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Abstract: Small organic molecules (SOMs) with fascinating chiroptical properties have received
much attention for their potential applications in photoelectric and biological devices. As an
important research tool, circularly polarized luminescence (CPL) provides information about the
chiral structures of these molecules in their excited state, and has been an active area of research.
With the development of the commercially available CPL instrumentation, currently, more and more
research groups have attempted to enhance the CPL parameters (i.e., quantum yield and dissymmetry
factor) of the chiral SOMs from all aspects. This review summarizes the latest five years progresses
in research on the experimental techniques and theoretical calculations of CPL emitted from SOMs,
as well as forecasting its trend of development.
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1. Introduction

Chirality is a property of asymmetry that has been widely studied in the areas of physics [1,2],
chemistry [3,4] and biology [5,6]. Molecules having a non-superimposable mirror image are
dissymmetric or chiral. They have the ability of interacting differently with left- and right-handed
circularly polarized light, and can be utilized to study a wide variety of phenomena. Circularly
polarized luminescence (CPL) is one of the chiroptical phenomena originating from chiral luminescence.
Different from circular dichroism (CD) defined as the difference between the absorption of left- and
right-handed circularly polarized light that provides the structural information about the electronic
ground state, CPL gives the complementary information about the chiral characteristics of the
excited state. Up to now, CPL has been used in many areas, such as three-dimension optical
displays [7], optical information storage and processing systems [8], optical quantum information [9],
molecular photoswitches [10], spintronics-based devices [11], biological probes and signatures [12],
CPL lasers [13], enantioselective CPL sensors [14], promote asymmetric photochemistry [15],
or light-emission systems for asymmetric photosynthesis [16].

Chiral molecules with efficient CPL are very useful for bio-sensing, bio-imaging and optoelectronic
applications, such as probing biomacromolecular targeting events by reading the change of CPL
signal, and devices for stereoscopic optical information processing, display and storage [17–19].
Before application, however, two key parameters have to be simultaneously optimized. One is
the quantum yield (φF) defined as the ratio of the number of photons emitted to the number of
photons absorbed. The possible value is between 0 and 100%. Another is the dissymmetry factor
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(glum) defined by the equation of glum = 2∆I (λ)/I (λ) [20]. Here, ∆I (λ) and I (λ), both being a
function of wavelength, represent the emission circular intensity differential and the total intensity
of the left- and right-handed circularly polarized components, respectively. Therefore, the possible
glum values are within the range of −2 (completely right emission) to +2 (completely left emission),
while 0 corresponds to an unpolarized emission. Moreover, glum also can be defined theoretically as
4|m|·|µ|·cosθ/(|m|2 + |µ|2) [21], where m and µ are the magnetic and electric transition dipole
moments, respectively, and θ is the angle between m and µ. The large |glum| values are only expected
for m-allowed and µ-forbidden transitions. Nowadays, the values of |glum| achieved from chiral
lanthanide complexes were much larger because of their f -f Laporte forbidden transitions [22], and the
largest value had been to 1.38 [23]. Due to the involved metal-centered electronic transitions, however,
the φF values of these complexes are usually small, hindering their CPL applications. Therefore, more
efforts have been devoted to chiral organic molecules for their high emission quantum yields, easy
processing, tunable emission wavelengths, easy structure modification, and potential applications in
new generation display materials [24].

Small organic molecules (SOMs) exhibit smaller densities, lighter weights and excellent
organic-solvent solubility. With the absence of transition metals, CPL spectroscopy based on SOMs has
attracted considerable attention during the last several decades. For example, CPL emitters based on
SOMs (φF = 74%, |glum| = 1.3 × 10−3) have been used to fabricate circularly polarized organic light
emitting diodes (CP-OLED) exhibiting external quantum efficiency of 9.1% in 2016 [25]. Unfortunately,
SOMs always exhibit much smaller levels of CPL (|glum| ≈ 10−5–10−3) [26], because the molecular
sizes are much smaller than the helical pitch of circularly polarized light, and the µ-allowed transitions
induce the much larger value of I (λ) than that for lanthanide complexes. Only a small number of SOMs
can display relatively high performance both in terms of φF and |glum|. Obviously, new structural
designs for chiral SOMs, combining together CPL activity and emission, are needed in order to develop
usable, smarter, and better CPL characteristics. In this review, we enumerate the theoretical and
experimental progress in CPL of chiral SOMs in the latest five years. We also try to analyze the existing
situation and prospect the future research direction to help researchers design and apply SOMs to
fabricate CPL active materials or devices.

2. Progress on Theoretical Calculations

In order to have more and more SOMs suitable for practical applications, the design of
chiral systems endowed with a high |glum| is desirable. To accomplish this task, quantum
mechanical calculations can guide the rational design of efficient CPL by providing insight in
the chirality of the excited state, although such theoretical results still scarce in the literatures.
Pritchard and Autschbach [27] firstly used density functional theory (DFT) to compute Franck-Condon
vibrationally resolved absorption, emission, and CPL bands corresponding to the lowest-energy
n→π∗ transition of the small chiral ketones, D-camphorquinone, (S,S)-trans-β-hydrindanone,
and (1R,5S)-cis-β-hydrindanone, for comparison with well-resolved experimental spectra. Pecul
and Ruud [28] also carried out a series of DFT computations of CPL spectra of organic ketones.
Moreover, without taking the vibronic contributions into account, CPL spectra can be calculated
through the following equations [27,29] in which dipole (D0m) and rotational strengths (R0m) are
evaluated in the excited state geometry optimized by time-dependent density functional theory
(TD-DFT) calculations [30]:

I =
4E3ρ(E)
3 · }4 · c3 D0m, (1)

∆I =
16E3ρ(E)
3 · }4 · c3 R0m, (2)

where h̄ is the reduced Planck′s constant, c is the speed of light, and ρ(E) is a Gaussian band shape in
terms of energy. The above equations can give CPL spectrum for each emitting molecule, but such
theoretical spectra are not easy to be used to compare with experimental spectra. The reasons include
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that it is difficult to know how many molecules are involved in the emitting state, and the collected
radiation depends on instrumental characteristics. From the above equations, the dissymmetry factor
can be calculated as [31]:

glum =
4R0m

D0m
(3)

In 2014, Abbate et al. [32] prepared four different hexahelicenes, namely 5-azahexahelicene,
hexahelicene, 2-methylhexahelicene, and 2-bromohexahelicene. Each type of experimental CPL
spectrum was compared with the corresponding theoretical spectrum. In order to calculate
and interpret CPL spectra, molecular structures were optimized in their first excited states at
CAMB3LYP/TZVP level and transition energies, dipole and rotational strengths were calculated
by TD-DFT. Calculations showed a good correspondence with experimental data, although all of them
had weak CPL spectra. According to the results, CPL spectra were significantly different in the four
cases. 5-aza-hexahelicene exhibited the largest CPL, and in the other cases, CPL was smaller.

In 2015, Crawford et al. [33] carried out the first equation-of-motion coupled cluster singles and
doubles (EOM-CCSD) calculations of CPL rotatory strengths for comparison to the results from TD-DFT
(B3LYP and CAM-B3LYP) using a series of eight chiral ketones as a test set. For most of the cases,
EOM-CCSD and CAM-B3LYP exhibited relatively good agreement. They also compared theoretical and
experimental CPL spectral data for two β,γ-enones, (1R)-7-methylenebicyclo[2.2.1] heptan-2-one and
(1S)-2-methylene bicyclo[2.2.1]heptan-7-one, which exhibited two conformers on the first excited-state
potential energy surface. EOM-CCSD and CAM-B3LYP provided closer agreement with experiment
for both dipole and rotatory absorption strengths, while B3LYP yielded better agreement for the
corresponding dissymmetry factor due to cancellation of errors.

