
Article

Accurate Estimation of the Standard Binding Free
Energy of Netropsin with DNA

Hong Zhang 1 ID , Hugo Gattuso 2,3 ID , Elise Dumont 4 ID , Wensheng Cai 1,5 ID ,
Antonio Monari 2,3 ID , Christophe Chipot 2,3,6,7 ID and François Dehez 2,3,6,* ID

1 Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing
and Molecular Recognition, Nankai University, Tianjin 300071, China; hzhang@mail.nankai.edu.cn (H.Z.);
wscai@nankai.edu.cn (W.C.)

2 UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy,
54506 Vandoeuvre-lès-Nancy, France; hugo.gattuso@univ-lorraine.fr (H.G.);
Antonio.Monari@univ-lorraine.fr (A.M.); Christophe.Chipot@univ-lorraine.fr (C.C.)

3 UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS,
54506 Vandeouvre-lès-Nancy, France

4 Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Université Claude Bernard Lyon 1,
F-69342 Lyon, France; elise.dumont@ens-lyon.fr

5 Collaborative Innovation Center of Chemical Science and Engineering, Nankai University,
Tianjin 300071, China

6 Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at
Urbana-Champaign, Champaign, Illinois, 54506 Vandeouvre-lès-Nancy, France

7 Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street,
Urbana, IL 61801, USA

* Correspondence: Francois.Dehez@univ-lorraine.fr; Tel.: +33-372-745-076

Received: 23 December 2017 ; Accepted: 19 January 2018; Published: 25 January 2018

Abstract: DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc.),
which bind through non-covalent interactions. Depending on their structure and their chemical
properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA.
They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within
the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of
the binding motif. Discriminating between the different binding patterns is of paramount importance
to predict and rationalize the effect of a given compound on DNA. The structural characterization
of DNA complexes remains, however, cumbersome at the experimental level. In this contribution,
we employed all-atom molecular dynamics simulations to determine the standard binding free energy
of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates
to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical
molecular dynamics simulations, which cannot capture the large change in configurational entropy
that accompanies binding, we resort to a series of potentials of mean force calculations involving a set
of geometrical restraints acting on collective variables.

Keywords: binding free energy; DNA sensitization; netropsin; all-atom molecular dynamics;
minor-groove binder

1. Introduction

DNA is constantly exposed to various sources of stress, which may ultimately damage its chemical
composition [1–8], a situation particularly deleterious for biological cells [9,10]. If not properly
repaired [11] DNA damages can induce either the cellular death, via necrosis or apoptosis, or, lead to
mutations [12,13] that in superior organisms may lead to cancerogenesis [1,14]. DNA lesions can result
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both from endogenous and exogenous sources and comprise oxidative stress and exposure to UV
light [1,4,15–18]. Among oxidative stress inducers one can cite the reactive oxygen species such as
singlet oxygen (1O2) [19,20] or hydroxyl (HO·) and peroxide (HOO·) radicals [21]. The absorption or
UVB and UVA light by the strongly coupled DNA nucleobases triggers instead complex photochemical
pathways, which, despite the inherent DNA photostability [22–25], may result in the accumulation
of pyrimidine and especially thymines dimers. Among the most common and dangerous lesions are
the cyclobutane pyrimidine dimers (CPD) and the 6-4 photoproduct (64-PP). The already intricate
scenario becomes even more complex when one takes into account the interaction between DNA
and external drugs. In this case, a first distinction should be made among covalent and non-covalent
DNA binders [7,26,27]. Non-covalent binders form supramolecular aggregates, with the interaction
being driven by electrostatic and dispersive (π-stacking) interactions. Non-covalent DNA adducts
can be highly stable and persistent, and, in some cases, lead to replication blockage and apoptosis.
In addition to this role, they can act as photosensitizers and exacerbate the toxicity of other stress
sources, such as UV light or ionizing radiation [26,28–35]. Sensitizers can act either via the production
of 1O2 [36], via energy transfer, usually from the triplet manifold [28,30,37,38], or via electron transfer,
usually towards guanine [39,40]. Moreover, photosensitizers may also trigger photochemical reactions,
leaving reactive radicals in close proximity to the DNA, capable of further inducing deleterious
reactions such as hydrogen abstraction or strand breaks [29,35,41].

