SUPPORTING INFORMATION

Spiroketones and a biphenyl analog from stems and leaves of Larrea nitida and their inhibitory activity against IL-6 production

Jongmin Ahn 1#, Yihua Pei 2#, Hee-Sung Chae 2, Seong-Hwan Kim 1, Young-Mi Kim 2, Young Hee Choi 2, Joongku Lee 3, Sei-Ryang Oh 4, Minsun Chang 5, Yun Seon Song 6, Roberto Rodriguez 7, Dong-Chan Oh 1, Jinwoong Kim 1, Sangho Choi 8, Sang Hoon Joo 9 and Young-Won Chin 2,*

1 College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
2 College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
3 Department of Environment and Forest Resources, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
4 Natural Medicine Research Center, KRICB, ChungBuk 363-883, Republic of Korea
5 Department of Biological Sciences, College of Science, Sookmyung Women's University, Seoul 04310, Korea
6 College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
7 Department of Botany, University of Concepcion, Casilla 160C, Concepcion, Chile
8 International Biological Material Research Center, KRICB, Daejeon 34141, Republic of Korea
9 College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea

Authors equally contribute to this work.
* Correspondence: f2744@dongguk.edu (Y.-W. Chin); Tel.: +82-31-961-5218
Contents

Figure S 1. The \(^1\text{H} \text{NMR (400 MHz) and} \ ^{13}\text{C (100 MHz) spectra of 1 in methanol-d}_4\)

Figure S 2. The HSQC spectrum of 1 in methanol-d\(_4\)

Figure S 3. The HMBC spectrum of 1 in methanol-d\(_4\)

Figure S 4. The COSY spectrum of 1 in methanol-d\(_4\)

Figure S 5. The \(^1\text{H} \text{NMR (400 MHz) and} \ ^{13}\text{C (100 MHz) spectra of 2 in methanol-d}_4\)

Figure S 6. The HSQC spectrum of 2 in methanol-d\(_4\)

Figure S 7. The HMBC spectrum of 2 in methanol-d\(_4\)

Figure S 8. The COSY spectrum of 2 in methanol-d\(_4\)

Figure S 9. The CD and UV spectra of 2

Figure S 10. The \(^1\text{H} \text{NMR (400 MHz) and} \ ^{13}\text{C (100 MHz) spectra of 3 in methanol-d}_4\)

Figure S 11. The HSQC spectrum of 3 in methanol-d\(_4\)

Figure S 12. The HMBC spectrum of 3 in methanol-d\(_4\)

Figure S 13. The COSY spectrum of 3 in methanol-d\(_4\)
Figure S 1. The 1H NMR (400 MHz) and 13C (100 MHz) spectra of 1 in methanol-d_4.
Figure S 2. The HSQC spectrum of 1 in methanol-d_4.
Figure S 3. The HMBC spectrum of 1 in methanol-d_4
Figure S 4. The COSY spectrum of 1 in methanol-d_4.
Figure S 5. The 1H NMR (400 MHz) and 13C (100 MHz) spectra of 2 in methanol-d_4.
Figure S 6. The HSQC spectrum of 2 in methanol-d_4
Figure S 7. The HMBC spectrum of 2 in methanol-d_4
Figure S 8. The COSY spectrum of 2 in methanol-d_4
Figure S 9. The CD and UV spectra of 2
Figure S 10. The 1H NMR (400 MHz) and 13C (100 MHz) spectra of 3 in methanol-d_4.
Figure S 11. The HSQC spectrum of 3 in methanol-d_4
Figure S 12. The HMBC spectrum of 3 in methanol-d_4
Figure S 13. The COSY spectrum of 3 in methanol-d_4.