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Abstract: Two new p-hydroxybenzoic acid glycosides, namely p-hydroxybenzoic
acid-4-O-α-D-manopyranosyl-(1 → 3)-α-L-rhamnopyranoside (compound 1) and
4-O-α-L-rhamnopyran-osyl-(1 → 6)-α-D-manopyranosyl-(1 → 3)-α-L-rhamnopyranoside
(compound 2), and seven known compounds, compound 3, 6, 7 (acid components), compound 8, 9
(flavonoids), compound 4 (a coumarin) and compound 5 (an alkaloid), were isolated from the 70%
ethanol aqueous extract of the aerial parts of Melilotus officinalis (Linn.) Pall. The structures of
all compounds were elucidated by use of extensive spectroscopic methods Infrared Spectroscopy
(IR), High resolution electrospray ionization mass spectrometry (HR-ESI-MS), and 1H and
13C-NMR). Sugar residues obtained after acid hydrolysis were identified by high-performance
liquid chromatography (HPLC). The antioxidant activity of all the compounds was evaluated by
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) and 1,1-diphenyl-2-picrylhydrazyl
(DPPH). The anti-inflammatory effects of the compounds were also evaluated in lipopolysaccharide
(LPS)-stimulated RAW 264.7 macrophages. All compounds were shown to inhibit LPS-induced nitric
oxide (NO) and prostaglandin E 2 (PGE 2) production by suppressing the expression of inducible
NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, in LPS-stimulated RAW 264.7
cells. The inhibitory effect of all the compounds on MCF-7 cells was determined by Cell Counting
Kit-8 (CCK-8) method. The results showed that compounds 1, 2, 7, 8, 9 exhibited better antioxidant
activity compared to the other compounds. compounds 1–9 had different inhibitory effects on the
release of NO, TNF-α and IL-6 in LPS-stimulated RAW264.7 cells by LPS, of which compound 7
was the most effective against inflammatory factors. compounds 1 and 2 have better antitumor
activity compared to other compounds. Further research to elucidate the chemical composition
and pharmacological effects of Melilotus officinalis (Linn.) Pall is of major importance towards the
development and foundation of clinical application of the species.
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1. Introduction

Melilotus officinalis (Linn.) Pall belongs to the genus Melilotus of Fabaceae family, and is an annual
herb. It is also known as yellow sweet clover. It was first published in the “European Pharmacopoeia”
eighth edition [1], widely distributed around the world. It was regarded as a drug to against edema
and renal vein circulation in the UK, Melilotus officinalis (Linn.) Pall as a drug against aggregation,
as well as for it antioxidative and hepatoprotective properties in the Netherlands, Germany, Poland
and Austria [2–4]. In Japan, SETUS-M, which is produced with Melilotus officinalis (Linn.) Pall, has a
good effect for treating post-surgical tissue swelling. In China, Melilotus officinalis (Linn.) Pall is used
for the treatment of diseases such as spleen disease, gutting, diphtheria and larvae [5]. Meanwhile,
the extract of Melilotus officinalis (Linn.) Pall achieved good results as an in-hospital preparation of Jilin
University and has been widely accepted by patients.

Modern research shows that the Melilotus officinalis (Linn.) Pall contains coumarins [6],
flavonoids [7], steroids and saponins, phenolic acids [2], volatile components, fats, alcohols, uric
acid [8] and other chemical compounds, with anti-inflammatory, swelling, and anti-tumor properties,
as well as with therapeutic effects against hemorrhoids, thrombophlebitis, and varicose veins [9–12].
The coumarin, phenolic acids, flavonoids and saponins of Melilotus officinalis (Linn.) Pall have a certain
anti-inflammatory effect [8], however, these studies are mainly focused on extracts of Melilotus officinalis
(Linn.) Pall, which involve a few monomers of the above-mentioned compounds. Therefore, 70%
ethanolic extracts of Melilotus officinalis (Linn.) Pall were used as the research object, and the isolation,
purification, identification and activity study of the monomer compounds were carried out in order to
provide the basis for the clinical application.

2. Results and Discussion

2.1. Chemical Components and Monosaccharide Compositions

2.1.1. Identification of Chemical Composition

The 70% ethanol extract of yellow sweet clover was isolated by column chromatographic (CC)
fractionation to give compounds 1 and 2, together with seven known compounds: salicylic acid
(compound 3) [13], coumarin (compound 4) [14], betaine (compound 5) [15], fumalic acid (compound 6) [16],
and caffeic acid (compound 7) [17]. luteolin (compound 8), quercetin (compound 9) [18].