In 2016, Villani et al. [34] studied two thia-heterohelicenes (a hetero [4]-helicene and a hetero
[6]-helicene) of different length by CPL. In order to predict CPL spectra to determine the origin of
the observed bands, molecular structures were optimized in their first excited states by TD-DFT
calculations at the CAM-B3LYP/TZVP level and transition energies, dipole strengths and rotational
strengths were calculated using TD-DFT. The calculated |glum| for [6]-helicene was about 1 × 10−2,
agreed well with the experimental one, but for [4]-helicene, the |glum| value (6 × 10−2) was much
larger than the experimental value since the enantiomeric excess was not under full control during the
CPL measurement, where degradation and partial racemization occurred.

Boron dipyrrin derivatives (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) are famous
fluorophores with high absorption coefficients and high quantum yields. In 2016, Di Bari et al. [35]
studied the circularly polarized emission properties of two quasi-isomeric BODIPY “DYEmers”
differing in the position of the aryl-aryl junction. The calculation procedure was based on the
optimization of the molecule in its first singlet excited state geometry, and on the evaluation of
the excited states obtained thereof. The calculation for compound 1 was run with TD-DFT at the
M06-2X/def2-TZVP level in vacuo, and the predicted sign of the CPL band was in agreement
with the experimental one. The computed value for |glum| was very close to the experimental
value (5.6 × 10−3 vs. 3.8 × 10−3). For compound 2, the CPL spectrum was very weak (4.0 × 10−4).
The wrong sign for the CPL band was occurred using TD-DFT, but SCS-CC2 or a DFT functional with
full exact exchange provided the correct sign.

In 2016, Santoro et al. [36] reported their calculations of CPL for the lowest excited state of
hexahelicene, 2-methylhexahelicene, 2-bromohexahelicene, and 5-azahexahelicene. All the CPL
spectra were computed by applying TD-DFT combined with Adiabatic Hessian and Vertical Hessian
models. Both Duschinsky and Herzberg-Teller effects were considered. 5-azahexahelicene exhibited the
simplest CPL spectrum with a clear positive sign. Computed spectra for 5-azahexahelicene were similar
with any of the three adopted models. The experimental CPL spectrum of 2-bromo-hexahelicene
was dominated by noise because of the very low emissive intensity of this molecule. But the
experimental spectrum suggested a negative signal, correctly predicted by the computations. However,
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for hexahelicene and 2-methylhexahelicene, the computed peaks appeared less resolved than the
experimental ones.

In 2018, Mori et al. [37] aligned two hexahelicenes in various orientations and examined by
theoretical calculations to predict the best chiroptical performance for X-shaped and S-shaped double
hexahelicenes. The TD-DFT calculations were performed at the M06-2X/def2-TZVP level. Excited-state
structures were optimized by the time-dependent, second-order approximate coupled-cluster singles
and doubles model at the RI-CC2/def2-TZVPP level. The theoretical results showed the sign and
relative intensity of CPL among the single and double helicenes. X-shaped and S-shaped double
hexahelicenes could produce more than twice intensified CPL. This conclusion was proven by the
experimental results. Combined with the theoretical and experimental results, it was convenient to
find how the molecular symmetry and the alignment of chiral elements determine the CPL responses
by manipulating electric and magnetic transition dipole moments of the molecule.

The current studies indicate that the theoretical calculation can be used not only to explain the
CPL experimental phenomena, but also to provide a reliable guidance for designing novel advanced
SOMs with good CPL responses.

3. Progress on Experimental Researches

3.1. Improvement on the CPL Measurement Instrument

CPL spectroscopy is used for characterizing chiral emissive chromophores and is an offset of a
branch of spectroscopy known as CD spectroscopy measuring the chirality of the absorption spectrum.
CPL of SOMs has been observed for electric dipole allowed π→π* transitions either in molecules with
intrinsically chiral fluorophores (such as helicenes and helicene-like molecules), in chirally perturbed
chromophores (such as monomeric BODIPYs), or in exciton-coupled systems (such as functionalized
binaphthyls or BODIPYs dimers). However, unlike CD spectroscopy for which commercial instruments
have been available for more than 50 years, the measurement of CPL has mainly performed with
homebuilt apparatus by a limited number of research groups [31,38–41]. Nowadays, CPL spectra
are usually performed on a commercial instrument, such as JASCO CPL spectrofluoropolarimeter,
OLIS DSM, at the room temperature on the basis of the Stokes-Mueller matrix approach. Thus, in the
last five years, the CPL research experienced a rapid progress particularly in the study focused on
SOMs, due to the much easier access to CPL instrument.

Taking the JASCO CPL 200 spectrometer as an example, the basic composition and principle of
the modern chiroptical spectrophotometer [42] can be introduced simply as follows. Without using a
laser, a white light from the Xe lamp passes through the flat-field grating monochromator (VF-P0240,
Shinkukogaku Co., Ltd., Tokyo, Japan), and is converted into monochromatic light. Then it is collected
by the focusing lens, and strikes a right-angle prism (RPSQ-25-10H, SIGMAKOKI Co., Ltd., Tokyo,
Japan), deviating the beam normal to the incident face by 90◦. After traversing the depolarizer (PDH15,
Bernhard Halle Nachfl. GmbH, Berlin, Germany), the light is converted into unpolarized radiation
and collected by the following condenser lens to strike the sample. The emitted light from the sample
is collected by the collimator lens (SLSQ-25B-120P, SIGMAKOKI Co., Ltd.), and then falls on the
photo-elastic modulator (PEM) driven by a piezoelectric transducer to oscillate at 50 kHz. With respect
to the horizontal plane, the PEM is fixed at 0◦ to give the relative phase to the orthogonal component of
the transmitted light, while the following analyzer is angled in the optical axis at 45◦. Emerging from
the analyzer, the light successively passes through the secondary right-angle prism and collimator lens.
After impinging on the double-prism monochromator, the light is monochromatic, and is collected
by a collimating lens. Then the light strikes a photomultiplier (PM). The output from PM is a DC
photocurrent superimposed by modulated AC components. This signal is converted into a voltage by
a transimpedance preamplifier. The signal processing is set up to record the ratio of the AC to the DC
signals, and are transmitted to a PC.



Molecules 2018, 23, 3376 5 of 32

It can be seen that the optical configuration of the commercial instrument is similar to those
of homemade ones except for the fluorescence monochromator being set parallel to the azimuth of
the excitation light. This instrument design [42] opens a new field of solid-state CPL measurements
applicable to samples in liquid phases, mesophases, and condensed phases because the samples can
be placed on a horizontal plane. Additionally, two prism monochromators are used to measure sharp
CPL peaks at a high resolution, especially for the visible and the ultraviolet region. Both the emission
and excitation monochromators are equipped with continuously variable slit drives, which allow for
an appropriate wavelength and band width selection. Moreover, this instrument includes a pulse
motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized
luminescence measurement to obtain the true CPL signal. With the holder, the maximum possible
volume of sample can be excited without excitation light reflecting or refracting off the edges of the
sample-air interface, and the maximum possible amount of light can be collected by the collimator
lens to enhance the sensitivity. For the light intensity sharply decreases below 250 nm, however,
the CPL spectrophotometer still has a limited spectral region of 250–800 nm. Therefore, in future there
will be a necessity of a specific improvement that will enable measurements down to 190 nm with
high sensitivity.

