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Abstract: The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals.
For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was
proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product,
the high-valent ferryl form, was demonstrated in stopped-flow experiments. Reported here are
the stopped flow spectra recorded upon mixing oxy Hb (native, as well as chemically-derivatized
in the form of several candidates of blood substitutes) with a supraphysiological concentration
of nitrite. The data may be fitted to a simple kinetic model involving a transient met-aqua form,
in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are
in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic
conditions at much lower concentrations of nitrite (Grubina, R. et al. J. Biol. Chem. 2007, 282,
12916). The simple model for fitting the stopped-flow data leaves a small part of the absorbance
changes unaccounted for, unless a fourth species is invoked displaying features similar to the oxy and
tentatively assigned as ferrous-peroxynitrate. Density functional theory (DFT) calculations support
this latter assignment. The reaction allows for differentiating between the reactivities of various
chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of
hemoglobin slows the nitrite-induced oxidation, in sharp contrast to oxidative-stress type reactions
which are generally accelerated, not inhibited. Sheep hemoglobin is found to be distinctly more
resistant to reaction with nitrite compared to bovine Hb, at large nitrite concentrations (stopped-flow
experiments directly observing the oxy + nitrite reaction) as well as under auto-catalytic conditions.
Copolymerization of Hb with bovine serum albumin (BSA) using glutaraldehyde leads to a distinct
increase of the lag time compared to native Hb as well as to any other form of derivatization examined
in the present study. The Hb-BSA copolymer also displays a slower initial reaction with nitrite under
stopped-flow conditions, compared to native Hb.
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1. Introduction

Under various stress conditions, the redox chemistry of hemoglobin is susceptible to toxic
reactions due to the interaction with oxidative stress agents such as peroxide, yielding free radicals
and highly-oxidizing states at the iron (ferryl, Compound II) [1–5]. It has previously been shown that
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polymerization of hemoglobin, as required when attempting to produce useful candidates for artificial
oxygen carriers (“blood substitutes”) can lead to an increase in pro-oxidant reactivity (autooxidation,
reaction with hydrogen peroxide, free radical generation), and that this tendency can be reduced when
co-polymerizing hemoglobin with antioxidants—of which serum albumin is particularly effective [6–8].

The reaction between nitrite and oxy hemoglobin or oxy myoglobin, respectively, has been
investigated for almost 150 years, with various reaction pathways or steps proven by the detection of
various intermediate species [9–20]. Besides negative effects such as methemoglobinemia, nitrite was
also shown to act as an endogenous source of nitric oxide, with human and animal studies revealing
that nitrite supplementation can have a vasodilating action, thus offering protection against hypoxic
pathological conditions [21–29].

The oxy + nitrite reaction displays complex kinetics starting with a slow phase (lag) followed
by a fast autocatalytic phase involving branching steps and reactive intermediates. Evidence for the
implication of hydrogen peroxide, ferryl species, nitrogen dioxide radical and peroxynitrate has been
reported for various stages of the reaction [10–17,30,31]. The reaction has been thought to be initiated
via one of two ways, not necessarily mutually exclusive or mutually incompatible in the long time
scale of the autocatalytic process: (i) direct reaction of nitrite with the iron-bound oxygen and/or
(ii) dissociation of molecular oxygen from heme followed by reaction of the heme iron with other
ligands, be they nitrite or other small molecules that may result in an aerobic solution of nitrite in the
presence of a protein capable of mild catalysis [10,23,32–37] such as hemoglobin. For the initial step of
the process, binding of nitrite directly to the iron-coordinated oxygen molecule is favored, leading to the
formation of an Fe(II)-peroxynitrate adduct, FeII-OONO2. Upon the release of nitrate, this would lead
to a ferryl species [FeIV O]2+, which has been observed experimentally as such, under longer-scale times
(as part of a complex set of competing reactions) as well as under millisecond-timescales (as a result of
direct reaction with excess nitrite) [9,11]. The ferryl is known to be reduced by nitrite, thus yielding
[FeIII-OH2] [11,38]. Then, if excess nitrite is used, [FeIII-NO2] would ensue. Having previously shown
that ferryl is clearly detectable in the reaction on oxy Mb and nitrite under stopped-flow millisecond
conditions at high nitrite concentrations where the initial oxy+nitrite reaction is directly observable [9],
we report here on the distinctly different behavior of hemoglobin in the same reaction—revealing at
the same time a potential application as a test for blood substitute candidates in terms of reactivity
towards a component of nitrosative stress. Additionally, the stopped-flow data reveals a previously
undescribed intermediate, possibly a peroxynitrate adduct formed prior to ferryl. The existence of
such an intermediate was previously demonstrated indirectly based on kinetic arguments, though its
spectrum was not observed directly [11]. Upon completion of this study, a recent report by Bulow
and co-workers has provided additional evidence for the facts that the reaction of oxyHb with nitrite
involves metHb and nitrate as final products, and ferryl Hb is an intermediate species of the reaction
when working at a low-millimolar concentration level of nitrite, as also initially observed under similar
auto-catalytic conditions where, at ~10 s after mixing, a brief accumulation of ferryl was detected [31].
Moreover, they observed that adult human hemoglobin was oxidized more slowly than fetal human
hemoglobin with an excess of nitrite [39].