Characterizations of compound 1 included: White amorphous powder, its IR spectrum exhibited
absorption bands due to -COOH at 3364, 1677 cm−1 and dihydrogen ortho aromatic ring at 1588,
1284, 1155, 856 cm−1. The HR–ESI–MS of 1 indicated the molecular formula C19H26O12 (m/z 469.1307
[M + Na]+, calcd. for C19H26O12Na, 469.1322). In the NMR spectra (Table 1), two proton signals
at δH 8.00 (2H, d, J = 7.8 Hz) and 6.73 (2H, d, J = 7.8 Hz), and four tertiary carbon signals at δC

130.6, 130.6, 115.9, 115.9, two quaternary carbon signals at δC 121.1, 161.2, one carbonyl carbon signal
at δC 175.8, combining the IR and 2D NMR spectra data, suggested that a p-hydroxybenzoic acid
moiety existed in the structure of compound 1. The above-mentioned 13C-NMR data were very similar
with these of p-hydroxybenzoic acid reported [19], which confirmed existence of a p-hydroxybenzoic
acid moiety in the structure of compound 1. The 13C-NMR spectrum of compound 1 showed also
two six-carbon units, one was characteristic of D-mannosyl group (a methylene carbon signal at δC

59.8 and five methines carbon signals at δC 102.9, 71.4, 70.5, 67.6, 73.4) which was coincident with
these of methyl O-α-D-mannoside reported [20], and other one was characteristic of L-rhamnosyl
group (a methyl carbon signal at δC 18.0 and five methines carbon signals at δC 97.8, 70.0, 75.7, 71.8,
69.7) which was coincident with these of methyl O-α-L-rhamnoside reported [20], except for carbon
signal at δC 75.7 showing a significant downfield shift (∆δ = 4.6) than C-3 signal of α-L-rhamnose.
The existence of D-mannosyl and L-rhamnosyl groups in the structure of was also confirmed by TLC
comparing the acid hydrolysate of compound 1 with authentic samples. The proton signal at δH

5.41 was determined to be anomeric proton of rhamnosyl group by cross peak (Figure 1 and Table 1)
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at δH 5.41 (rha-H-1′)/δC 97.8 (rha-C-1′) in HMQC spectrum, and cross peak at δH 5.41/δC 161.2
(C-4) in HMBC spectrum revealed linkage of L-rhamnosyl group with 4-OH. The proton signal at
δH 5.09 (Mann-H-1) was determined to be anomeric proton of D-mannosyl group by cross peak at
δH 5.09/δC 102.9 (mann-C-1′ ′) in HMQC spectrum, and cross peak at δH 5.09/δC 75.7 (Rha-C-3′) in
HMBC, revealed linkage of C-3 of L-rhamnosyl group with C-1 of D-mannosyl group, this illustrated
the carbon signal at δC 75.7 (Rha-C-3′) showing a significant downfield shift (∆δ = 4.6) than C-3 signal
in these of L-rhamnose reported [20]. Thus, compound 1 was determined to be p-hydroxybenzoic
acid-4-O-α-D-manopyranosyl-(1→ 3)-α-L-rhamnopyranoside, a new compound.