3.2. Improvement on the CPL Experimental Results

Molecules with CPL properties can be classified into four types [43]: central chiral molecules,
axial chiral molecules, planar chiral molecules, and helical chiral molecules. Generally, central chiral
molecules have one or more carbon atoms with four different groups attached. Each such tetrahedral
carbon or other chiral center can be characterized by a letter R or S. Axial chirality arises when four
groups sit in a non-planar arrangement, and can be classified as P (or R) and M (or S). Planar chirality
can be regarded as a special case of chirality for two dimensions. It results from the arrangement of
out-of-plane groups with respect to a chiral plane, and can be assigned as R or S. For helical chirality,
a helix, propeller or screw can be twisted left (M) or right (P) around its axis.

3.2.1. Central Chirality

Few molecules have intrinsically central chiral fluorophores. Therefore, embedding organic
chromophores in a chiral matrix is one of the important strategies explored recently to increase the
circular polarization. As shown in Table 1, naphthyl derivatives (C1 and C2) possessing four 1- or
2-naphthyl groups introduced to the same chiral scaffold derived from tartaric acid were designed by
Imai et al. [44]. Although both of them had the |glum| value being in the range of 10−3, the trivial
positional difference in the naphthyl substituent led to the sign inversion in CPL spectra, providing a
simple method for switching the CPL signs just by introducing regioisomeric fluorophores. It suggested
the organic CPL materials could be designed more freely, and their signs could be manipulated easily.
A similar strategy was employed by Cheng et al. [45] to design compound (C3) using four chiral
1,2-diaminocyclohexane-based molecule incorporating 1,8-naphthalimide fluorophores with the high
|glum| value of 1.4 × 10−2. However, the reversed CPL signals only could be observed in the
aggregated state.

Chiral distortion or modification incorporated into achiral dyes (BODIPY or pyrene) is another
strategy to design molecules with central chirality. In the visible and near-infrared light region,
such highly fluorescent dyes usually have the strong absorption and high quantum yield. By linking
C2-symmetric chiral binaphthyl or 1,2-diamino-cyclohexane derivatives to them, molecules with
central chirality can emit CPL efficiently. Therefore, a novel chiral BODIPY (C4) with twisted
skeleton was synthesized by Nabeshima et al. [46] through oxidation of cyclic biphenyl units at the
β positions. Using this method, the biphenyl carbons linked by cyclization becomes the asymmetric
centers of sp3. Interestingly, the elongated π-conjugation and the twisted structure make it easy to
exhibit a large fluorescence φF but a low |glum| in the red region. Moreover, due to the emission
band of pyrene-containing fluorophores is switchable between monomer and excimer emission,
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Ito, Imai and Asami et al. [47] synthesized the chiral pyrene-based N,N′-dipyrenyldiamine (C5),
4,6-bis(1-(pyren-1-ylamino)propyl)dibenzo-[b,d]furan to exhibit an unprecedented CPL switching
behavior. According to the measurement results, dilute toluene solutions exhibited maximum CPL
intensities in the monomer emission region, while saturated solutions exhibited a sign-inverted strong
CPL in the excimer region. This phenomenon should be attributed to the emission of a strong CPL
from a minor pyrene excimer with a rigid chiral environment.

Table 1. CPL and relevant photophysical properties for molecules with central chirality.

No. Structure Solvent λexc (nm) λlum (nm) φF (%) |glum| (10−3) Ref. Year

C1

Molecules 2018, 23, 3376 6 of 36 

 

It is obvious that molecules with central chirality are applicable to the future development of 
CPL-switchable luminophores used in security technologies and sensing devices. Compared to the 
chiral perturbation by embedding organic chromophores in a chiral matrix, linking chiral moieties to 
BODIPY or pyrene organic dyes usually resulted in larger ϕF values but lower glum values. 

Table 1. CPL and relevant photophysical properties for molecules with central chirality. 

No. Structure Solvent λexc 
(nm) 

λlum 
(nm) 

ϕF (%) |glum| 
(10−3) 

Ref. Year 

C1 

 

CHCl3 (1 × 10−3 M) - 410 2.0 9.40 [44] 2014 

C2 

 

CHCl3 (1 × 10−3 M) - 375 2.0 3.90 [44] 2014 

C3 

 

(CH2)4O (1 × 10−5 M) 330 450 - 14.00 [45] 2016 

C4 

 

CHCl3 (1 × 10−5 M) - 641 73.0 0.60 [46] 2016 

C5 

 

C7H8 (1 × 10−5 M) - 

424 60.0 0.69 

[47] 2017 

500 60.0 3.90 

3.2.2. Axial Chirality 

Axial chirality refers to stereoisomerism resulting from the non-planar arrangement of two or 
four groups in pairs about a chiral axis. Among axially chiral compounds, biaryls, especially 

CHCl3 (1 × 10−3 M) - 410 2.0 9.40 [44] 2014

C2

Molecules 2018, 23, 3376 6 of 36 

 

It is obvious that molecules with central chirality are applicable to the future development of 
CPL-switchable luminophores used in security technologies and sensing devices. Compared to the 
chiral perturbation by embedding organic chromophores in a chiral matrix, linking chiral moieties to 
BODIPY or pyrene organic dyes usually resulted in larger ϕF values but lower glum values. 

Table 1. CPL and relevant photophysical properties for molecules with central chirality. 

No. Structure Solvent λexc 
(nm) 

λlum 
(nm) 

ϕF (%) |glum| 
(10−3) 

Ref. Year 

C1 

 

CHCl3 (1 × 10−3 M) - 410 2.0 9.40 [44] 2014 

C2 

 

CHCl3 (1 × 10−3 M) - 375 2.0 3.90 [44] 2014 

C3 

 

(CH2)4O (1 × 10−5 M) 330 450 - 14.00 [45] 2016 

C4 

 

CHCl3 (1 × 10−5 M) - 641 73.0 0.60 [46] 2016 

C5 

 

C7H8 (1 × 10−5 M) - 

424 60.0 0.69 

[47] 2017 

500 60.0 3.90 

3.2.2. Axial Chirality 

Axial chirality refers to stereoisomerism resulting from the non-planar arrangement of two or 
four groups in pairs about a chiral axis. Among axially chiral compounds, biaryls, especially 

CHCl3 (1 × 10−3 M) - 375 2.0 3.90 [44] 2014

C3

Molecules 2018, 23, 3376 6 of 36 

 

It is obvious that molecules with central chirality are applicable to the future development of 
CPL-switchable luminophores used in security technologies and sensing devices. Compared to the 
chiral perturbation by embedding organic chromophores in a chiral matrix, linking chiral moieties to 
BODIPY or pyrene organic dyes usually resulted in larger ϕF values but lower glum values. 

Table 1. CPL and relevant photophysical properties for molecules with central chirality. 

No. Structure Solvent λexc 
(nm) 

λlum 
(nm) 

ϕF (%) |glum| 
(10−3) 

Ref. Year 

C1 

 

CHCl3 (1 × 10−3 M) - 410 2.0 9.40 [44] 2014 

C2 

 

CHCl3 (1 × 10−3 M) - 375 2.0 3.90 [44] 2014 

C3 

 

(CH2)4O (1 × 10−5 M) 330 450 - 14.00 [45] 2016 

C4 

 

CHCl3 (1 × 10−5 M) - 641 73.0 0.60 [46] 2016 

C5 

 

C7H8 (1 × 10−5 M) - 

424 60.0 0.69 

[47] 2017 

500 60.0 3.90 

3.2.2. Axial Chirality 

Axial chirality refers to stereoisomerism resulting from the non-planar arrangement of two or 
four groups in pairs about a chiral axis. Among axially chiral compounds, biaryls, especially 

(CH2)4O (1 × 10−5 M) 330 450 - 14.00 [45] 2016

C4

Molecules 2018, 23, 3376 6 of 36 

 

It is obvious that molecules with central chirality are applicable to the future development of 
CPL-switchable luminophores used in security technologies and sensing devices. Compared to the 
chiral perturbation by embedding organic chromophores in a chiral matrix, linking chiral moieties to 
BODIPY or pyrene organic dyes usually resulted in larger ϕF values but lower glum values. 