2. Results and Discussion

2.1. No Significant Accumulation of Ferryl in the OxyHb–Nitrite Reaction at Supraphysiological
Nitrite Concentration

The reaction between nitrite and oxy Hb is influenced by the concentration of reactants in complex
manners, especially at lower nitrite concentrations—linked to the fact that several processes are
thought to occur beyond the initial event of oxyHb being oxidized to met by nitrite, with NO2 as a
likely product (the oxy, met and ferryl forms of Hb are all proposed to react with several side-products
of initial oxidation events—mainly NO2, superoxide, peroxide) [12–17,19,20,40]. Figure 1a illustrates
that the concentration of nitrite changes the rate of the reaction significantly. Thus, the lag time is
directly correlated with the nitrite amount, in the range of 5–50 min. A concentration of 200 µM nitrite
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was chosen for the ensuing experiments, so that the lag may be clearly observable without excessive
lengthening of the experiment. The amount of protein also controls the rate of the process. A lag time is
always noted, regardless of the protein concentration. Interestingly, the lag time is inversely correlated
with the hemoglobin concentration, in the range of 20–50 min; this may be explained in terms of
the excess protein material quenching the free radicals, and thus delaying the onset of oxidation
(Supplementary information-Figure S1).
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Figure 1. (a) Time courses for the nitrite oxidation of hemoglobin in oxygen-saturated phosphate
buffer saline (PBS) buffer at various concentrations of nitrite. Conditions: 25 µM Hb, PBS 7.4, room
temperature; (b) UV-vis spectra collected upon mixing oxyHb (66.6 µM) with NaNO2 (660 mM).
Conditions: pH 7.4, PBS buffer, aerobic, over a range of 2 s; (c) Computed spectra for the
species involved in the A → B → C reaction model (A—oxyHb, C—metHb, D—met-nitriteHb).
Conditions: 66.6 µM Hb, 0.66 M nitrite, pH 7.4, PBS buffer, aerobic. Inset: fitting at 575 nm trace for the
A→ B→ C kinetic model; (d) Overlay of the computed spectra of species B and C with the spectra of
various possible intermediates. Conditions: Fe(III)-OH2: oxyHb 30µM, pH 7.4; Fe(III)-NO2

−: 30 µM
metHb, 400 µM NaNO2, pH 7.4 PBS buffer; Fe(III)-OH2:oxyHb 30µM, pH 7.4 PBS buffer.

Figure 1b illustrates the UV-vis spectra collected upon mixing of oxy Hb with a very large
excess of nitrite—under conditions similar to those previously presented for Mb [9]. As discussed
before [9], the reason for using such large concentrations is that under these conditions the initial
interaction between Hb and nitrite, which is normally very slow, can be sped up due to the much larger
concentrations of reactants—thus increasing the chances of directly observing the reaction product
before it would decay via reductive or dissociation processes. The dominant features are those of
oxyHb (538–577 nm) and of the met-nitrite adduct (530–575 and 630 nm). The spectra were fitted
according to an A→ B→ C scheme (Figure 1c) where indeed, as in the case of Mb [9], species A is
assigned as oxyHb, and C is assigned as the met nitrite adduct (Figure 1d). Surprisingly, in contrast to
Mb, where in the similar experiment species B was found to be ferryl, for Hb the spectrum of species B
corresponds to a high-spin met Hb (FeIII-OH2), with the typical absorbance features at 505, 580 and
630 nm (cf. Figure 1c). The decay product of ferryl (including reduction by a number of agents, nitrite
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included) is indeed known to be a high spin FeIII-aqua. In this context, it may be interpreted that Mb
and Hb employ the same mechanism for the oxy + nitrite reaction, via a peroxynitrate intermediate,
but that the relative reaction rates for ferryl formation and decay are close to each other (as indeed was
previously reported for Mb [9]), so that the small structural differences between the two globins (as well
as the availability of three neighboring hemes as possible electron donors) [1] can lead to a different
behavior, where ferryl can accumulate in higher concentrations in the case of Mb compared with Hb,
especially at supraphysiological nitrite concentration. Hogg and co-workers have indeed previously
shown that the kinetic behaviour of the Hb–nitrite mixture at physiologically-relevant concentrations
can best be reconciled with a mechanism entailing such a peroxynitrate intermediate [11].