Characterizations of compound 2 included: White amorphous powder. Its IR spectrum was
similar with that of 1. The molecular formula C25H36O16 was derived from the positive-ion mode
HR-ESI-MS [M + Na]+ at m/z 615.1807. In the NMR spectra (Table 1) of compound 2, the appearance
of two proton signals at δH 7.97 (2H, d, J = 7.8 Hz) and 6.69 (2H, d, J = 7.8 Hz), and seven carbon
signals at δC 121.1, 130.69, 130.7, 116.0, 116.0, 161.2, 175.8 showed the existence of the same aglycone
(p-hydroxybenzoic acid) in the structure of compound 2 as in Table 1. The 13C-NMR spectrum
of compound 2 showed three six-carbon units. Acid hydrolysis of compound 2 gave rhamnose
and mannose which identified by TLC comparing with authentic samples. In comparison with the
NMR data of compound 1, two of three six-carbon units were coincident with the sugars moiety of
compound 1, except for carbon signal at δC 65.6 showing a significant downfield shift (∆δ = 5.9) than
C-6 signal of D-mannosyl group of compound 1, which point to the existence of p-hydroxybenzoic
acid-4-O-α-D-mannopyranosyl-(1→ 3)-α-L-rhamnopyranosyl moiety in the structure of compound 2,
the 13C-NMR data (carbon signals at δC 100.1, 70.0, 70.4, 72.0, 68.2, 17.9) of the remainder six-carbon unit
was coincident with these of methyl-O-α-L-rhamnoside reported [20], which point to one rhamnosyl
group more than compound 1 in compound 2, the proton signal at δH 4.40 was determined to be
anomeric proton of the rhamnosyl group by cross peak (Figure 2 and Table 1) at δH 4.40 (Rha-H-1′ ′ ′)/δ
100.2 (Rha-C-1′ ′ ′) in the HMQC spectrum, the cross peak at δH 4.40/δC 65.7 (Mann-C-6′ ′) in the
HMBC spectrum, revealed linkage of C-6 of D-mannosyl group with C-1 of L-rhamnosyl group, that
illustrated the carbon signal at δC 65.7 showing a significant downfield shift (∆δ = 5.8) than C-6 signal
of D-mannosyl group of compound 1. Thus, the compound 2 was determined to be p-hydroxybenzoic
acid-4-O-α-L-rhamnopyranosyl-(1→ 6)-α-D-manopyranosyl-(1→ 3) -α-L-rhamnopyranoside. It was a
new compound.
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2.1.2. Monosaccharide Analysis

Compound 1 and compound 2 showed similar monosaccharide composition (Figure 2). Only two
monosaccharides were found, namely D-mannopyranose and L-rhamnopyranosyl.

2.2. Biological Activity

It had been reported that benzoic acid derivatives showed antioxidant activity,
anti-inflammatory [21], and cytotoxic activities [22,23]. In this work, the antioxidant activity,
anti-inflammatory, and cytotoxic activities of compounds 1–9 was investigated.

2.2.1. Anti-Oxidative Activity

The compounds 1–9 was used in ATBS+ free radical scavenging assay. The semi-inhibitory
concentration (IC50) of compounds 1–9 for ATBS+ and DPPH· free radical scavenging activity could be
seen in Table 1.

Table 1. The IC50 of compounds 1–9 for 2-Acrylamido-2-methylpropane sulfonic acid (ATBS+) and
2-Diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) free radical scavenging activity.

The IC50 of ATBS+ Free Radical
Scavenging Activity (µg/mL)

The IC50 of DPPH Free Radical
Scavenging Activity (µg/mL)

VC 70.00 39.06
compound 1 25.20 53.00
compound 2 69.75 73.00
compound 3 166.00 143.7
compound 4 148.00 254.1
compound 5 87.23 176.4
compound 6 79.83 >450
compound 7 18.00 23.04
compound 8 13.60 23.89
compound 9 <10 <10

2.2.2. Anti-Inflammatory Activity

In the inflammatory response of RAW264.7 cells stimulated by LPS, compounds 1–9 had different
inhibitory effects on the release of NO, TNF-α and IL-6 in LPS-stimulated RAW264.7 cells by LPS,
and showed good anti-inflammatory activity in vitro, in which compound 7 was effective against
inflammatory factors. The strongest inhibitory effect, the results shown in Table 2.
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Table 2. Effects of compounds on production of NO, TNF-α, and IL-6 in LPS-stimulated RAW264.7 cells.

Concentration/(µg·mL−1) NO/(µmol·mL−1) TNF-α/(ng·mL−1) IL-6/(ng·mL−1)

Control 0.6045 ± 0.0098 0.0173 ± 0.0025 0.0005 ± 0.0000
LPS 6.7458 ± 0.3428 ## 45.3633 ± 0.2559 ## 0.6046 ± 0.0045 ##

LPS + compound 1 50 4.0904 ± 0.4424 ** 29.8130 ± 0.1658 ** 0.5232 ± 0.0030 **
LPS + compound 2 50 5.0565 ± 0.2452 ** 27.5663 ± 0.1122 ** 0.3047 ± 0.0040 **
LPS + compound 3 50 0.1751 ± 0.0353 ** 26.0250 ± 0.2000 ** 0.2144 ± 0.0026 **
LPS + compound 4 50 3.6667 ± 0.2301 ** 30.8603 ± 0.1000 ** 0.2771 ± 0.0050 **
LPS + compound 5 50 3.0282 ± 0.4208 ** 28.5656 ± 0.1000 ** 0.2166 ± 0.0035 **
LPS + compound 6 50 2.0452 ± 0.3327 ** 31.8536 ± 0.1000 ** 0.3136 ± 0.0025 **
LPS + compound 7 50 0.1243 ± 0.1461 ** 22.6661 ± 0.1528 ** 0.2065 ± 0.0021 **
LPS + compound 8 50 3.5865 ± 0.2452 ** 28.4363 ± 0.1721 ** 0.3757 ± 0.0034 **
LPS + compound 9 50 4.2881 ± 0.2691 ** 32.4133 ± 0.0577 ** 0.2881 ± 0.0066 **

