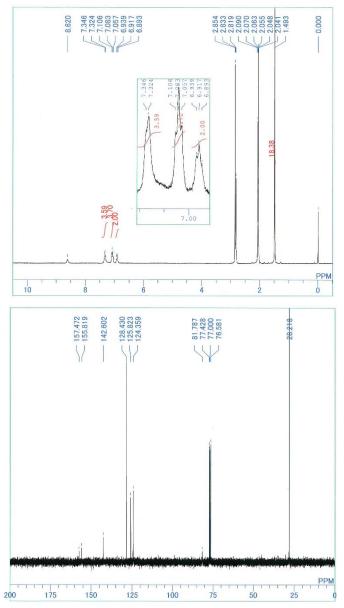
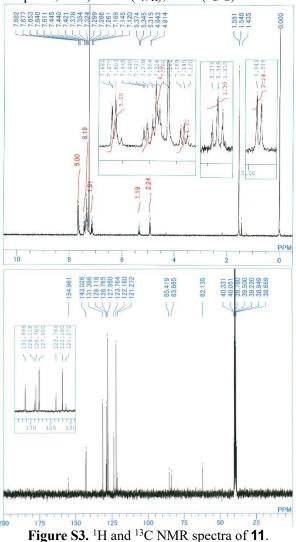



Figure S2. ¹H and ¹³C NMR spectra of 8.

2,4-diphenyl-6-(phenylethynyl)-1,2,4,5-tetrazinan-3-one 11

To a solution of **8** (1.33 g, 3.0 mmol) in 33 mL of EtOH, 17 mL of 1M HCl was added. The mixture was stirred at 80 °C for 1 h, and then the mixture was stirred at room temperature for 16 h. The solvent was removed under vacuum, and the solid was washed with CHCl₃, then the white residue (863 mg, 2.7 mmol) was obtained. To a solution of the white residue (123 mg, 0.39 mmol) in EtOH, 3-phenylpropiolaldehyde (51 mg, 0.39 mmol, 1.0 eq.) and sodium acetate (64 mg, 0.78 mmol, 2.0 eq.) were added under N₂. The mixture was stirred for 24 h, and the solvent was removed under vacuum. Water and CH₂Cl₂ were added to the residue and the organic layer was dried over Na₂SO₄ and evaporated under vacuum. The yellow residue was purified by column chromatography on silica gel using CH₂Cl₂ as the eluent to afford a white solid. Yield: 106 mg, 76%; *R*_f value: 0.1 (CH₂Cl₂); mp: 195-198 °C; ¹H-NMR (CDCl₃, 300 MHz) δ (ppm): 7.68-7.61 (m, 5H), 7.45-7.30 (m, 8H), 7.17-7.12 (m, 2H), 5.35 (t, *J* = 8.7 Hz, 1H), 4.93 (d, *J* = 8.7 Hz, 2H); ¹³C-NMR (DMSO, 75 MHz) δ (ppm): 155.0, 143.0, 131.4, 129.1, 128.8, 128.0, 123.8, 122.2, 121.3, 85.4, 83.9, 62.1; LRMS (MALDI-TOF): m/z = 355 [M+H]; IR (KBr pellet, cm⁻¹): 3249 (v_{N-H}), 1623 (v_{C=0}).

S4

1,5-diphenyl-3-phenylethynyl-6-oxo-1,2,4,5-tetrazin-2-yl 2

To a solution of **11** (106 mg, 0.30 mmol) in toluene, DDQ (102 mg, 0.45 mmol, 1.5 eq.) was added under N₂. The mixture was stirred for 1 h, and the solvent was removed under vacuum. The solid was diluted with water and AcOEt, and the organic layer was dried over Na₂SO₄ and evaporated under vacuum. The residue was purified by column chromatography on silica gel using CH₂Cl₂ : *n*hexane = 1 : 2 as the eluent to afford a red solid (88 mg, 83%). Yield: 88 mg, 83%; R_f value: 0.5 (CH₂Cl₂ : *n*-hexane = 1 : 2); mp: 186-188 °C; LRMS (MALDI-TOF): m/z = 351 [M]; IR (KBr pellet, cm⁻¹): 2227 (v_{C=C}), 1702 (v_{C=O}); Elem. Anal.: calcd. for C₂₂H₁₅N₄O: C, 75.20; H, 4.30; N, 15.94. Found: C, 75.29; H, 4.29; N, 15.59.