The formation of the met-aqua species B is dependent on the concentration of nitrite with apparent
rate constants of 112 M−1 s−1 for the A→ B reaction and 11.5 s−1 for the B→ C with respect to nitrite at
a hemoglobin concentration of 30 µM, (cf. Figure 2a), with a reaction order of 2 for the first reaction and
1 for the second reaction, with respect to nitrite (see also Supplementary information Figures S2–S4).
The reaction order for aqua-met formation is consistent with the fact that two nitrite molecules are
needed for this reaction: one for generating ferryl from oxy, and one for reducing the ferryl; apparently,
these two processes are concerted enough to make the reaction display an order of 2 with respect to
nitrite. An alternative interpretation for the non-linearity may also be that the mechanism is even more
complicated than proposed/described above (i.e., in addition to involving the concerted formation
and decay of ferryl with two nitrite molecules). By contrast, the met + nitrite→met-nitrite (B→ C)
process displays the expected order 1 for the incoming ligand.
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Figure 2. (a) Plots of k1 and k2 vs. NO2
− concentration for the reaction of oxyHb with NO2

− at pH
7.4, aerobic; (b) UV-vis spectra collected upon mixing oxyHb (66.6 µM) and guanidine (1M) with
NaNO2 (66 mM). Conditions: pH 7.4, PBS buffer, aerobic, over a range of 2 s; (c) Computed spectra
for the species involved in the A→ B→ C→ D reaction model (A—oxy Hb, B—Fe(II)-peroxynitrate,
C-metHb, D—metnitriteHb). Conditions: 66.6 µM Hb, 1 M guanidine, 66 mM nitrite, pH 7.4, PBS
buffer. Inset: fitting at 575 nm trace for the A→ B→ C→ D kinetic model; (d) Computed spectra
for the species involved in the A→ B→ C→ D reaction model (A—oxy Hb, B—Fe(II)-peroxynitrate,
C—metHb, D—met-nitriteHb). Conditions: 6.6 µM Hb, 33 mM nitrite, pH 7.4, PBS buffer, aerobic.
Inset: fitting at 575 nm trace for the A→ B→ C→ D kinetic model.
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The above-discussed occurrence of an observable met-aqua intermediate instead of an observable
ferryl in the reaction of oxy Hb with nitrite as opposed to the ferryl seen with Mb under similar
conditions is not altogether unexpected. In Hb, the presence of the three extra subunits and hemes
makes for an excess of potential pathways for diffusing the extra oxidizing equivalent in ferryl.
Arguably, the comparative instability of the Hb ferryl offers a physiological advantage against oxidative
and nitrosative stress agents. On the other hand, under auto-catalytic conditions at much lower
nitrite concentrations, a brief accumulation of ferryl Hb in the reaction of oxy Hb with nitrite was
indeed reported—though on a much longer time scale (~10 s) compared to the present stopped-flow
experiments [31].

2.2. An Elusive Minor Component in the Kinetics: The Heme-Peroxynitrate Adduct?

The fitting described in Figure 2b–d is imperfect over the starting stages of the reaction, suggesting
possible involvement of a fourth species. Acting on the hypothesis that this fourth species may be
the missing ferryl (detected so clearly in the Mb experiments), an attempt was made to alter the distal
pocket of Hb by increasing its solvent accessibility using controlled concentrations of a denaturing agent.
This strategy was previously shown to be efficient in the case of cytochrome c [41], where it allowed
accumulation of a ferryl species in the reaction with hydrogen peroxide. Figure 2b thus shows UV-vis
spectra of guanidine-treated oxy Hb upon mixing with nitrite. The model proposed for this reaction
follows A → B → C → D kinetics (Figure 2c and Figures S5–S8), where A oxy, C met-aqua and D
met-nitrite. Species B was found to be different from the ones observed until now; it is decidedly different
from ferryl, and instead presents a good similarity with the oxy state—with similar positions for the
maxima (542 and 575 nm) but higher extinction coefficients—suggesting FeII with a small ligand [42]; these
features are to our knowledge unprecedented, and may be indicative of an (also unprecedented) heme
FeII-peroxynitrate adduct. Importantly, the Soret maximum of B was found to be at 418 nm, similar to but
shifted compared to oxyHb (Figure 3d). Attempts to enforce a ferryl spectrum for B during the fitting
procedure led to a distinctly weaker agreement with experiment (Figure S9, Supplementary information).