## p < 0.01 vs. control group; ** p < 0.01 vs. model group.

2.2.3. Antitumor Activity

The results of compounds of CCK-8 kit assay are displayed in Table 3, the results show that
compounds 1, 2, 3, 5, 7, 8 and 9 can inhibit the growth of tumor cells MCF-7 with IC50 value of 4.83,
5.18, 8.20, 7.85, 7.53, 8.40 and 9.24 µg/mL. However, compounds 4 and 6 did not inhibited potently
the growth of MCF-7 cells. According to IC50 values, compound 1 with the best antitumor activity
was divided into three groups: low dose group (1/2 IC50 value), medium dose group (IC50 value),
high dose group (2 × IC50 value), the concentration of 5-FU was IC50, which is positive control group,
and the negative control group was not given the drug (0 mg·mL−1). Each concentration in parallel
with 3 copies, 37 ◦C, 5% CO2 incubation. The number of viable cells was counted after staining with
trypan blue after digestion with trypsin at the same time point. Each set of data is expressed as an
average number of cells. The growth curve was plotted with the culture time as the horizontal axis
and the average number of cells as the vertical axis. MCF-7 results showed that the compound 1 had
a significant dose-dependent effect on the growth of MCF-7 cells, which was significantly different
from that of the control group (p < 0.05), and there was no significant difference compared with the
existing positive control drug 5-FU (p > 0.05) (See in Figure 3). The expression of PCNA was observed
by immunohistochemical staining of MCF-7 cells; it was found that the expression of PCNA decreased
gradually with the increase of concentration (See in Figure 4).
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Table 3. Anti-proliferative activities of nine monomer compounds against two tumor cells lines
(IC50 µg/mL).

Compound IC50 (µg/mL)

MCF-7

compound 1 4.83
compound 2 5.18
compound 3 8.20
compound 4 >15
compound 5 7.85
compound 6 >15
compound 7 7.53
compound 8 8.40
compound 9 9.24

5-FU 3.50

2.3. Discussion

Two new p-hydroxybenzoic acid glycosides, namely p-hydroxybenzoic
acid-4-O-α-D-manopyranosyl-(1 → 3)-α-L-rhamnopyranoside (compound 1) and
4-O-α-L-rhamnopyranosyl-(1→ 6)-α-D-manopyranosyl-(1→ 3)-α-L-rhamnopyranoside (compound 2),
three acid components, two flavonoids, one coumarin and one alkaloid were isolated in this study.
Most of the compounds from Melilotus officinalis (Linn.) Pall possessed anti-oxidation, anti-tumor and
anti-inflammatory effects.

Melilotus officinalis (Linn.) Pall has anti-inflammatory [9], swelling [10] and anti-tumor [11] and
other pharmacological effects. This study showed that its flavonoids and phenolic acids have good
antioxidant capacity, which suggest that the flavonoids and phenols acid composition is the material
basis to antioxidant of Melilotus officinalis (Linn.) Pall. The phenolic acids achieved anti-inflammatory
effects by inhibiting the activity of NO, TNF-α and IL-6 in LPS-induced RAW264.7 cells, which
suggest that the treatment of edema with Melilotus officinalis (Linn.) Pall is related to its antioxidant
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and anti-inflammatory properties. Earlier studies have shown it has good anti-tumor activity [18].
In previous studies, our group studied the purification process of its saponins, and applied for a patent;
we also found that its saponins had the better inhibitory effect on MCF-7, PC3M and other tumor cell
lines. In this paper, we found two new benzoic acid compounds have good inhibitory activity on
prostate cancer, and the inhibitory effect is stronger than the other compounds. In clinical applications,
Melilotus officinalis (Linn.) Pall is mainly used to address swelling, which suggests its antitumor activity
maybe has a certain correlation with therapeutic effect of its edema, and also shows that it has potential
value in anti-tumor applications. Therefore, further research to elucidate the chemical composition
and pharmacological effects of Melilotus officinalis (Linn.) Pall is of major importance towards the
development and foundation of clinical application of the species.