The photosensitization mechanism and its outcome strongly depend on the interaction mode
of the DNA macromolecule and the drug. However, photosensitizers may exhibit multiple binding
motifs in competition between each other [37,42]. A non-covalent DNA binder may interact either via
the major or the minor groove, or slip in between base pairs to give rise to intercalation. In other cases,
ejection of one of the Watson-Crick paired nucleobases from the DNA helical structure may occur
(insertion). The ejection of a full base pair (double-insertion) has also been reported for organic and
organometallic interactors [37]. Furthermore, a given drug may give rise to multiple interaction modes,
the equilibrium of which can depend upon the DNA sequence, as well as on environmental factors
(salt concentration, crowding, etc.). A stunning example is the paradigmatic sensitizer benzophenone
for which the structure of its DNA aggregate has been obtained only thanks to molecular modeling [37].
Obviously, the absence of precise structures complicates enormously the study and rationalization
of DNA/drug interactions and of their (photo-) reactivity. In that respect, molecular modeling and
simulations provide an unprecedented atomistic resolution, allowing to precisely tackle the persistence
of different interaction modes, as well as the fine coupling between the different potentially reactive
moieties. This is particularly true thanks also to the development of always more accurate force fields
able to reproduce nucleic acids dynamics. Furthermore, when coupled with quantum chemistry,
quantum mechanics/molecular mechanics (QM/MM) hybrid simulations may provide a complete
rationalization of the subsequent (photochemical) reactivity, as well as of the role played by the
molecular environment in tuning them [43,44]. However extremely powerful, conventional equilibrium
molecular dynamics (MD) does not allow to discriminate between the different stability of competitive
binding modes. In particular, equilibrium sampling is not able to capture the large change in
configurational entropy related to binding and may lead to excited conformations trapped in a higher
minimum region of the free energy landscape. To palliate this disadvantage, biasing techniques should
be used in order to ensure proper sampling of the conformational space and, thus, obtain accurate
binding free energies for different aggregates and different binding modes. The last years have seen
a surge of results from binding free-energy calculations of ligand-protein or even protein-protein
complexes. This is due both to the steep increase of the computational capacity of supercomputers and
to the development of specifically tailored and efficient sampling techniques. However, the situation
is much less well defined in the case of DNA interactions. Most of the studies have hitherto dealt
with approximate methods, usually relying on an implicit description of the molecular environment.
The popular MM/GBSA approach belongs to this class of methods and has been used to obtain
a rough estimate of the binding free energy for a variety of complexes [44–48]. The computed
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quantities inherently depend on stringent choices and empirical parameters such as the dielectric
constant, the Van der Waals radii and the approximation of the entropic contribution. For this reason,
electrostatics-based approximate methods are often poorly predictive, but may prove useful for fast
discrimination of poses in high-throughput docking [49]. Alternatively, more rigorous, statistical
mechanics-based methods can been applied [50], including thermodynamic integration [51] and
free-energy perturbation [52]. Accurate estimation of standard DNA-ligand binding free energies
remains a daunting computational challenge. Recently, we have developed an original framework
based on first principles eliciting protein-ligand and protein-protein absolute binding free energies
to be determined with utmost reliability [53,54]. The proposed strategy has been enhanced with the
introduction of tailored coarse variables, germane to virtually any host-guest complexes [55]. Here,
we probe this methodology to the challenging case of DNA-ligand recognition and association.