Allosteric effects in the case of globins reacting with nitrite have been described [10,31]. The R state
of Hb displays a higher reactivity towards nitrite probably due to the lower redox potential or due to the
high ligand affinity, which can facilitate the binding of small molecules. This low redox potential favors
the distribution of electrons to nitrite and increases the reactivity of this molecule. The reaction of sickle
cells with nitrite also provides insights into the allosteric nature of this reaction, thus demonstrating also
the role of heme electronics in addition to heme pocket geometry [31]. T-state Hb was shown to have
a significantly lower reaction rate with nitrite [32]. To verify that the extra species in Figure 2c is not a
manifestation of allostery, the reaction of met Hb with nitrite was verified under the same concentration of
nitrite as for the oxy Hb + nitrite reaction; no allosteric effects were observed (Supplementary information
Figure S10a). More importantly, Figure 3a shows that the reaction of oxy Mb with nitrite may also be
fitted to an A→ B→ C→ D scheme—where species B, prior to ferryl, is similar to the one observed with
Hb—not only in the presence of guanidine, but also in its absence (Figure 3b). Also, the residual plots of
the kinetic data suggest a significantly better fit for the model which involves four species regardless of
whether the experiments are done with Hb, Mb or in the presence of guanidine (4c). The concentration
interval in which the putative peroxynitrate (B) species was detected is very narrow (33–53 mM nitrite, cf.
Figure S6), so the rate constant and the reaction order for the oxyHb-guanidine + nitrite reaction could
not be determined. One important aspect that could explain the difference between the behavior of Mb
and Hb is the reactivity of the ferryl form with nitrite. Ferryl Hb is reduced much faster by the nitrite as
compared with Mb even at low nitrite concentration (Figure 3d) and therefore its accumulation would be
expected to be more difficult in the presence of a high nitrite concentration in contrast to Mb.

An alternative interpretation of the data, since we have not detected ferryl in the reaction of oxy Hb
with nitrite (though Hogg and co-workers have [11]), would be that ferryl was never formed and that
instead the reaction proceeds by initial dissociation of O2 from oxy Hb. Such a mechanism was easily
discarded for Mb since ferryl was observed [9]. In a putative alternative mechanism, dissociation of O2
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from oxy Hb would lead to deoxy Hb, which would then react with nitrite to yield ferrous-nitrite (not a
detectable species even under stopped-flow conditions [43]) and then ferric-NO. However, neither deoxy
nor ferric-NO were detected in our experiments, nor do they offer a reasonable route for accumulation of
met-aqua. Instead, Figure 3d does confirm that the reduction of ferryl Hb proceeds much faster than the
reduction of ferryl Mb, thus lending support for the interpretation that the ferryl mechanism is at work in
both proteins.

The involvement of allosteric effects in the reactions examined in Figures 1 and 2 was also considered.
Attempts to fit the stopped-flow data with a concurrent set of two initial reactions (where R and T Hb
would react differently) did not improve the results. Bovine Hb, unlike human Hb, is under allosteric
control from chloride rather than organic phosphates [8]. Since the experiments in Figures 1 and 2
were conducted in saline phosphate buffer (PBS), hence in the presence of chloride, an attempt was
made to examine the oxy + nitrite reaction in the same buffer but now modified to exclude the
chloride. At two representative nitrite concentrations (400 and 270 mM), no effect of chloride was
noted. Nevertheless, considering the similarity in charge and size between chloride and nitrite, this result
is not unexpected. An additional control experiment was performed measuring the affinity of bovine
Hb in the presence of nitrite, in the same two buffers as above; here too, no measurable differences were
observed (data not shown).
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Figure 3. (a) Computed spectra for the species involved in the A→ B→ C→D reaction model for oxyMb
+ nitrite (A—oxyMb, B—Fe(II)-peroxynitrate, C—metMb, D—met-nitriteMb). Conditions: 75 µM Mb,
0.5 M pH 7.4, PBS buffer, aerobic. Inset: fitting at 575 nm trace for the A→ B→ C→ D kinetic model;
(b) Computed spectra for the species involved in the A→ B→ C→ D reaction model for oxyMb + nitrite
(A—oxyMb, B—Fe(II)-peroxynitrate, C—metMb, D—met-nitriteMb). Conditions: 75 µM Mb, 0.5 M pH 7.4,
PBS buffer, aerobic. Inset: fitting at 575 nm trace for the A→ B→ C→ D kinetic model; (c) Residual
plots of the A→ B→ C kinetic model vs. A→ B→ C→ D kinetic model for the: left panel: oxy Mb +
nitrite, right panel: oxyHb +nitrite, lower panel: oxyHb-guanidine + nitrite. Conditions cf. Materials and
Methods; (d) Ferryl formation from the met form and its reduction with nitrite for both Mb and Hb (8 µM
protein, 100 µM hydrogen peroxide, 0.3 µM catalase (CAT) for excess of peroxide removal, 0.3 mM nitrite,
PBS buffer pH 7.4).
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2.3. QM/MM and TD-DFT Simulations