3. Experimental Section

3.1. Materials

3.1.1. Chemicals and Reagents

IR spectra were recorded using a Bruker Vertex 70 Fourier Transform Infrared Spectrometer
(FT-IR) spectrometer (Bruker Company, Rheinstetten, Germany) with KBr disks. 1H-NMR, 13C-NMR,
Distortionless Enhancement by Polarization Transfer (DEPT), 1H-1H Correlated Spectroscopy (1H-1H
COSY), Heteronuclear Multiple Quantum Correlation (HMQC), and Heteronuclear Multiple Bond
Correlation (HMBC) experiments were performed on an Bruker AVANCE 600 spectrometer (Bruker
BioSpin AG, Rheinstetten, Germany; 600 MHz for 1H-NMR and 150 MHz for 13C-NMR), TMS was used
as international standard, and DMSO-d6 as solvent. High-performance liquid chromatography (HPLC)
was performed using an Agilent 1100 Series HPLC system (Agilent Technologies Inc., Santa Clara, CA,
USA) equipped with a four-pump with an in-line degasser, autosampler, oven and Ultraviolet detector
(UVD). HR-ESI-MS were measured on IonSpec 7.0 T Fourier Transform Ion cyclotron resonance
mass spectrometry (FT-ICR-MS) spectrometer (Bruker Daltonics Inc., Billerica, MA, USA). Column
chromatography was performed with silica gel (200–300 mesh) (Qingdao Marine Chemical Factory,
Qingdao, China). Thin Layer Chromatography (TLC) was carried out with glass precoated silica gel
plates (Qingdao Marine Chemical Factory, Qingdao, China). Sephadex LH-20 was used for the column
chromatography (Pharmacia, 25–100 µm). D101 Macroporous resin (Tianjin Resin Technology Co.,
Ltd., Tianjin, China). Spots were visualised by spraying with 10% sulphuric acid in EtOH followed
by heating. Solvents were analytical grade and purchased from Beijing Chemical Company, Beijing,
China. Standard monosaccharides (D-Gal, D-Ara, L-Fuc, L-Rha, D-Man, D-Xyl, D-Glc, D-Glc UA
and D-Gal UA) were purchased from Sigma. 2-Diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH),
2-Acrylamido-2-methylpropane sulfonic acid (ATBS+), lipopolysaccharides (LPS) were purchased
from Sigma Chemical Co. (St. Louis, MO, USA), penicillin G, streptomycin, L-glu-tamine and
Dexamethasone (DEX) were purchased from local pharmaceutical industry.

3.1.2. Cell-Lines

Human breast adenocarcinoma cell line MCF-7, human prostate cancer cell line PC-3M
and RAW264.7 cell were obtained from Shanghai Institute of Biochemistry and Cell Biology
(Shanghai, China).

3.1.3. Plant Materials

The aerial part of Melilotus officinalis (Linn.) Pall was collected from Changbai Mountainous
Nature Protection Area, in April 2014, and identified by Professor Minglu Deng, Changchun university
of Chinese Medicine. A voucher specimen (140817) has been deposited in the Herbarium of Changchun
university of Chinese Medicine.
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3.2. Methods