Table 1. CPL and relevant photophysical properties for molecules with central chirality. 

No. Structure Solvent λexc 
(nm) 

λlum 
(nm) 

ϕF (%) |glum| 
(10−3) 

Ref. Year 

C1 

 

CHCl3 (1 × 10−3 M) - 410 2.0 9.40 [44] 2014 

C2 

 

CHCl3 (1 × 10−3 M) - 375 2.0 3.90 [44] 2014 

C3 

 

(CH2)4O (1 × 10−5 M) 330 450 - 14.00 [45] 2016 

C4 

 

CHCl3 (1 × 10−5 M) - 641 73.0 0.60 [46] 2016 

C5 

 

C7H8 (1 × 10−5 M) - 

424 60.0 0.69 

[47] 2017 

500 60.0 3.90 

3.2.2. Axial Chirality 

Axial chirality refers to stereoisomerism resulting from the non-planar arrangement of two or 
four groups in pairs about a chiral axis. Among axially chiral compounds, biaryls, especially 

CHCl3 (1 × 10−5 M) - 641 73.0 0.60 [46] 2016

C5

Molecules 2018, 23, 3376 6 of 36 

 

It is obvious that molecules with central chirality are applicable to the future development of 
CPL-switchable luminophores used in security technologies and sensing devices. Compared to the 
chiral perturbation by embedding organic chromophores in a chiral matrix, linking chiral moieties to 
BODIPY or pyrene organic dyes usually resulted in larger ϕF values but lower glum values. 

Table 1. CPL and relevant photophysical properties for molecules with central chirality. 

No. Structure Solvent λexc 
(nm) 

λlum 
(nm) 

ϕF (%) |glum| 
(10−3) 

Ref. Year 

C1 

 

CHCl3 (1 × 10−3 M) - 410 2.0 9.40 [44] 2014 

C2 

 

CHCl3 (1 × 10−3 M) - 375 2.0 3.90 [44] 2014 

C3 

 

(CH2)4O (1 × 10−5 M) 330 450 - 14.00 [45] 2016 

C4 

 

CHCl3 (1 × 10−5 M) - 641 73.0 0.60 [46] 2016 

C5 

 

C7H8 (1 × 10−5 M) - 

424 60.0 0.69 

[47] 2017 

500 60.0 3.90 

3.2.2. Axial Chirality 

Axial chirality refers to stereoisomerism resulting from the non-planar arrangement of two or 
four groups in pairs about a chiral axis. Among axially chiral compounds, biaryls, especially 

C7H8 (1 × 10−5 M)

- 424 60.0 0.69

[47] 2017

500 60.0 3.90

It is obvious that molecules with central chirality are applicable to the future development of
CPL-switchable luminophores used in security technologies and sensing devices. Compared to the
chiral perturbation by embedding organic chromophores in a chiral matrix, linking chiral moieties to
BODIPY or pyrene organic dyes usually resulted in larger φF values but lower glum values.

3.2.2. Axial Chirality

Axial chirality refers to stereoisomerism resulting from the non-planar arrangement of two or four
groups in pairs about a chiral axis. Among axially chiral compounds, biaryls, especially binaphthyl
compounds, are one of the most important and useful compounds for monitoring steric effects and
noncovalent interactions.

For axially chiral molecules, as shown in Table 2, most of the current researches focused on the
influence of solvent on the CPL performance and carried out by the group of Imai. In the same solution
of CHCl3 (1 × 10−4 M), 1,1′-binaphthalen-2,2′-diol (BINOL) (A1), its corresponding derivatives (A2)
based on pyrene, and binaphthyl organic fluorophores (A3) had similar CPL performance [48,49].
Among them, A2 corresponding menthylcarbonate had the largest φF (80.0%) and the highest|glum|
(1.2 × 10−3). According to the phenomena occurred in A3, the introduction of an alkenyl group as a
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π-conjugated substituent onto the binaphthyl backbone resulted in the blue-shifted CPL wavelength
without inverting the CPL sign. It was different from the CPL sign inversion induced by the
introduction of aromatic substituents onto the binaphthyl, and provided a new method for the synthesis
of novel chiroptical luminophore systems. To further verify the effect of different organic solutions on
the CPL sign, two open- and closed-type binaphthyl compounds (A4 and A5) were studied in two
solvents (CHCl3 solution and DMF solution) with the same concentration [50]. The values of |glum|
were close to those of A1–A3. Due to the Ar′-C-C-Ar” dihedral angle between the phenanthrene rings
and binaphthyl, the CPL sign of A5a with phenanthrene as the luminophore was inverted in DMF. But
this inversion phenomenon didn’t emerge in A4a. It demonstrated that choosing proper substituents
on the binaphthyl rings as luminophores was an efficient method to control the CPL sign in binaphthyl
derivatives. Moreover, binaphthyl derivatives, π-conjugated 2,2′-diphenyl-4-biphenanthrol (VAPOL)
(A6) [51] exhibited an efficient CPL properties (1.3 × 10−3) in CHCl3 solutions. Its φF decreased when
the concentration increased, with values of 20% (1.0 × 10−5 M) > 16% (1.0 × 10−4 M) > 13% (1.0 ×
10−3 M), and the emission wavelength value was greatly red-shifted as the concentration increased,
with values of 376 nm (1.0 × 10−5 M) < 378 nm (1.0 × 10−4 M) < 391 nm (1.0 × 10−3 M). Different to
3,3′-diphenyl-2,2′-bi-1-naphthol (VANOL) exhibiting no CPL or PL, the φF values of optically active
aryl fluorophores (A7) (VANOL hydrogen phosphate) and (A8) (VAPOL hydrogen phosphate) in
CHCl3 solution were higher, and the CPL signs in solution state and in solid state were successfully
controlled by modifying the internal axial chirality and the axial bonding position of the biaryl
units [52]. Excitedly, in 2018, two new inherently chiral oligothiophenes (A9 and A10) synthesized by
Longhi et al. [53] based on the atropisomeric 3,3′-bithianaphtene scaffold showed the remarkable CPL
characteristics, and the highest |glum| values reached ~10−2 in the CHCl3 (1.0 × 10−4 M) solution.