2,4-diisopropyl-6-(phenylethynyl)-1,2,4,5-tetrazinan-3-one **12**

To a solution of **10** (3.03 g, 8.1 mmol) in 40 mL of EtOH, 20 mL of 1M HCl was added. The mixture was stirred at 80 °C for 30 min, and then the mixture was stirred at room temperature for 16 h. The solvent was removed under vacuum, and the solid was washed with CHCl₃, then the white residue (1.95 g, 7.9 mmol) was obtained. To a solution of the white residue (235 mg, 0.95 mmol, 1.3 eq.) in 3 mL of EtOH, 3-phenylpropiolaldehyde (95 mg, 0.73 mmol) and sodium acetate (156 mg, 1.9 mmol, 2.0 eq.) were added under N₂. The mixture was stirred for 24 h, and the solvent was removed under vacuum. Water and AcOEt were added to the residue and the organic layer was dried over Na₂SO₄ and evaporated under vacuum. The yellow residue was purified by column chromatography on silica gel using AcOEt : *n*-hexane = 1 : 1 as the eluent to afford a white solid. Yield: 160 mg, 77%; *R*_f value: 0.3 (AcOEt : *n*-hexane = 1 : 1); mp: 151.5-153 °C; ¹H-NMR (CDCl₃, 300 MHz) δ (ppm): 7.46 (d, *J* = 8.1 Hz, 2H), 7.37-7.32 (m, 3H), 4.67-4.58 (m, 3H), 3.97 (d, *J* = 9.9 Hz, 2H), 1.16 (d, *J* = 6.9 Hz, 6H), 1.13 (d, *J* = 6.6 Hz, 6H); ¹³C-NMR (DMSO, 75 MHz) δ (ppm): 153.9, 131.8, 129.1, 128.4, 121.4, 85.9, 82.4, 62.2, 47.6, 19.3, 18.7; LRMS (MALDI-TOF): m/z = 288 [M+2H]; IR (KBr pellet, cm⁻¹): 2243 (vc=c), 1583 (vc=o).

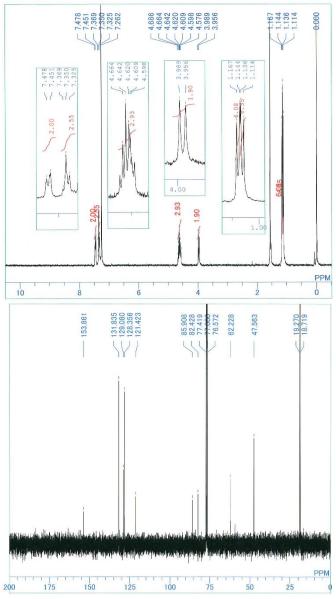


Figure S4. ¹H and ¹³C NMR spectra of **12**.

1,5-diisopropyl-3-phenylethynyl-6-oxo-1,2,4,5-tetrazin-2-yl 3

To a solution of **12** (80 mg, 0.28 mmol) in 3 mL of toluene, DDQ (95 mg, 0.42 mmol, 1.5 eq.) was added under N₂. The mixture was stirred for 2 h, and the solvent was removed under vacuum. The solid was diluted with water and AcOEt and the organic layer was dried over Na₂SO₄. The solvent was evaporated under vacuum and the residue was purified by column chromatography on silica gel using AcOEt : *n*-hexane = 1 : 3 as the eluent to afford a orange solid. Yield: 43 mg, 54%; *R*_f value: 0.7 (AcOEt : *n*-hexane = 1 : 3); mp: 133-135 °C; LRMS (MALDI-TOF): m/z = 285 [M+2H]; IR (KBr pellet, cm⁻¹): 2229 (v_{C=C}), 1680 (v_{C=O}); Elem. Anal.: calcd. for C₁₆H₁₉N₄O: C, 67.82; H, 6.76; N, 19.77. Found: C, 67.03; H, 6.81; N, 19.60.

EPR spectra

(a)

(b)