Our previously reported [9] DFT calculations on the nitrite + oxy reaction were restricted to
the structural (electronic and geometric) analysis of a small model of the heme active center of
globins—consisting of the heme (without its lateral substituents) and the imidazole rings of the
two nearby histidines (proximal and distal). Negligible barriers were predicted for nitrite binding
to the dioxygenic ligand of the iron, as well as for subsequent O–O bond cleavage to liberate nitrate.
Figure S14 now shows that even in a more realistic protein environment, such as that of a globin in a
QM/MM setting, the energetics of the reaction remain very conducive towards N–O bond formation
and ensuing O–O bond cleavage. On the other hand, the same Figure shows that liberation of
peroxynitrate from the iron is (just like the liberation of nitrate, and as expected for an anion at a heme
center buried in a polypeptide matrix) predicted to be energetically unfavorable.

Figure 4 shows a close-up view of the superposition of the QM/MM-optimized geometries of
the equilibrium state of the heme-peroxynitrate adduct and of the state obtained by elongation of the
O–O bond via the pathway leading to nitrate liberation up to an O—O distance exceeding the sum
of the van der Waals radii. Notably, all of the movement of the NO3

− moiety up to this point has
occurred still in the distal cavity and in fact away from the distal histidine. In fact, the results show
that not only the protein backbone retained its equilibrium conformation, but also the side chains of
the residues in the vicinity of the heme demonstrate very little movement. This complete rigidity of the
protein matrix in the Mb case is already indicating that the energetics of the process will most likely
be controlled in a straightforward rigid manner by the interior walls of the distal cavity. The only
reasonable way out for an anion from the distal cavity would be via the space opened up by flipping of
this His side-chain into the solvent. It is then expected that the mobility of the distal His may control
the chances of success in attempts to experimentally detect short-lived caged intermediates such as
the heme–peroxynitrate state in globins. On the other hand, the tighter distal cavity of Hb vs. Mb
(e.g., with a shorter distance from the Fe to the ceiling of the cavity, Leu29, cf. Figure S15) would force
the departing nitrate group to stick for longer times in the vicinity of the heme which may explain
why the peroxynitrate intermediate may have been observed directly in Hb, but not in Mb.
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The active site was also subjected to TD-DFT calculations, in order to verify any potential
support for the hypothesis that a heme-peroxynitrate adduct was indeed detected in the stopped-flow
experiments, and that the Soret band of such a species would have higher intensity but similar
wavelength to that of the oxy form. As a (second) reference model, the ferryl form of the heme was also
computed with the same TD-DFT methodology. As shown in Table 1, the M06-L/6-311g(d,p) TD-DFT
data predict the correct trend between the Soret bands of the oxy and ferryl heme: lower energy for
the ferryl, and slightly lower extinction coefficients—although the exact wavelength is not accurately
predicted for the oxy form. Then, the peroxynitrate adduct is indeed predicted to have the Soret band
very close to that of the oxy, and somewhat higher extinction coefficients. Overall, within the limits of
the methodology, the TD-DFT data appear to support the conclusion that a heme-peroxynitrate adduct
was detected in the stopped-flow experiments, and that its UV-vis spectrum would resemble that of
the oxy form.

Table 1. Tabulated wavelengths of the main Soret bands in peroxynitrate, oxy and oxo heme models
derived from M06-L/6-311g(d,p) TD-DFT calculations. The excitations with oscillator strengths of at
least ~0.1 and wavelengths higher than 350 nm are listed. Frontier molecular orbitals involved in the
excitations as well as their energies can be found in the supplementary information (Table S1).

Model Oscillator Strength Excitation Energy (nm)

