SUPPORTING INFORMATION

Spiroketones and a biphenyl analog from stems and leaves of *Larrea nitida* and their inhibitory activity against IL-6 production

Jongmin Ahn^{1,#}, Yihua Pei^{2,#}, Hee-Sung Chae², Seong-Hwan Kim¹, Young-Mi Kim², Young Hee Choi², Joongku Lee³, Sei-Ryang Oh⁴, Minsun Chang⁵, Yun Seon Song⁶, Roberto Rodriguez⁷, Dong-Chan Oh¹, Jinwoong Kim¹, Sangho Choi⁸, Sang Hoon Joo⁹ and Young-Won Chin²,*

- ¹ College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- ² College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
- ³ Department of Environment and Forest Resources, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
- ⁴ Natural Medicine Research Center, KRIBB, ChungBuk 363-883, Republic of Korea
- ⁵ Department of Biological Sciences, College of Science, Sookmyung Women's University, Seoul 04310, Korea
- ⁶ College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- 7 Department of Botany, University of Concepcion, Casilla 160C, Concepcion, Chile
- ⁸ International Biological Material Research Center, KRIBB, Daejeon 34141, Republic of Korea
- ⁹ College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea

Authors equally contribute to this work.

* Correspondence: <u>f2744@dongguk.edu</u> (Y.-W. Chin); Tel.: +82-31-961-5218

Contents

- Figure S 1. The ¹H NMR (400 MHz) and ¹³C (100 MHz) spectra spectra of 1 in methanol- d_4
- Figure S 2. The HSQC spectrum of 1 in methanol- d_4
- Figure S 3. The HMBC spectrum of 1 in methanol- d_4
- Figure S 4. The COSY spectrum of 1 in methanol- d_4
- Figure S 5. The ¹H NMR (400 MHz) and ¹³C (100 MHz) spectra spectra of 2 in methanol- d_4
- Figure S 6. The HSQC spectrum of 2 in methanol- d_4
- Figure S 7. The HMBC spectrum of 2 in methanol- d_4
- Figure S 8. The COSY spectrum of 2 in methanol- d_4
- Figure S 9. The CD and UV spectra of 2
- Figure S 10. The ¹H NMR (400 MHz) and ¹³C (100 MHz) spectra spectra of 3 in methanol- d_4
- Figure S 11. The HSQC spectrum of 3 in methanol- d_4
- Figure S 12. The HMBC spectrum of 3 in methanol- d_4
- Figure S 13. The COSY spectrum of 3 in methanol- d_4

Figure S 1. The ¹H NMR (400 MHz) and ¹³C (100 MHz) spectra spectra of 1 in methanol- d_4

Figure S 2. The HSQC spectrum of **1** in methanol- d_4

Figure S 3. The HMBC spectrum of **1** in methanol- d_4

Figure S 4. The COSY spectrum of **1** in methanol- d_4

Figure S 5. The ¹H NMR (400 MHz) and ¹³C (100 MHz) spectra spectra of 2 in methanol- d_4

Figure S 6. The HSQC spectrum of **2** in methanol- d_4

Figure S 7. The HMBC spectrum of **2** in methanol- d_4

Figure S 8. The COSY spectrum of **2** in methanol- d_4

Figure S 10. The ¹H NMR (400 MHz) and ¹³C (100 MHz) spectra spectra of 3 in methanol- d_4

Figure S 12. The HMBC spectrum of **3** in methanol- d_4

Figure S 13. The COSY spectrum of **3** in methanol- d_4