Chiral materials can be studied in different solvents, and chiral behaviors in one or two media
(organic solvents or solid state) have been reported. In highly polar media, especially in water,
their chiroptical behaviors suffer from severe decay, hindering their practical applications. To further
study the influence of various solvent states, signals of 2,2′-bis(diphenylphosphino)-1,1′-binaphthalene
(BINAPO) (A11) [54], open-style 3,3′-bis(triphenylsilyl)-1,1′-bi-2-naphthol (A12) [55] and closed-style
3,3′-bis(triphenylsilyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate (A13) [55] were detected in the
CHCl3 solution, PMMA-film-dispersed, and KBr-dispersed states, respectively. The φF values of
A11 were larger in both of KBr and PMMA (7%), while the |glum| value was higher in CHCl3
(1.2 × 10−3). Both of the CPL wavelengths of A12 and A13 were red-shifted by introducing bulky
C3-symmetrical triphenylsilyl groups into the binaphthyl unit. The CPL signals of them were
opposite but were relatively larger in three solvents. This phenomenon of the sign inversion
was attributed to the rotation of the C2-axis by the bulky groups. Similarly, the CPL sign of a
binaphthylacetic acid organic luminophore (A14) [56] was successfully controlled by changing the
solvent (CHCl3, CH3CN, DMF, MeOH, and PMMA film). The fluorescent modes and signs of CPL of
binaphthyl-pyrene organic fluorophore (A15) [57] were successfully controlled by changing from
a fluidic CHCl3 solution to a glassy poly(methyl methacrylate) solid PMMA film. It exhibited
the negative CPL sign in the CHCl3 solution, and the positive CPL sign in the PMMA film. This
finding may offer the choice of fluidic solution and glassy solid to control the CPL characteristics
of multiple fluorophore molecules in addition to chiral pyrene-based fluorophores. In 2018, using a
Newman-Kwart rearrangement reaction, the O,O-bis(N,N-dimethylthiocarbamate) (CPL-silent) was
converted to the S,S-bis(N,N-dimethylthiocarbamate) (CPL-active, A16) at the peripheral positions
of chiral 1,1′-binahphthalene-2,2′-diyl to design a turn-on type CPL-functioning simple molecular
emitter [58]. A16 exhibited clear near-mirror-image CPL signals in CHCl3 with the |glum| value about
1.2 × 10−3. However, due to the unresolved interactions between the polymers and A16, CPL signals
failed to occur in PMMA and ARTON films.

Compared to those organic solvents, emitting CPL efficiently in water was rarely reported.
Therefore, two different types of amphipathic binaphthyl fluorophores were studied, the open-style
A17 [59] and the closed-style A18 [59]. The dihedral angle of the binaphthyl unit could be used to
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control the CPL sign in water, although the values of |glum| were low. They proved that the signs and
wavelengths of CPL signals were significantly affected by the rotation tenability of the internal-axis
binaphthyl fluorophore, even in water. In addition, a unique two-tandem fluorophoric molecular
system (A19) [60] exhibited a CPL signal at ~410 nm with |glum| of 5.0 × 10−4 and φF of 3.0% by
chirality transfer from binaphthyl to two terthiophene subunits in the solid state. It seems that chirality
transfer from chiral binaphthyl to achiral fluorophores is a new idea for the design of solid-state
CPL materials.

Similar to the central chiral molecules, embedding organic chromophores in highly fluorescent
(achiral) dyes is another important strategy to design efficient CPL emitters. The first example of a
new structural design was O-BODIPY (A20) [61], achieving CPL from an inherently achiral organic
chromophore. de la Moya’s group [62] also reported a new structural design (A21), in which the
luminescent BODIPY chromophore (1,3,5,7,8-pentamethyl-2,6-diethyl-F-BODIPY) was orthogonally
attached to an axially chiral 1,1′-binaphthyl unit (1,1′-bi(2-naphtol) (BINOL)). Although the measured
|glum| in solution was only 7.8 × 10−4, the quantum yield (48.0%) was large and the architecture was
simple. Pescitelli et al. [35] measured CPL spectra of the enantiomeric pairs of two quasi-isomeric
BODIPY DYEmers (A22 and A23) endowed with axial chirality and dominated by the exciton coupling
between the main π–π* transitions (550–560 nm) of the two BODIPY rings. Nakano′s group [63]
synthesized chiral spiro polycyclic aromatic compounds with thiophene and/or thiophene S,S-dioxide.
The synthesized chiral spiro compound (A24) exhibited CPL with a |glum| value < 3.0 × 10−3.
The work was the first example of CPL property of spiropolycyclic aromatic compounds with a spiro
carbon atom. Ema et al. [64] synthesized a series of oligonaphthodioxepins (A25–A30), revealing a
helically arranged octamer, A27, which showed intense CPL both in solution and in solid state. The
fluorescence quantum yields in solution and in solid state were 90.0% and 22.0%, respectively, and the
|glum| values in solution and in solid state were 2.2 × 10−3 and 7.0 × 10−3, respectively. This is one
of the highest solid-state CPL |glum| values reported. The increased φF and |glum| values were due
to the rigidity, as well as to the fact that A27 was a non-planar molecule. Moreover, A27 was highly
stable both chemically and stereochemically. In 2018, Imai et al. [65] synthesized three chiral rotatable
oligonaphthyl fluorophors (A31–A33) through π-conjugation extension. With the number of naphthyl
units increased from two to four, all the wavelengths of CPL signs exhibited in CHCl3 solution and
PMMA were red-shifted, and all the quantum yields were increased. The values of φF in solution were
higher than those in solid film state. For the value of |glum|, it decreased with increasing the number
of naphthyl units, but the effect of solvent was small.

It is obvious that axially chiral molecules usually result in lower |glum| values, except for A9 and
A10. The fluorescence quantum yields of these compounds are varied in different solvents. Except
naphthodioxepin oligomers, the maximum quantum yields were obtained from BINOL derivatives A2
(φF = 80.0%) in CHCl3 and most of the |glum| values were still in the region of 10−3–10−4. It may be
due to the reason that the oscillation of axial chirality reduces the rigidity of chiral molecules in the
excited state and influence the intensity of CPL. Therefore, designing a relatively rigid chiral skeleton
is important to increase the |glum| value in the future.
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Table 2. CPL and relevant photophysical properties for molecules with axial chirality.

No. Structure Solvent λexc (nm) λlum (nm) φF (%) |glum| (10−3) Ref. Year

A1
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A3  
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c 280 358 - 0.67 

d 340 412 - 0.85 

e 280 365 - 0.59 
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Table 2. Cont.

No. Structure Solvent λexc (nm) λlum (nm) φF (%) |glum| (10−3) Ref. Year
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[52]

2015PMMA 320 372 16.0 2.00
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[58] 2018 
PMMA 300 no 4.0 no 

ARTON 300 no 2.0 no 
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Water (1 × 10−4 M) 300 374 18.0 0.30 [59] 2017 
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CHCl3 (1 × 10−3 M) 445 575 69.0 0.70 [62] 2017 

CHCl3 (1 × 10−4 M) 300 400 2.0 1.20

[58] 2018PMMA 300 no 4.0 no

ARTON 300 no 2.0 no
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A22 

 

CH2Cl2 (5 × 10−5 M) - 655 - 3.80 [35] 2016 

A23 

 

CH2Cl2 (5 × 10−5 M) - 603 - 0.40 [35] 2016 

CH2Cl2 (5 × 10−5 M) - 655 - 3.80 [35] 2016
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Table 2. Cont. 