Heme–peroxynitrate 0.374 379
0.401 376

Heme-oxy

0.200 379
0.153 368
0.359 365
0.249 355

Ferryl
0.113 458
0.174 424
0.094 417

2.4. Behavior of Polymerized Hemoglobin Derivatives

Hb-based blood substitute candidates have been described extensively, although their use has
been limited due to their toxicity issues, with most of them being linked to oxidative stress [8,44,45].
Here, we examine the resistance of such candidates with nitrite, as a model system for nitrosative stress.
Figure 5a shows a comparison of how various derivatized globins react with nitrite (raw spectra are
shown in Supplementary information, Figure S16). Interestingly, unlike in the autooxidation process,
where polymerization with glutaraldehyde (GL) or other bifunctional agents such as dissuccinimidyl
suberate (DSS) leads to an increase in the autooxidation rates of hemoglobin [6], these modifications in
fact slow down the rate at which Hb is oxidized by low concentrations of nitrite. To our knowledge,
this is the first example of a reaction involving nitrosative or oxidative stress agents and hemoglobin,
which is not accelerated, but rather slowed down, by the polymerization procedures typically applied
to Hb with the purpose of creating a blood substitute. Hemoglobin co-polymerized with bovine serum
albumin using glutaraldehyde displays the largest lag time, much longer than the version that lacks
albumin. By contrast, copolymerization of Hb with a peroxidase (rubrerythrin, Rbr) does not increase
the lag time (on the contrary, it decreases it compared to the simple polymer). Hemoglobins from
other sources than bovine (horse, goat, sheep) display longer lag times—with sheep Hb displaying the
longest. From these points of view, copolymerization with albumin or replacement of bovine Hb with
sheep Hb would appear to be reasonable choices when attempting to design a blood substitute with
improved resistance to nitrosative stress [6,46–49].
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At large excess concentrations of nitrite (suitable for stopped-flow experiments), the lowest
reaction rate was found to be for poly Hb (Table 2)—almost two orders of magnitude lower than
for native hemoglobin. The copolyHbBSA GL, copolyHbBSA DSS and copolyHbRbr display higher
reaction rates in the stopped-flow experiments, compared to the simple polyHb, but still distinctly
lower than native Hb, in agreement with the results seen for the overall process in Figure 5b.
Compared to the native Hb, the stoichiometry of the blood substitutes in reaction with nitrite is
different—which may be interpreted to be due to the structural changes induced by the polymerization
process, limiting the accessibility to the heme.

Table 2. Rate constants and reaction order calculated for different candidates such as blood substitutes
for the oxyHb + nitrite reaction. Conditions: 66 µM protein, various concentrations of nitrite, PBS 7.4,
room temperature.

K1 n1 K2 n2

Hb 112 M−1 s−1 2 11.51 s−1 1
polyHb 3.4 M−1 s−1 0.5 6.3 M−1 s−1 0.4

copolyHbBSA 73 s−1 1.1 7.9 M−1 s−1 0.4
copolyHbRbr 68.8 s−1 0.7 9.3 M−1 s−1 0.5

copolyHbBSA DSS 75.8 s−1 1.1 8.3 M−1 s−1 0.4

Hemoglobins from various sources react differently with nitrite, as seen in Figure 5b. Thus, it seems
that ovine hemoglobin is the most resistant—the lag phase being three times longer than for bovine Hb.
The Hbs in Figure 5c were previously characterized in terms of distance between aromatic aminoacids
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(electrons that come from exogenous agents are directed towards the heme using Tyr 42) and heme [35,36],
This distance is directly correlated with the data in Figure 5c: bovine Hb as the most reactive nitrite-reactive
hemoglobin has the shortest distance, in contrast with ovine Hb. At higher concentrations of nitrite,
the lowest reactivity was also found for the ovine Hb (Table 3).

Table 3. Apparent rate constants of the reaction between different types of hemoglobin and excess
nitrite. Conditions: 66 µM oxyHb, 667 mM nitrite, PBS 7.4, room temperature.