In this contribution, we turn to a very well-known and highly specific minor groove binder,
namely netropsin [46,56,57], the binding free energy with DNA of which has been precisely determined
by Breslauer and coworkers [58] in the eighties. Netropsin being a minor-groove binder, it has
a particular affinity for AT-rich DNA regions, and calorimetric and spectroscopic titrations have shown
that it prefers to bind with an alternating poly(dAdT)-poly(dAdT) polymer (−12.7 kcal/mol) than
a poly(dA)-poly(dT) homopolymer (−12.1 kcal/mol), while the binding free energy for a mixed
GCGAATTCGC sequence is of −11.5 kcal/mol. Kopka et al. attributed the preference toward poly-AT
double-stand DNA not to hydrogen bonding but rather to close van der Waals contacts between
adenine C-2 hydrogens and CH groups on the pyrrole rings of netropsin [59]. Here, as a proof of
concept, we demonstrate the possibility to determine with optimal accuracy the binding free energy of
netropsin with an alternating poly(dAdT)-poly(dAdT) double strand, employing a series of potentials
of mean force (PMF) and a series of geometrical coordinates to bias sampling. Special attention
is devoted to the presence of different netropsin minor-groove binding conformations involving
differences in the amino-group orientation and, hence, in the emergence of the netropsin/DNA specific
interaction networks.

2. Results and Discussion

2.1. Dynamics of the Netropsin/DNA Complex

The equilibrium molecular dynamics have resulted in a persistent complex between netropsin
and DNA, whereby the ligand remained bound to the minor groove, consistently with previous
studies [46,60]. The conformational dynamics of the DNA within the complex follows that of an
isolated B-DNA double strand. The netropsin is globally rigid, but a closer inspection reveals that the
ligand is in a conformational equilibrium between structures exhibiting different orientations of the
ligand terminal cationic group, involved in the DNA binding. To characterize this conformational
exchange we have followed the time evolution of two dihedral angles (φ1 and φ2) of the netropsin
scaffold (see Figure 1).

The time series of φ1 and φ2 (Top panel of Figure 1) shows that in the course of the simulation,
the netropsin is exchanging constantly and rapidly between different conformers. The 2D plot of
the population of (φ1,φ2) conformers (Bottom panel of Figure 1) reveals that the netropsin can adopt
three well-defined conformations, e.g., 1, 1a and 2, which are represented in Figure 2 together with
their interaction network with DNA. Conformer 1 corresponds to a flat geometry (φ1 ∼ φ2 ∼ ±180◦).
The conformation 1a only differs from 1 by the out of plane organization of the -CH2-CH2- aliphatic
chain (φ1 ∼ φ2 ∼ ±90◦). As far as the interaction with DNA is concerned, conformers 1 and 1a
forms the same binding pattern. In conformer 2, the guanidinium moiety of netrospin is oriented
perpendicularly to the rest of the ligand (φ1 ∼ ±180◦, φ2 ∼ ±90◦) and can no longer interact with the
minor groove.
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Figure 1. (Top) Time series of the representative dihedral angles φ1 (in green) and φ2(in yellow) over the
equilibrium MD trajectories. (Bottom) Distribution of the φ1 and φ2 dihedral angles over the trajectory.
Figure 1. (Top) Time series of the representative dihedral angles φ1 (in green) and φ2 (in yellow)
over the equilibrium MD trajectories; (Bottom) Distribution of the φ1 and φ2 dihedral angles over
the trajectory.
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From the analysis of 5000 snapshots taken regularly along the entire equilibrium simulation,
conformation 1, 1a and 2 accounts for 6.36%, 30.44% and 45.40% of the total population, respectively
(Assuming a threshold of 45◦ around the most populated region). In addition 17.8% of the structures
are transition conformations, a consequence of the fast and constant switching between the three
conformers. Globally, our data suggest a relatively equilibrated population of both 1 + 1a and
2 conformations, in line with the experiments carried out by Lewis et al. [56] who reached the conclusion
that netropsin populates equivalently two binding configurations at a single binding site. Furthermore,
over the 11 NMR structures obtained by Rettig et al. [57], conformer 1 is found 3 times, 1a 3 times and
2 5 times which correlates again nicely with our theoretical observations.