3.2.1. Extraction and Isolation

The powdered aerial part of Melilotus officinalis (Linn.) Pall (10 kg) was extracted three times (2 h
for the first and 1 h for the second as well as third) with 70% ethanol aqueous under reflux to give
an ethanolic extract (2.7 kg, yield 27.00%), which was successively partitioned with H2O (1.5 L) and
petroleum ether, chloroform, ethyl acetate, and n-butanol saturated with H2O for the five times (each
time 2 L) to obtain the petroleum ether fraction (65 g; 2.40%), chloroform fraction (176 g; 6.52%), ethyl
acetate fraction (35 g; 1.29%) and n-butanol fraction (105 g; 3.89%). The n-butanol soluble fraction was
chromatographed over a D101 macroporous resin column, eluted with a gradient solvent system of
ethanol-H2O (0%, 30%, 70%, 95% ethanol solution), to yield fractions 1 (7.5 g), 2 (35.6 g), 3 (38.1 g),
and 4 (15.3 g). Fraction 1 was subjected to Sephadex-LH-20 eluting with MeOH to give five crude
fractions A.1-A.5, fraction A.2 was recrystallized from MeOH to yield compound 5 (32 mg); fraction 2
was subjected to Sephadex-LH-20 eluting with MeOH to give ten crude fractions B.1–B.10, the crude
fraction B.3 (100 mg) which containing 1 and 2 were further purified by Preparation Thin Liquid
Chromatography (PTLC) over a silica gel plate (silica G 10–40 mm, 25 × 25 cm × 1.0 mm) using
CHCl3/MeOH/H2O (65:36:10) lower Placing below 10 ◦C as a developing system to give compound 1
(47 mg) and compound 2 (36 mg); the petroleum ether fraction heated in water bath at 90 ◦C to
obtain compound 3 (27 mg) with sublimation method; the remaining petroleum ether fraction was
chromatographed on silica gel column eluting with chloroform (CHCl3)/ethyl acetate (EtOAc) in
gradient (10:1 to 10:5) to give four fractions C.1–C.4, fractions C.2 was further purified by PTLC over a
silica gel plate (silica G 10–40 mm, 25 × 25 cm × 1.0 mm) using CHCl3/EtOAc/HCOOH (10:5:0.5) as a
developing system to give compound 4 (35 mg); the chloroform fraction was chromatographed on
silica gel column eluting with CHCl3/MeOH in gradient (100:0 to 80:20) to give five fractions D.1–D.5,
fraction D.1 was recrystallized from MeOH to give compound 6 (12 mg), fraction D.2 was recrystallized
from MeOH to obtain compound 7 (15 mg). The ethyl acetate fraction was chromatographed on silica
gel column eluting with CH2Cl2/MeOH in gradient (20:1 to 0:1) to give five fractions E.1–E.5, E.3
was separated by octadecylsilyl (ODS) column chromatography and eluted with a gradient of 30% to
100% methanol to give three fractions E 3.1–E 3.3, fractions E.3.2 (500 mg) was separated by Sephadex
LH-20 column and the same fractions were combined to give two fractions E.3.2.1 and E.3.2.2, fractions
E.3.2.1 and E.3.2.2 were purified by semipreparative HPLC to yield compounds 8 (30 mg) and 9
(15 mg), respectively.

3.2.2. p-Hydroxybenzoic Acid-4-O-α-D-manopyranosyl-(1→ 3)-α-L-rhamnopyranoside (1)

White amorphous powder (Methanol); m.p. 214.0–216.5 ◦C; IR (KBr) νmax (cm−1): 3364, 1677,
1588, 1483, 1425, 1284, 1155, 1135, 1030, 856; 1H (DMSO-d6, 600 MHz) and 13C-NMR (DMSO-d6,
150 MHz) spectral data, see Table 4; HR-ESI-MS: m/z 469.1307 [M + Na]+ (calcd. for C19H26O12Na:
469.1322).

Table 4. The 1H (600 MHz, in DMSO-d6) and 13C (150 MHz, DMSO-d6) NMR data compounds 1 and 2.

Position
1 2

δC δH δC δH

1 121.1 (s) 121.1 (s)
2 130.6 (d) 8.00 (d, 2H, 7.8) 130.7 (d) 7.97 (d, 2H, 7.8)
3 115.9 (d) 6.73 (d, 2H, 7.8) 116.0 (d) 6.69 (d, 2H, 7.8)
4 161.2 (d) 161.1 (d)
5 115.9 (d) 6.73 (d, 2H, 7.8) 116.0 (d) 6.69 (d, 2H, 7.8)
6 130.6 (s) 8.00 (d, 2H, 7.8) 130.7 (s) 7.97 (d, 2H, 7.8)
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Table 4. Cont.

Position
1 2

δC δH δC δH

Rha-1′ 97.9 (d) 5.41 (brs,1H,) 97.8 (d) 5.40 (brs,1H)
2′ 70.0 (d) 3.81 (brs,1H) 70.3 (d) 3.81 (brs,1H)
3′ 75.7 (d) 3.15 (m,1H) 73.3 (d) 3.12 (m,1H)
4′ 71.8 (d) 3.58 (m,1H) 71.8 (d) 3.50 (m,1H)
5′ 69.7 (d) 3.47 (m,1H) 69.7 (d) 3.45 (m,1H)
6′ 17.9 (q) 1.11(d, 3H, 6.0) 17.9 (q) 1.15 (d, 3H, 6.0)

Man-1” 102.9 (d) 5.09 (brs,1H) 103.7 (d) 4.99 (brs,1H)
2” 71.4 (d) 3.57 (m,1H) 70.6 (d) 3.58 (m,1H)
3” 70.5 (d) 3.62 (m,1H) 71.2 (d) 3.61 (m,1H)
4” 67.6 (d) 3.69 (brs,1H) 68.1 (d) 3.63 (brs,1H)
5” 73.4 (d) 3.27 (m,1H) 73.5 (d) 3.13 (m,1H)