A24 

 

CH2Cl2 (1 × 10−5 M) a 300 368 6.0 1.50 

[63] 2017 

CH2Cl2 (6 × 10−6 M) b 330 459 1.0 3.00 

CH2Cl2 (1 × 10−5 M) c 350 444 76.0 1.50 

A25 

 

C4H8O2 (1 × 10−5 M) 310 ~360 44.0 0.68 

[64] 2017 

Solid state 310 ~360 13.0 1.10 

A26 

 

C4H8O2 (5 × 10−6 M) 330 ~400 78.0 1.60 

[64] 2017 
Solid state 330 ~400 29.0 1.40 

A27 
 

C4H8O2(2.5 × 10−6 M) 330 ~410 90.0 2.20 

[64] 2017 
Solid state 330 ~410 22.0 7.00 

A28 
 

C4H8O2 (2.5 × 10−6 M) 330 ~410 79.0 0.57 

[64] 2017 
Solid state 330 ~410 24.0 - 

A29 
 

C4H8O2 (2.5 × 10−6 M) 330 ~410 84.0 0.38 

[64] 2017 
Solid state 330 ~410 17.0 - 

A30 
 

C4H8O2 (2.5 × 10−6 M) 330 ~410 64.0 0.31 

[64] 2017 
Solid state 330 ~410 13.0 - 

A31 

 

CHCl3 (1 × 10−4 M) 290 343 7.0 0.58 

[65] 2018 

PMMA 290 348 5.0 0.65 

A32 

 

CHCl3 (1 × 10−4 M) 300 354 40.0 0.61 

[65] 2018 
PMMA 300 354 16.0 0.51 

A33 
 

CHCl3 (1 × 10−4 M) 290 363 52.0 0.33 
[65] 2018 

PMMA 305 358 29.0 0.49 

CH2Cl2 (1 × 10−5 M) a 300 368 6.0 1.50

[63] 2017CH2Cl2 (6 × 10−6 M) b 330 459 1.0 3.00

CH2Cl2 (1 × 10−5 M) c 350 444 76.0 1.50
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[64] 2017 
Solid state 330 ~410 22.0 7.00 

A28 
 

C4H8O2 (2.5 × 10−6 M) 330 ~410 79.0 0.57 

[64] 2017 
Solid state 330 ~410 24.0 - 

A29 
 

C4H8O2 (2.5 × 10−6 M) 330 ~410 84.0 0.38 

[64] 2017 
Solid state 330 ~410 17.0 - 

A30 
 

C4H8O2 (2.5 × 10−6 M) 330 ~410 64.0 0.31 

[64] 2017 
Solid state 330 ~410 13.0 - 

A31 

 

CHCl3 (1 × 10−4 M) 290 343 7.0 0.58 

[65] 2018 

PMMA 290 348 5.0 0.65 

A32 

 

CHCl3 (1 × 10−4 M) 300 354 40.0 0.61 

[65] 2018 
PMMA 300 354 16.0 0.51 

A33 
 

CHCl3 (1 × 10−4 M) 290 363 52.0 0.33 
[65] 2018 

PMMA 305 358 29.0 0.49 

CHCl3 (1 × 10−4 M) 290 363 52.0 0.33
[65] 2018PMMA 305 358 29.0 0.49
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3.2.3. Planar Chirality

The small molecules with planar chirality have found wide applications in asymmetric catalysis,
chiral discrimination, and molecular devices, duo to their strong steric hindrance, tunable conformation,
and excellent molecular recognition ability. [2.2]Paracyclophane, formed by stacking two adjacent
benzene rings, is a unique aromatic compound. One interesting structural characteristics of the
[2.2]paracyclophane skeleton is planar chirality produced by the proximal immobilization of benzene
rings. Up to date, most of the researches focused on [2.2]paracyclophane.

As shown in Table 3, a propeller shaped macrocyclic compound (P1) was synthesized by
Morisaki et al. [66]. Starting from 4,7,12,15-tetrabromo[2.2]paracyclophane, the macrocycle obtained
through coupling reactions by a diastereomer method exhibited a large φF of 45.0% and a high
|glum| of 1.1 × 10−2. This research group also investigated the chiroptical properties of planar chiral
[2.2]paracyclophane-based through-space conjugated oligomers. All the optically active compounds
(P2–P5) [67] exhibited relatively large φF values and high |glum| values. Moreover, based on
4,7,12,15-tetrabromo[2.2]paracyclophane, they designed and synthesized optically active X-shaped
π-conjugated dimers (P6–P8) [68], arising from two stacked p-phenylene-ethynylenes functionalized
by benzene, naphthalene, and anthracene. Among these compounds, the naphthyl-containing dimer
P7 achieved the highest |glum| of 1.7× 10−3, and the largest φF of 78.0%. Then they reported optically
active Frechet-type dendrimers (P69) [69] with a relatively high |glum| of 1.5 × 10−3. Containing an
X-shaped conjugated core with the planar chiral [2.2]paracyclophane moiety, this compound had two
p-phenylene-ethynylenes stacked at the central phenylene units. In 2018, they used chemoselective
Sonogashira-Hagihara coupling to achieve another optically active X-shaped compound (P10) [70],
composed of two different p-electron systems stacked at central aromatic rings. This compound
also exhibited a high |glum| of 1.7 × 10−3, and a value of φF larger than 70.0%. Interestingly,
they synthesized cyclic compounds with extended π-conjugated systems still based on planar chiral
[2.2]paracyclophane [71]. The |glum| values of 3Ph (P11), 5Ph (P12), and 7Ph (P13) were 1.4 × 10−3,
1.2 × 10−3, and 1.0 × 10−3, respectively. And the |glum| values of 3PhC (P14), 5PhC (P15), and 7PhC
(P16) were 1.3 × 10−2, 1.0 × 10−2, and 0.75 × 10−2, respectively. Obviously, the values of |glum| for
P14–P16 were higher than those for P11–P13, but the values of φF for the former were smaller than
those for the latter. Moreover, using left- and right-handed double helical structures, a new planar chiral
bis-(para)-pseudo-ortho-type 4,7,12,15-tetrasubstituted [2.2]paracyclophane (P17) [72] was synthesized
by them. This compound had a large emission (φF = 62.0%) and an excellent chiroptical properties
(|glum| = 1.6 × 10−3). DPh1 (P18) and DPh2 (P19) synthesized by them [73] were optically active
phenylethene. Due to the planar chiral, rigid, and stable 4,7,12,15-tetrabromo[2.2]paracyclophane
scaffold, P18 exhibited excellent CPL profiles in the diluted solution, while P19 had good CPL profiles
in the aggregation state. At the same time, they synthesized enantiopure phenylene-ethynylene
dimers with pyridine groups [74]. In the (Sp)-N-Ph (P20) system, a strong negative signal at around
420 nm (|glum| = 1.2 × 10−3) was derived from the same structure with (Sp)-N-H (P21). But a weak
positive signal at around 530 nm (|glum| = 2.5 × 10−4) might be derived from the π-π interaction
of phenylene-ethynylene moieties. According to the above results achieved only by using carbon
and hydrogen atoms, the researchers believed that the [2.2]paracyclophane unit would be a general
component for the construction of advanced optical materials with multiple functions.
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Table 3. CPL and relevant photophysical properties for molecules with planar chirality.

No. Structure Solvent λexc
(nm)

λlum
(nm) φF (%) |glum|

(10−3) Ref. Year
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maximum quantum yield was obtained from P13 (ϕF = 88.0%) and the maximum dissymmetry factor 
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CHCl3 (1 × 10−5 M) 320 407 50.0 1.80 [67] 2014 

P3 

 

CHCl3 (1 × 10−5 M) 320 414 47.0 2.20 [67] 2014 
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P2

Molecules 2018, 23, 3376 17 of 36 

 

unequivocally demonstrates that rigid nanoscale cylinders, including SWNT congeners, are 
promising CPL emitters that can fulfill such apparently paradoxical requirements. 

Compared with the axially chiral molecules, planar chiral molecules usually exhibit much larger 
ϕF and higher |glum| values, and their CPL wavelengths are in the range of 400–500 nm. The 
maximum quantum yield was obtained from P13 (ϕF = 88.0%) and the maximum dissymmetry factor 
was obtained from P23 (|glum| = 1.5 × 10−2). Maybe, planar chiral molecules are the representatives of 
SOMs with good CPL performance. 