Figure 2. Representative snapshots illustrating the 1, 1a and 2 binding mode of netropsin with B-DNA.
The main interactions developing in the three modes, as well as the characteristic values of the φ1 and
φ2 dihedral are also reported.

2.2. Absolute Binding Free-Energy of Netropsin to DNA

We calculated the standard binding free energy using geometrical transformations with the
new coarse variables [55]. In the present work, we turned to the extended adaptive biasing force
(eABF) algorithm [61,62] to compute the different free-energy profiles of the thermodynamic cycle that
underlies binding. The particular example of netropsin bound to B–DNA is particularly well-suited
for this geometric route to standard binding free energies owing to the binding mode of the guest,
which remains at the surface of the nucleic acid. This binding pose is at variance with intercalated
motifs, wherein the guest molecule is interred in the double strand, thereby precluding the use of
a separation PMF with restrained orientational, conformational and positional degrees of freedom.
In the latter case, an alternate alchemical route [53,63], whereby the guest is decoupled reversibly from
its environment, namely the host and the aqueous medium, ought to be preferred. This strategy has
been cogently illustrated in the instance of benzophenone bound to a DNA double strand [42].

The results of the free-energy calculations are gathered in Table 1, and the one-dimensional
free-energy profiles for the different contributions are reported in Figure 3. The theoretical estimate
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of the standard binding free energy of netropsin and B-DNA is −13.2 kcal/mol, which is in good
agreement with the experimental value of −12.7 kcal/mol, reported by Breslauer and coworkers for
an alternate poly(dAdT)–poly(dAdT) seuence [58]. The statistical error for the different free-energy
contributions has been simply estimated by dividing the statistical data of the simulations into two
blocks of equal size. The error bars for the individual PMFs amount to about ±1.6, ±1.2, ±0.0,
±0.0, ±0.0, ±0.0, ±0.0 and ±0.6 kcal/mol for both unbound- and bound-state RMSD terms, the five
angular terms, Θ, Φ, Ψ, θ, ϕ, and the separation term, respectively. Considering the flexibility of
the double-stranded B-DNA segment, a relatively larger force constant has been used to restrain
the conformation of DNA, comparatively with the other terms. We have shown that the standard
binding free energy is independent of the choice of the force constant, provided that the latter is used
consistently across the thermodynamic cycle underlying host–guest association [53]. The larger force
constant and the marked flexibility of the B–DNA double strand rationalize the observed amplitude of
the error associate to the RMSD terms.

Table 1. Contributions to the standard binding free energy for netropsin associated with DNA.

Contribution PMF (kcal/mol) Simulation Time (ns)