Type of Hemoglobin kobs1(1/s) Stdev1 kobs2(1/s) Stdev2

Bovine Hb 51.53 0.91 5.75 0.21
Goat Hb 58.30 0.85 10.87 0.35

Cabaline Hb 43.93 1.03 11.36 0.50
Ovine Hb 27.02 0.65 8.48 0.23

A key role in the lag phase for the oxyHb + nitrite reaction is played by hydrogen peroxide, whereas
nitrogen dioxide appears only during the propagation phase [20]. In this context, it was suggested that
the autocatalytic behavior might be relevant for acute in vivo poisoning, while at physiological nitrite
concentrations there are antioxidant systems (small antioxidant molecules, proteins and enzymes) that
might scavenge the propagator species [20]. Furthermore, hemoglobin’s free radical reactivity, in reactions
related to these and where high-valent iron and free radicals are generated, is of more general analytical
importance [50–66]. In this context, experiments where small quantities of different antioxidant molecules
were added to the nitrite + oxy reaction were also performed as detailed in the Supporting Information
(Figure S25). Thus, uric acid, known for its ability to quench free radicals as well as to reduce Fe(IV) but
not Fe(III) hemoglobin [20,35], slows down the process significantly already at physiologically relevant
concentrations (Figure S25). Also, a more general antioxidant such as ascorbate (able to also reduce Fe(III)
to Fe(II)), present in plasma and in red blood cells at concentrations of 50–250 µM, block the nitrite-induced
oxidation of Hb even at concentrations 10 times smaller than the physiological ones—e.g., 5 µM ascorbate
(Figure S25). An exogenous antioxidant of polyphenolic nature, caffeic acid, also slows down significantly
the nitrite-induced oxidation, suggesting possible utility of this class of compounds as antidotes for nitrite
toxicity. N-acetyl cysteine, used as a mimic of cysteine-containing peptides such as glutathione, can also
slow down the nitrite-induced oxidation—albeit apparently less efficiently than caffeic acid (Figure S25).
Last but not least, bovine serum albumin (BSA) also acts efficiently to quench the nitrite-induced oxidation
of hemoglobin (Figure S25). This is in line with our previous findings that BSA acts to efficiently reduce
the autooxidation and pro-oxidant reactivity of Hb [6,46,47,49]. These findings on antioxidant effects may
add to the knowledge to be taken into account when defining the useful concentrations of antioxidants to
be added to/with blood substitute preparations in transfusions. The differences in oxy + nitrite kinetics
between native and polymerized hemoglobins, as well as those between various animal hemoglobins, can
be explained as being due to three factors. First, slightly different solvent accessibility of the heme pocket
(either induced by conformational constraints due to polymerization, or natively extant among various
animal hemoglobins) may explain the varying rates of nitrite binding. Second, the polymerization, by
its effect of increasing molecular weight, will place some of the Hb monomers further away from bulk
solvent thereby slowing down the access of nitrite to the respective hemes. Third, the presence of multiple
subunits and multiple hemes within the glutaraldehyde-induced Hb aggregates will favor routes whereby
the oxidizing equivalents within ferryl and free radicals will dissipate within the Hb aggregate instead of
being transferred to solution, thus limiting the autocatalytic effect. The latter interpretation would be in
line with the fact that the yield and stability of ferryl Hb have been previously shown to be affected by
polymerization [7,65,66].

3. Materials and Methods

Native bovine Hb was purified and converted into the oxy form by treatment with dithionite
followed by desalting, as previously described [42,67,68]. Bovine serum albumin (BSA, fraction V, from
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Sigma-Aldrich, Schnelldorf, Germany) was used as provided without further purification. Proteins were
manipulated in phosphate buffer saline (PBS). Concentrations are given per heme in the case of Hb
and per monomer for the rest of proteins. Other reagents used are as follows: sodium nitrite (NaNO2,
Reactivul Bucuresti, Bucharest, Romania), L-ascorbic acid (Sigma-Aldrich, Schnelldorf, Germany), uric
acid, caffeic acid, N-acetyl-L cysteine (Merck, Kenilworth, NJ, USA). Stock solutions of these antioxidants
were prepared in water-free DMSO.

The reader is referred to our previous extensive reports on the preparation, purification,
chromatographic characterization, oxygen affinity, autooxidation and reactivity towards peroxides
for the hemoglobin derivatives employed in the present study, namely, purified bovine hemoglobin
(Hb) [36,42,62,63], hemoglobin derivatized with glutaraldehyde with or without bovine serum albumin
(polyHb [63,65], copolyHbBSA [7]), hemoglobin co-polymerized with rubrerythrin with or without
NROR (copolyHbRbr and Hb-Rbr-NROR) [63] and hemoglobin co-polymerized with disuccinimidil
suberate with or without glutaraldehyde and BSA (copolyHbBSA DSS, copolyHbBSA DSS GL [6].
Furthermore, the in vitro (vs. human cell cultures) and in vivo (in rat models) behavior of these samples
has also been previously described [46,48,62,63,65,66].

UV-vis spectra were recorded on Agilent 8453 (Agilent, Inc., Santa Clara, CA, USA) and Cary 50
(Varian, Inc., Palo Alto, CA, USA) instruments. Stopped-flow spectra were collected at room temperature
on a Biologic SFM-300 system equipped with three syringes and capable of sequential mixing, with
a high-speed diode array detector. Stopped-flow data were analyzed within the SPECFIT32 software
package (BioLogic Science Instruments, Seyssinet-Pariset, France) using Singular Value Decomposition
(SVD) and global multiexponential fitting of the SVD treated data, with the spectra fitted to simple kinetic
models using Levenberg–Marquardt or Simplex algorithms.

A computational model based on the X-ray crystal structure of oxy-myoglobin (PDB ID: 2Z6T) [69]
was constructed and imported into the Maestro module available in the Schrödinger suite [70].
Peroxynitrate was modeled by the addition of NO2 to the oxy ligand already bound to the heme unit.
The model was further optimized by adding hydrogen atoms and assigning correct bond orders using the
Protein Preparation Wizard [67]. The protonation states of all residues were predicted by the PROPKA
module provided in the Protein Preparation Wizard. QM/MM geometry optimizations were performed
on the whole system using the Qsite module of the Schrödinger suite [68]. The iron-heme unit along
with the peroxynitrate ligand and key residues (His93, His64) were considered in the QM region and
optimized with the M06-L DFT functional [71] and the lacvp** basis set. The rest of the enzyme was
considered in the MM region and optimized using the OPLS-2005 force field. In addition, QM/MM
optimizations of an oxy and oxo model systems were also performed as control structures utilizing the
same methodology mentioned above.