6”-A 59.8 (t) 3.16 (m,1H) 65.7 (t) 3.20 (m,1H)
6”-B 3.47 (brs,1H) 3.57 (m,1H)

Rha-1”′ 100.2 (d) 4.40 (brs,1H)
2”′ 70.0 (d) 3.80 (brs,1H)
3”′ 70.4 (d) 3.43 (m,1H)
4”′ 72.0 (d) 3.49 (m,1H)
5”′ 68.2 (d) 3.39 (m,1H)
6”′ 17.9 (q) 1.08 (d, 3H, 6.0)

All the signals were assigned by 1D and 2D NMR spectra.

3.2.3. p-Hydroxybenzoic acid-4-O-α-L-rhamnopyranosyl-(1→ 6)-α-D-manopyranosyl-(1→
3)-α-L-rhamnopyranoside (2)

White amorphous powder(Methanol); m.p. 217.2–219.0 ◦C; IR (KBr) νmax (cm−1): 3363, 1677, 1605,
1588, 1481, 1423, 1308, 1282, 1153, 1133, 1030, 854; 1H (DMSO-d6, 600 MHz) and 13C-NMR (DMSO-d6,
150 MHz) spectral data, see Table 4; HR–ESI–MS: m/z 615.1807 [M + Na]+ (calcd. for C25H36O16Na:
615.1823).

3.2.4. Salicylic Acid

White solid powder. The molecular formula was C7H6O3, m.p. 252~254 ◦C. 1H-NMRδ: 7.83 (1H,
d, J = 8.0 Hz, H-6), 7.41 (1H, m, H-4), 6.89 (1H, d, J = 8.4 Hz, H-5), 6.82 (1H, m, H-3).

3.2.5. Coumarin

Colorless column crystal. The molecular formula was C9H6O2, m.p. 68~70 ◦C. EI-MS m/z: 146
[M+], 118 [M+-CO], 90; 1H-NMR δ: 6.43 (1H, d, J = 9.5 Hz, H-3), 7.48 (2H, q, J = 8.5 Hz, J = 2.5 Hz, H-6,
H-8), 7.52 (2H, q, J = 8.5 Hz, J = 2.5 Hz, H-5, H-7), 7.71 (1H, d, J = 9.5 Hz, H-4).

3.2.6. Betaine

Characterizations of compound 5 included: White crystals, the formula was C5H11NO2, m.p.
301~305 ◦C. IRνKBr

max (cm−1): 3023, 2985, 1621, 1492, 1471, 1422, 1395, 1339, 1238, 1120, 982, 930, 870,
720, 603; MS m/z: 117 [M]+. 1H-NMRδ: 3.28 (9H, s, 3×-CH3), 3.80 (2H, s, -CH2); 13C-NMRδ: 97.0
(-N-CH3), 108.2 (-N-CH2), 210.2 (C=O).

3.2.7. Fumalic Acid

Yellow block crystals, the formula was C4H4O4, m.p.: 296.8~299.2 ◦C. 1H-NMRδ: 13.10 (2H, s,
OH-1, OH-4), 6.64 (2H, s, H-2, H-3); 13C-NMRδ: 166.4 (C-1), 134.4 (C-2), 134.4 (C-3), 166.4 (C-4).
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3.2.8. Caffeic Acid

Light yellow powder, m.p. 199.1~201.4 ◦C. 1H-NMRδ: 7.51 (1H, d, J = 16.0 Hz, H-7), 7.03 (1H, s,
H-2), 6.92 (1H, d, J = 8.0 Hz, H-5), 6.72 (1H, d, J = 8.0 Hz, H-6), 6.22 (1H, d, J = 16.0 Hz, H-8). 13C-NMRδ:
171.6 (C-9), 149.4 (C-7), 148.6 (C-3), 145.4 (C-4), 128.3 (C-1), 126.5 (C-6), 115.1 (C-2, 5), 113.7 (C-8).

3.2.9. Luteolin

Yellow needle crystal, m.p. 235~238 ◦C. EI-MS m/z: 286 [M+], 153, 134. 1H-NMRδ: 6.23 (1H, d,
J = 2.1 Hz, H-6), 6.51 (1H, d, J = 2.1 Hz, H-8), 6.56 (1H, s, H-3), 6.97 (1H, d, J = 8.3 Hz, H-5′), 7.43 (1H,
dd, J = 2.3, 8.3 Hz, H-6′), 7.46 (1H, d, J = 2.3 Hz, H-2′).