∆Gsite
c −35.2 ± 1.6 445

∆Gsite
Θ −0.2 ± 0.0 14

∆Gsite
Φ −0.1 ± 0.0 10

∆Gsite
Ψ −0.1 ± 0.0 10

∆Gsite
θ −0.2 ± 0.0 18

∆Gsite
ϕ −0.1 ± 0.0 14

− 1
β ln(S∗I∗C◦) −12.0 ± 0.6 245

∆Gbulk
c +26.8 ± 1.2 215

∆Gbulk
o +7.9 -

∆G◦
bind −13.2 ± 2.0 971

∆G◦
bind(exp) [58] −12.7 -

A rapid inspection of the free-energy contributions of Table 1 combined with Figure 3
confirms that the angular contributions are nearly negligible and that the corresponding PMFs are
quadratic [53,54].As shown in Table 1, the free-energy calculations of angular contributions converge
within 70 ns. This fast convergence rate can be ascribed to the limited change in position and orientation
of the ligand in the bound state. Convergence of the PMF calculations for the conformation of the DNA
in the bound and unbound states is more difficult to achieve on account of the large conformational
space available to the double-stranded B-DNA. Interestingly enough, the harmonic nature of the free
energy is also mirrored in the RMSD contributions. Conversely, the separation PMF has a noteworthy
double-well shape, wherein the first minimum correpsonds to the native binding of netropsin to
B–DNA (see Figure 4A) , whereas the second, shallower minimum reflects the possibility of the
charged guest to form non-native contacts with host along the rectilinear separation path (Figure 4B).
It is worth mentioning that the latter is purely arbitrary and does not correspond to a minimum-action
path. However, the observed second minimum is indicative of an complex driven only by electrostatic
interactions with the negatively charged DNA backbone, while netropsin is not yet inserted into the
minor groove. Consistent with previous work [55], separation of the ligand from the DNA is the most
computationally intensive step. For the reference non-interacting complex, we chose a distance of
30 Å from the DNA barycenter. Extending this distance only slightly affects the calculated free-energy
difference [55].
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Figure 3. PMFs corresponding to each contribution of Table 1. Plots for the RMSD in the bound state
and in the bulk in A and H, for the three Euler angles, Θ, Φ, and Ψ are given in B–D, respectively,
for the positional restraints on θ and ϕ in E and F, for the separation in G. The error bars are showed
in grey.

Figure 4. Snapshots extracted from the separation simulations for the double-well shape. (A) the
representative structure near the first minimum; (B) the representative structure near the second minimum.
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3. Conclusions

In this article, we have determined with unprecedented accuracy the standard binding free energy
of a small drug associated to the minor groove of a B–DNA double strand in explicit solvent. Towards this
end, use was made of a computational strategy put forth recently and applied to protein–ligand [53]
and protein–protein binding [54]. Owing to the considerable change in configurational entropy that
accompanies host–guest association, which equilibrium brute-force molecular dynamics is not able
to capture, the proposed strategy rests on the introduction of geometric restraints and the accurate
evaluation of the loss of entropy arising from these restraints by means of PMF calculations along
tailored collective variables [55].

While relative binding free-energy calculations have been popular for several years, owing to
an advertised lesser computational investment, determination of standard binding free energies
has remained hitherto scarce. It is noteworthy that under certain circumstances, notably in the
concomitant mutation of several residues, estimation of the differential binding free energy between
two hosts through independent absolute binding free-energy calculations has proven to converge
faster than a relative binding free-energy calculation [55]. Although the strategy utilized herein
dramatically reduces the difficulty to sample the change in configurational entropy associated to
binding, accurate evaluation of certain contributions to the free energy remain challenging, chief
among which is the conformational term determined by means of a distance RMSD with respect to
the native state. This challenge is mirrored in the staggering error bars reported in Table 1, and is
rooted in the plasticity of B–DNA in an aqueous environment. It is worth mentioning that in contrast
with the protein–ligand problem, wherein the host, i.e., the protein, is generally unrestrained and
the conformation of the guest, i.e., the ligand, is coerced to that in the native state, in the present
example of netropsin binding a B–DNA duplex, the latter, i.e., the host, is restrained to an equilibrated
crystallographic structure, while the guest, i.e., netropsin, is free to isomerize. In practice, binders of
the minor groove are sufficiently rigid to justify the absence of specific geometric restraints for the
guest. In the particular case of netropsin, exchange between the different conformations is fast enough
to be adequately sampled at thermodynamic equilibrium. The present work offers an extension to
DNA association of the theoretical framework developed recently for the precise estimation of binding
free energies involving protein hosts. It also paves the way for the estimation of standard binding free
energies of complexes involving proteins and nucleic acids.