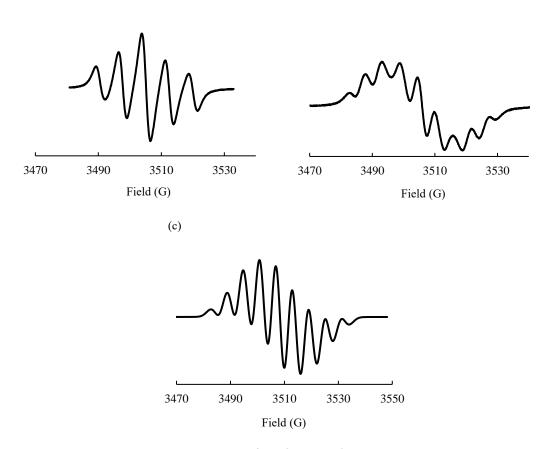
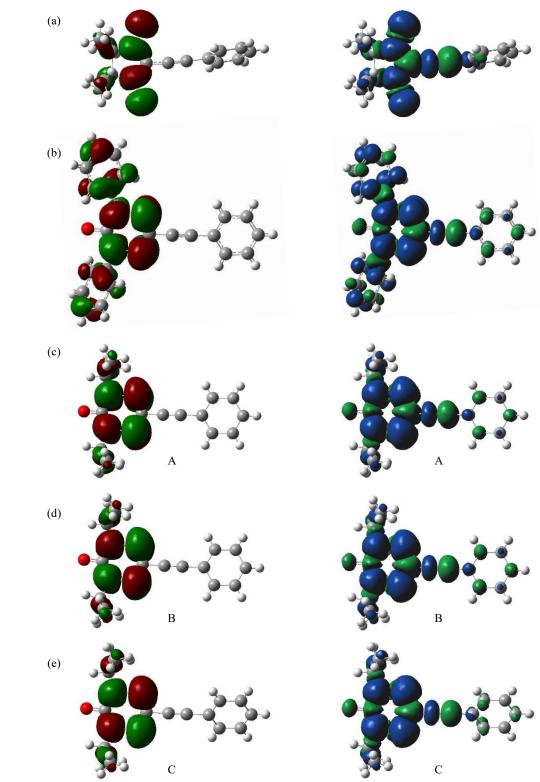



Figure S5. EPR spectra of 1(a), 2(b), and 3(c) at r.t. in toluene.

Crystallographic parameter

Formula	$C_{15}H_{17}N_2O_2(1)$	$C_{22}H_{15}N_4O(2)$	$C_{16}H_{19}N_4O(3)$	
Μ	257.30	351.38	283.35	
Crystal system	monoclinic	triclinic	monoclinic	
Space group	Cc	<i>P</i> -1	$P2_{1}/n$	
<i>a</i> , Å	6.2033(7)	8.9743(7)	16.302(3)	
b, Å	21.0864(19)	10.2833(7)	5.4709(11)	
<i>c</i> , Å	11.1658(11)	10.9480(8)	53.971(11)	
α , deg	90	102.002(2)	90	
β , deg	106.122(4)	91.037(3)	97.290(5)	
γ, deg	90	113.571(2)	90	
$V, \text{\AA}^3$	1403.1(2)	900.00(11)	4774.6(16)	
Ζ	4	2	12	
<i>D</i> , g cm ⁻³	1.218	1.297	1.183	
R (I >2 σ (I))	0.0423	0.0610	0.0725	

Table S1. Crystallographic parameters of ${\bf 1},\,{\bf 2}$ and ${\bf 3}.$

Distributions of SOMO and spin density

Figure S6. SOMO and spin density distributions of **1**(a), **2**(b) and **3**(c, d, e).

atom	spin density	atom	Spin density
N1	0.259	С9	-0.153
N2	0.264	C10	0.015
01	0.357	C11	-0.010
02	0.363	C12	0.003
C1	-0.220	C13	-0.006
C2	-0.015	C14	0.003
C3	-0.015	C15	-0.010
C8	0.091		

Table S2. The spin density distribution on the atom of 1.

Table S3. The spin density distribution on the atom of 2.

atom	spin density	atom	Spin density
N1	0.427	C16	-0.058
N2	0.162	C17	0.013
N3	0.158	C18	-0.012
N4	0.445	C19	0.006
01	-0.149	C20	-0.010
C1	-0.018	C21	0.006
C2	-0.177	C22	-0.012
C15	0.045		

Table S4. The spin density distribution on the atom of $\mathbf{3}(A)$.

atom	spin density	atom	Spin density
N1	0.399	C10	-0.057
N2	0.209	C11	0.011
N3	0.210	C12	-0.010
N4	0.381	C13	0.005
01	-0.012	C14	-0.009
C1	-0.032	C15	0.005
C2	-0.144	C16	-0.010
С9	0.038		

atom	spin density	atom	Spin density
N5	0.383	C26	-0.058
N6	0.206	C27	0.011
N7	0.214	C28	-0.010
N8	0.398	C29	0.005
02	-0.011	C30	-0.009
C17	-0.032	C31	0.005
C18	-0.146	C32	-0.011
C25	0.039		

Table S5. The spin density distribution on the atom of $\mathbf{3}(B)$.

Table S6. The spin density distribution on the atom of $\mathbf{3}(\mathbf{C})$.

atom	spin density	atom	Spin density
utom	spin density	utom	spin density
N9	0.375	C42	-0.056
N10	0.203	C43	0.008
N11	0.218	C44	-0.006
N12	0.402	C45	0.003
03	-0.012	C46	-0.006
C33	-0.032	C47	0.003
C34	-0.143	C48	-0.006
C41	0.035		