Table 3. CPL and relevant photophysical properties for molecules with planar chirality. 

No. Structure Solvent λexc 
(nm) 

λlum 
(nm) ϕF (%) |glum| 

(10−3) Ref. Year 

P1 

 

CHCl3 (1 × 10−5 M) 314 460 45.0 11.00 [66] 2014 

P2 

 

CHCl3 (1 × 10−5 M) 320 407 50.0 1.80 [67] 2014 

P3 

 

CHCl3 (1 × 10−5 M) 320 414 47.0 2.20 [67] 2014 

P4 

 

CHCl3 (1 × 10−5 M) 320 413 64.0 2.20 [67] 2014 

P5 

 

CHCl3 (1 × 10−5 M) 320 415 60.0 2.60 [67] 2014 

P6 

 

CHCl3 (1 × 10−5 M) 300 412 60.0 1.20 [68] 2015 

P7 

 

CHCl3 (1 × 10−5 M) 300 421 78.0 1.70 [68] 2015 
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P5 

 

CHCl3 (1 × 10−5 M) 320 415 60.0 2.60 [67] 2014 
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P8 

 

CHCl3 (1 × 10−5 M) 350 503 42.0 0.50 [68] 2015 

P9 

 

CHCl3 (1 × 10−5 M) - 416 66.0 1.50 [69] 2016 

P10 

 

CHCl3 (1 × 10−5 M) 280 425 >70.0 1.70 [70] 2018 

P11 

 

CHCl3 (1 × 10−5 M) 300 418 46.0 1.40 [71] 2015 

P12 

 

CHCl3 (1 × 10−5 M) 350 438 80.0 1.20 [71] 2015 

P13 

 

CHCl3 (1 × 10−5 M) 350 443 88.0 1.00 [71] 2015 

P14 

 

CHCl3 (1 × 10−5 M) 314 453 41.0 13.00 [71] 2015 

P15 

 

CHCl3 (1 × 10−5 M) 350 471 60.0 10.00 [71] 2015 

P16 

 

CHCl3 (1 × 10−5 M) 355 474 70.0 7.50 [71] 2015 

CHCl3 (1 × 10−5 M) 350 503 42.0 0.50 [68] 2015
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P17 
 

CHCl3 (1 × 10−5 M) 379 419 62.0 1.60 [72] 2016 

P18 

 

C4H8O2 (1 × 10−5 M) 350 455 78.0 3.70 [73] 2017 

P19 

 

C4H8O2 (1 × 10−5 M) 350 494 58.0 0.73 [73] 2017 

P20 

 

CH2Cl2 (1 × 10−5 M) 300 421 59.0 2.80 [74] 2017 

P21 

 

CH2Cl2 (1 × 10−5 M) 300 417 56.0 1.20 [74] 2017 

P22 

 

Cyclohexane (1.5 × 10−5 
M) 

370–
380 

500 5.0 1.70 [75] 2017 
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fused benzenoid rings system, which is a fundamental molecular characteristics of this class of 
compounds. They are named as [n]helicenes, where n represents the number of rings forming a helix 
in the ortho-fused fashion. The structures H1–H6 in Table 4 are carbohelicenes, respectively. Sakai et 
al. [77] designed and synthesized a 1,2-dialkylquinoxaline-fused [7]carbohelicene (H1) by 
asymmetrically introducing two alkyl chains onto the quinoxaline unit. The spectra of Hl were 
significantly red-shifted compared to those of [7]carbohelicene. The values of ϕF and |glum| were 
25.0% and 4.0 × 10−3, respectively. Also, they designed and synthesized maleimide-substituted 
[5]carbohelicene (H2) and methoxy-substituted HeliIm (H3) by electron-withdrawing maleimide and 
electron-donating methoxy [78]. The ϕF value of H2, 37.0%, was larger than that of H3, 22.0%, but the 
two examples had the similar |glum| estimated to be 2.4 × 10−3 and 2.3 × 10−3, respectively. In the same 
year, benzimidazole-fused [5]carbohelicene (H4) and protonated (H5) were synthesized by them [79]. 
Although H4 and H5 had the similar ϕF value about 6.0%, the fluorescence color changed from yellow 
(H4) to red (H5) due to the protonation process, and the |glum| values were 9.45 × 10−3 and 5.92 × 10−3, 
respectively. This was the first observation of red-colored CPL of a helicene derivative. To further 
expand the chiroptical properties to the visible and near infrared region spectrum, Crassous et al. [80] 
reported the synthesis and chiroptical properties of π-conjugated diketopyrrolopyrrole–helicene 
derivative (H6), without using the traditional methods of metalation or functionalization by electron 
push–pull groups. The |glum| value was 5.92 × 10−3, while the ϕF value had been up to 41.0%. 
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Yamanoi et al. [75] developed an easily accessible synthetic route to provide disilane-bridged
cyclophanes via Pd-catalyzed double arylation. Some of the compounds displayed the inversion at
room temperature, but this was controlled by altering the phase (solution vs solid), the bulkiness of
substituent, and the inclusion into a host molecule. The CPL properties of optically active molecule
(P22) were comparable to those of reported low-molecular-weight organic molecules. These findings
of multifunctional tetrasila[2.2]cyclophanes provided a new molecular design strategy for functional
organosilanes, donor-acceptor systems, and planar chiral systems. Isobe et al. [76] reported the chirality
of nanoscale cylinders (“cylinder chirality”) resulted in chirality of larger dimensions in the form of a
double-helix assembly (P23 and P24). Cylinder chirality in solution gave rise to a large dissymmetry
factor (10−2) of metal-free entities in circular polarized luminescence. This study unequivocally
demonstrates that rigid nanoscale cylinders, including SWNT congeners, are promising CPL emitters
that can fulfill such apparently paradoxical requirements.

Compared with the axially chiral molecules, planar chiral molecules usually exhibit much larger
φF and higher |glum| values, and their CPL wavelengths are in the range of 400–500 nm. The maximum
quantum yield was obtained from P13 (φF = 88.0%) and the maximum dissymmetry factor was
obtained from P23 (|glum| = 1.5 × 10−2). Maybe, planar chiral molecules are the representatives of
SOMs with good CPL performance.

3.2.4. Helical Chirality

The most important examples of helical-shaped small molecules are helicenes and their derivatives.
Helicene is a compound comprised of planar aromatic molecules such as benzene rings. When many
benzene rings bond together, a 3D screw-shaped helical structure is formed to avoid clashing of the
terminal rings known as steric hindrance. Ever since Newman and co-workers successfully synthesized
optically active hexahelicene in 1956, helicenes have fascinated chemists, and thus many synthetic
strategies and methods have been devised for the preparation of helicenes in appreciable amounts.
Enantiomeric helicenes also exerted large CPL dissymmetry owing to the strong helical distortion
of π-conjugation systems. The screw-shape of helicene framework is the main reason of its chirality
although helicenes do not have any asymmetric carbon centers. Chiral helicene has been proved a
valuable structural design for the development of CPL of SOMs.

With respect to their structure, helicenes can be divided into three main categories. Carbohelicenes
consist solely of ortho-fused benzene rings. Heterohelicenes have one or more heteroatoms incorporated
in their structure. Finally, the helicene-like compounds are not fully aromatic compounds but
possess the helical twisted shape. Geometrical properties define whether a molecule is a helicene
or not, and also determine which class a helicene belongs to: carbohelicene, heterohelicene or
helicenoid(helicene-like) structure.