4. Theoretical Background

Accurate prediction of the standard binding free energy that underlies host–guest association
represents a formidable computational challenge, and, under many circumstances, an Augean task.
The difficulty of this endeavor can be understood in terms of the considerable change in configurational
entropy that accompanies binding of the guest to the host, which equilibrium simulations cannot
readily capture. Sampling of the relevant movements of the guest with respect to the host requires
an elaborate workflow [53,63–67], wherein introduction of suitable geometrical restraints alleviates
the intrinsic limitations of unbiased molecular dynamics. Under these premises, we have devised
two distinct approaches for the determination of the standard binding free energy of host–guest
association, invoking either alchemical, or geometric transformations, as a function of the problem at
hand [53,54]. Each route has admittedly its own advantages and drawbacks, the former, which relies
on the uncoupling of the guest from the host, being better suited for substrates interred in the binding
pocket than the latter. On the other hand, owing to sampling limitations, the alchemical route is
restricted to small guests.

Here, use will be made of the geometric route to determine the standard binding free energy
of netropsin–DNA association, turning to a series of potential-of-mean-force (PMF) calculations.
This approach presupposes a simplified representation of the inherently multidimensional reaction
coordinate that describes host–guest association, and the introduction of geometrical restraints acting
on the spatial degrees of freedom available to the guest. To enhance sampling further and, hence,



Molecules 2018, 23, 228 9 of 15

improve convergence of the free-energy calculations, conformation of the guest is traditionally
restrained. In the present work, the relative rigidity of netropsin obviates this requirement. Conversely,
the marked flexibility of the double-stranded B-DNA segment imposes that its conformation be
restrained to circumvent sampling inefficiency. The loss of configurational entropy due to the
geometrical restraints, which necessarily impacts the standard binding free-energy, is accounted
for rigorously in independent PMF calculations carried out for each restrained degree of freedom.
In practice, the relative position and orientation of the guest are defined in the frame of reference of the
host by means of, respectively, the two polar angles, θ and ϕ, and the three Euler angles, Θ, Φ and Ψ
(see Figure 5). These angular degrees of freedom are introduced in the molecular dynamics simulations
in the form of coarse variables, upon which a harmonic potential acts. Until recently, description of the
position and orientation of the guest with respect to the host required the explicit definition of groups
of atoms in both the latter and the former. Development of new coarse variables [55] describing the
relative orientation and position of the guest through a global macromolecular orientational procedure
obviates this requirement.

r

'

µ Θ

Φ

Ψ

xH
yH

zH zG

yG

xG

Figure 5. Degrees of freedom considered in the binding free-energy calculation illustrated in the case
of netropsin binding to a double-stranded B-DNA segment. The Euler angles, Θ, Φ and Ψ, and the
spherical-coordinate angles, θ and ϕ, describe the relative orientation and position of the guest with
respect to the host, respectively.

The three-dimensional structure of the B-DNA double strand was restrained to an average
conformation through its distance root mean square deviation (RMSD) with respect to the latter.
Geometrical restraints were then imposed sequentially on the five angular degrees of freedom based
on the equilibrium geometry of the complex formed by netropsin bound to DNA. The free-energy cost
incurred in the application of these geometrical restraints was determined in a stepwise fashion in six



Molecules 2018, 23, 228 10 of 15

different PMF calculations. Last, the guest was separated reversibly from the host, following an ad-hoc
rectilinear pathway, in a final one-dimensional free-energy calculation, wherein all other degrees of
freedom are frozen to their equilibrium value in the bound state. Put together, seven independent
PMF calculations were carried out on the netropsin–DNA complex in its bound state. For consistency,
geometrical restraints imposed in the bound state ought to be also accounted for in the unbound state.
Since the free-energy cost involved in the reorientation and translation of the quasi-rigid guest can
be evaluated analytically, only one additional PMF calculation remains to be performed, namely that
of the host in its free state. The equilibrium constant underlying netropsin–DNA association is then
computed as a product of ratios of configurational integrals:

Keq =

∫
site

d1
∫

dx e−βU∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−βU
(1)

=

∫
site

d1
∫

dx e−βU∫
site

d1
∫

dx e−β(U+uc)

×

∫
site

d1
∫

dx e−β(U+uc)∫
site

d1
∫

dx e−β(U+uc+uo)