TD-DFT calculations were carried out on simplified models of the active site derived from the
QM/MM optimized geometries, i.e., a heme unit without lateral constituents, an axial imidazole and
peroxynitrate, oxy and oxo species at the 6th coordination positions. The M06-L density functional and
the 6-311g(d,p) basis set were employed in these calculations (Figure 6).
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4. Conclusions

In myoglobin as well as hemoglobin, stopped-flow data supported by QM/MM and TD-DFT
calculations suggest a reaction sequence where the oxy heme reacts with nitrite directly to form a
ferrous-peroxynitrate adduct and then ferryl, in line with previous kinetic proposals [11,31]. While only
traces of this adduct are seen under native conditions, it accumulates to larger amounts under partially
denaturing conditions with guanidine. This intermediate species then generates ferryl via O–O bond
cleavage, followed by reduction to met-aqua by excess nitrite, and then by formation of a met-nitrite
adduct. Small differences in reactivity between the respective steps led to the unexpected finding
that ferryl is clearly accumulated as an intermediate in the case of Mb, whereas met-aqua is the main
intermediate accumulated in the case of Hb and ferryl to a much lesser extent. Contrary to oxidative
stress reactions, any form of polymerization seems to slow down the reaction of oxy Hb with nitrite.
The addition of free albumin, as well as of free small-molecule antioxidants, to the reaction mixture
does indeed block the process. Copolymerization of Hb with bovine serum albumin leads to a distinct
increase of the lag time under autocatalytic conditions as well as to a slower initial reaction with nitrite
under stopped-flow conditions, compared to native Hb. Sheep hemoglobin reacts with nitrite much
slower than bovine Hb under stopped-flow as well as under auto-catalytic conditions. These data thus
also support the concept that free radicals accumulate during the lag phase of the oxy + nitrite reaction.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/2/350/
s1, Figure S1: Time course for the reaction of oxyHb at different concentrations and nitrite, Figure S2: Rate
dependencies for the oxy → met transformation, Figure S3. Rate dependencies for the met → met-nitrite
transformation, Figure S4: Formation and decay of the species involved in the A→ B→ C kinetic model for
the oxy Hb + nitrite reaction, Figure S5: Overlay of the computed spectra of species B with the spectra of
various possible intermediates, Figure S6: Plots of k1, k2and k3 vs. NO2

− concentration for the reaction of
oxyHb-guanidine, Figure S7: UV-vis spectra collected upon mixing oxyHb and guanidine with NaNO2, Figure S8:
Formation and decay of the species involved in the A→ B→ C→ D kinetic model for the oxy Hb-guanidine +
nitrite reaction, Figure S9: Computed spectra for the species involved in the A→ B→ C→ D reaction model
for oxy Hb + nitrite with B and C as fixed species, Figure S10: UV-vis spectra collected upon mixing metHb
with NaNO2 and corresponding computed spectra, Figure S11: Plots of kobs vs. NO2

− concentration for the
reaction of met Hb with NO2

−, Figure S12: Rate dependencies for the metHb → met-nitrite transformation,
Figure S13: Plots of kobs vs. met Hb concentration for the reaction of met Hb with NO2

−, Figure S14: QM/MM
computed potential energy surfaces for nitrite-dioxygen bond formation and ferrous-peroxynitrate bond cleavage,
Table S1: Tabulated energies of frontier MOs involved in the excitations corresponding to the main Soret bands
illustrated in Table 1 in the main text, Figure S15: Superimposed crystal structures of myoglobin and the alpha
unit of hemoglobin, Figure S16: UV-vis spectra of derivatized globins, Figure S17: Rate dependencies for the oxy
polyHb→met transformation, Figure S18: Rate dependencies for the metpolyHb→metnitrite transformation,
Figure S19: Rate dependencies for the oxy copolyHbBSA→met transformation, Figure S20: Rate dependencies for
the copolyHbBSA→metnitrite transformation, Figure S21: Rate dependencies for the oxy copolyHbRbr→met
transformation, Figure S22: Rate dependencies for the met copolyHbRbr→ metnitrite transformation, Figure S23:
Rate dependencies for the oxy copolyHbBSA DSS → met transformation, Figure S24. Rate dependencies for
the met copolyHbBSA DSS → met-nitrite transformation, Figure S25: Influence of urate, ascorbate, caffeate,
acetylcysteine and albumin concentration upon the reaction between oxyHb and nitrite.
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