3.2.10. Quercetin

ESIMS (-ve) m/z: 301 [M−H]−; 1H-NMRδ:δ6.17 (1H, d, J = 2.0 Hz, H-6), 6.37 (1H, d, J = 2.0 Hz,
H-8), 6.87 (1H, d, J = 8.0 Hz, H-5′), 7.62 (1H, dd, J = 2.0, 7.5 Hz, H-6), 7.73 (1H, d, J = 2.0 Hz, H-2′).

3.2.11. Monosaccharide Analysis

A solution of each Compound (1 or 2) (5 mg) in a mixture of 1:2 (v/v) 1M H2SO4–MeOH (20 mL),
was heated under reflux for 3 h in a water bath at 80 ◦C. The reaction mixture was evaporated to dryness
in vacuo, dissolved in H2O (5 mL), and neutralized with NaOH. Then, the resulting samples were
analyzed using high-performance liquid chromatography (HPLC) coupled with an ELSD detector
according to the method of Yang [24], with some modifications. Instead of the gradient elution,
an isocratic mobile phase consisting of 22:78 (v/v) mixtures of water and acetonitrile (ACN) was used.

3.2.12. Anti-Oxidative Activity

The methods for determining ATBS+ free radical scavenging activity was as follows. About
0.2 mL tested compounds at various concentrations (0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and
0.45 mg/mL) were added to 2 mL ATBS+ solution, respectively. The mixture, protected from light,
was reacted for 30 min. The decrease of absorbance was monitored at 734 nm. The control was 0.2 mL
of distilled water and 2 mL of ATBS+ solution. The same method was used in Vitamin C (Vc). The
methods for determining DPPH· free radical scavenging activity was as follows. About 0.2 mL tested
compounds at various concentrations (0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and 0.45 mg/mL)
were added to 2 mL DPPH· solution (200 µM ethanol solution), respectively. The mixture, protected
from light, was reacted for 30 min. The decrease of absorbance was monitored at 517 nm. The control
was the DPPH· solution. The same method was used in Vc. The half maximal inhibitory concentration
(IC50) was used to evaluated the ATBS+ free radical scavenging activity and the DPPH· free radical
scavenging activity.

3.2.13. Anti-Inflammatory Activity

The rat macrophage RAW264.7 cell line was maintained in dulbecco’s modified eagle medium
(DMEM) supplemented with 10% heat inactivated fatal bovine serun (FBS), penicillin G (100 units/mL),
streptomycin (100 mg/mL) and L-glutamine (2 mM). The cells were grown in a humidified atmosphere
containing 5% CO2 at 37 ◦C. RAW264.7 cells were seeded in 96-well plates at a density of 8 × 104

cells/well for 24 h. The cells were randomly divided into control group, LPS (1 µg/mL) group,
LPS (1 µg/mL) + compound 1–9 (50 µg/mL) group. After adding the corresponding drug, the
supernatant was used to detect NO, TNF-α and IL-6 after culturing for 24 h at 5% CO2 and 37 ◦C
under saturated humidity.

3.2.14. Cytotoxicity Assay

The cytotoxicity assay was carried out using CCK-8 method. MCF-7 and PC-3M cells were
cultured in Roswell Park Memorial Institute (RPMI) 1640 and DMEM at 37 ◦C in 5% CO2, respectively.
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The cells of logarithmic growth phase were seeded into 96-well plates with density of 1 × 104

cells/well in 100 µL medium, respectively. The cells were treated with the tested compounds at
various concentrations (0.5, 1.0, 2.5, 5, 7.5, 10.0, 12.5 and 15.0 µg/mL) and 5-FU as positive control,
each of two parallel holes are located, then incubated for 72 h. Subsequently, remove the 96 well plate,
add 10 µL of CCK-8; meanwhile, two separate holes for the blank control, only added to each well
with 10 µL CCK-8 in DMEM 0.1 mL. Then incubate under the same conditions for 4 h. The optical
density (OD) was measured at 490 nm using a Bio-red 550 (Bio-red company, Hercules, CA, USA).
Reference wavelength was 620 nm. The experiment was repeated 3 times. Calculation of the impact of
drugs on cell growth inhibition rate and IC50 values is performed with the following equation:

Growth inhibition rate (100%) = (D0 − D1)/D0 × 100%

where D0 is the OD value of the control wells, and D1 is the OD value of the samples wells.
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