×

∫
site

d1
∫

dx e−β(U+uc+uo)∫
site

d1
∫

dx e−β(U+uc+uo+ua)

×

∫
site

d1
∫

dx e−β(U+uc+uo+ua)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc+uo)

×

∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc+uo)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc)

×

∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−βU

= e
−β
(

∆Gsite
c + ∆Gsite

o + ∆Gsite
a − 1

β
ln(S∗ I∗C◦) + ∆Gbulk

o + ∆Gbulk
c

)

where 1 denotes the guest, netropsin, x1, the position of its center of mass, and x∗1 , an arbitrary location
in solution, sufficiently far from the binding site. U is the potential energy, uo = uΘ + uΦ + uΨ is the
orientational restraining potential, and ua = uθ + uϕ, the positional restraining potential. The standard
binding free energy host–guest association is then computed as:

∆G◦
bind = − 1

β
× ln KeqC◦ (2)

where C◦ =
1

1661
Å3 is the standard, 1M concentration.

All the free-energy calculations in this contribution were performed using the extended adaptive
biasing force (eABF) algorithm [61,62].
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5. Materials and Methods

Force Field Parameterization Netropsin was optimized at density functional theory (DFT) B3LYP/
6-311+G(d,p) level in a dielectric continuum (PCM) to reproduce water solvation, using Gaussian09
software [68]. Netropsin force field’s bound terms have been represented using generalized amber force
field (GAFF) following a satisfactorily procedure for similar organic compounds. Atomic charges were
subsequently obtained using the [69] procedure at the HF/6-31G* level of theory REF3. The bounded
and non-bounded parameters were the amber99 force field including bsc1 correction [70] for DNA,
and TIP3P parameters for water molecules [71].

Equilibrium Molecular Dynamics The starting configuration of the 14 base-pair-long poly(dA-dT)–
poly(dA-dT) double-stranded B-DNA was created using the NAB utility of Ambertools16 [72].
Its complex with netropsin was created manually by placing the quantum-chemically optimized
structure of the ligand in a comparable position and orientation as in the NMR experimental results
by Rettig et al. [57] (pdbdatabank code: 2LWH). B-DNA/netropsin and B-DNA systems were
placed in cubic boxes of respectively 70 Å (10,712 water molecules and 24 Na+ counterions) and
75 Å edge dimensions (12,983 water molecules and 26 Na+ counterions). The setups were prepared
using the Antechamber and Leap Ambertools16 utilities, and the simulations were run using the
NAMD molecular dynamics code version 2.12 [73]. The system was first relaxed using 1000 steps of
energy minimization, using the conjugate-gradient algorithm, followed by three restrained molecular
dynamics runs of 600 ps each, applying on heavy atoms respectively 100%, 50% and 10% of the
geometric restraints, while allowing the relaxation of the solvent. A production run of 400 ns
was then performed. Each MD simulation was run with a 2 fs time step under periodic boundary
conditions. Temperature and pressure were held constant using Langevin dynamics and the Langevin
piston [74,75]. Nonbonded van der Waals interactions were truncated for distances higher than
9 Å using the particle-mesh Ewald algorithm [76]. Trajectories were visualized using the VMD
software [77] and analyzed using the Curves+ utility [78].

Potential-of-Mean-Force Calculations The free-energy calculations reported herein were carried
out utilizing the eABF method [61,62]. To increase the efficiency of the calculations, the free-energy
pathway was broken down into up to five consecutive, non-overlapping windows for the different
terms of the binding constant. The sampling time required to complete the entire calculation was
971 ns. Instantaneous values of the force were accrued in bins of width equal to 1◦, 0.05 Å, and 0.1 Å,
for the angular, RMSD, and separation PMFs, respectively. Harmonic angular restraints of netropsin
and RMSD restraints of DNA were introduced in each free-energy calculation by means of harmonic
potentials with a force constant equal to 0.1 kcal/(mol·degree2) and 100 kcal/(mol·Å2), respectively.
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