Carbohelicenes are generally incorporated a helical, distorted, conjugated polyaromatic
ortho-fused benzenoid rings system, which is a fundamental molecular characteristics of this class
of compounds. They are named as [n]helicenes, where n represents the number of rings forming a
helix in the ortho-fused fashion. The structures H1–H6 in Table 4 are carbohelicenes, respectively.
Sakai et al. [77] designed and synthesized a 1,2-dialkylquinoxaline-fused [7]carbohelicene (H1) by
asymmetrically introducing two alkyl chains onto the quinoxaline unit. The spectra of Hl were
significantly red-shifted compared to those of [7]carbohelicene. The values of φF and |glum| were
25.0% and 4.0 × 10−3, respectively. Also, they designed and synthesized maleimide-substituted
[5]carbohelicene (H2) and methoxy-substituted HeliIm (H3) by electron-withdrawing maleimide and
electron-donating methoxy [78]. The φF value of H2, 37.0%, was larger than that of H3, 22.0%, but
the two examples had the similar |glum| estimated to be 2.4 × 10−3 and 2.3 × 10−3, respectively.
In the same year, benzimidazole-fused [5]carbohelicene (H4) and protonated (H5) were synthesized
by them [79]. Although H4 and H5 had the similar φF value about 6.0%, the fluorescence color
changed from yellow (H4) to red (H5) due to the protonation process, and the |glum| values were
9.45 × 10−3 and 5.92 × 10−3, respectively. This was the first observation of red-colored CPL of a
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helicene derivative. To further expand the chiroptical properties to the visible and near infrared
region spectrum, Crassous et al. [80] reported the synthesis and chiroptical properties of π-conjugated
diketopyrrolopyrrole–helicene derivative (H6), without using the traditional methods of metalation or
functionalization by electron push–pull groups. The |glum| value was 5.92 × 10−3, while the φF value
had been up to 41.0%.

Table 4. CPL and relevant photophysical properties for molecules with helical chirality.

No. Structure Solvent λexc (nm) λlum
(nm) φF (%) |glum|

(10−3) Ref. Year

H1
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CH2Cl2 - 547 0.4 1.10 [82] 2015 

CH2Cl2 405 430 49.0 2.30 [91] 2017
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H31 

 

CH2Cl2 - 555 3.0 2.00 [82] 2015 

H32 

 

CH2Cl2 (1 × 10−3 M) 452 648 5.6 4.50 [94] 2014 

H33 

 

CH2Cl2(1 × 10−3 M) 
459–
469 

633 13.0 0.50 [94] 2014 

H34 

 

CH2Cl2 (1 × 10−3 M) 452 644 10.0 12.00 [94] 2014 

H35 

 

CH3CN (3 × 10−4 M) - 715 15.0 0.30 [95] 2017 

H36 

 

CH2Cl2 (5 × 10−5 M) - 493 - 0.90 [96] 2017 

H37 

 

CH2Cl2 (5 × 10−5 M) - 530 
9.0~ 
13.0 

1.50 [96] 2017 

H38 

 

CH3CN (1 × 10−3 M) 357 - - ~1.30 [97] 2014 

CH2Cl2 - 555 3.0 2.00 [82] 2015

H32
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Another class of helicenes is the heterohelicenes, where a heteroatom (e.g., O, S, N, Si etc) inserted
into the fused ring system. Heterohelicenes are generally based on five-membered rings such as
thiophene, pyrrole, furan, etc., and six-membered rings mostly containing pyridine. Additionally,
they can be fused and functionalized. Insertion of heteroatom in fused ring system is expected
to contribute reasonably high HOMO energy level. This unique feature is highly attracted the
researcher’s attention for further improvement in many fields of material sciences including OLED
materials, asymmetric catalysis, chiral molecular recognition, molecular mechines, liquid crystals
and so on. The structures H7–H27 in Table 4 are heterohelicenes, respectively. Tanaka et al. [81]
achieved the enantioselective synthesis of S-shaped double azahelicenes (H7) and (H8) via the
Au-catalyzed sequential intramolecular hydroarylation of alkynes. Interestingly, the CPL activity of
the S-shaped double azahelicenes was significantly higher than that of the azahelicenes. And the
|glum| values had been up to 2.8 × 10−2 and 1.1 × 10−2, respectively. Single azahelicenes, such as
3-(2-pyridyl)-4-aza[6]helicene (H9) [82] and 3-(2-pyridyl)-4-aza[6]-helicene (H10) [83], had the similar
φF values to those of H7 and H8, but had the lower |glum| values than those of H7 and H8. According
to the results of Hiroto and Shinokubo et al. [84], the 1,4-diketones were converted to oxahelicenes
(H11), which exhibited strong fluorescence (66.0%) both in solution and solid state as well as chiroptical
properties (1.2× 10−3). Tanaka et al. [85] achieved the first enantioselective synthesis of a sila[7]helicene
(H12) through the double [2 + 2 + 2] cycloaddition of a biaryl-linked tetrayne with a silicon-linked
bis(propargylic alcohol) as a key step. The obtained 1,1-bitriphenylene-based sila[7]helicene exhibited a
high |glum| value of 1.6 × 10−2. To examine whether and to what extent the presence of hetero-atoms
in the helicene backbone could promote a CPL response, Villani et al. [34] studied a hetero [6]-helicene
(H13) containing two sulfur atoms in the helicene backbone, and its CPL spectra were discussed on
the basis of DFT calculation results. Araki et al. [86] synthesized the tetrasulfone[9]helicene (H14) to
improve and evaluate its fluorescence and excited-state dynamics through a single-step oxidation
reaction of tetrathia[9]helicene. The introduction of sulfone units onto the helicene skeleton contributed
to the highly fluorescent characteristic when compared to the fluorescence of the parent thiahelicene,
but the |glum| value was very low, only 8.3 × 10−4. Vauthey et al. [87] studied the physicochemical
properties of cationic dioxa (H15), azaoxa (H16), and diaza (H17) [6]helicenes. The fluorescence of
these cationic chromophores was at the range from the orange to the near infrared regions. The |glum|
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values were estimated to be 4.0 × 10−4, 2.1 × 10−3, and 1.1 × 10−3 at 595, 614, and 658 nm with the φF

values 12.0%, 22.0% and 31.0%, respectively. Similarly, Lacour et al. [88] found the chiroptical switching
properties of a water-soluble diaza [4]helicene (H18). This zwitterionic dye displayed pH-dependent
absorption and emission properties and this enabled a reversible turn on/off of electronic CD at 300 nm
and of CPL in the red region upon protonation/deprotonation. Hatakeyama et al. [89] developed
a boron-fused double [5]helicenes (H19) possessing two boronate substructures at the ring junction
synthesized from hexabromobenzene in two steps via Hart reaction and demethylative cyclization.
The double helicenes showed deep blue fluorescence and CPL activity. Although its φF value had
been up to 65.0%, its |glum| value was still at the level of 10−3. Crassous et al. [90] synthesized the
first bis-helicenic terpyridine ligand (H20) and Zn-complex (H21) acting as a chiroptical switch upon
reversible coordination-decoordination of zinc (II). The switching process triggered conformational
changes and molecular motion around the Zn center, from a trans (W-shape) conformation in the
free ligand to a cis (U-shape) one in the Zn-complex. Compared to H21, H22 increased the φF

value to 19.0% but decreased the |glum| value to 1.3 × 10−3. Four members of a new class of
cycloborylated hexa-, octa-, and decahelicenes (H22–H25) were prepared in enantiopure form [91].
The CPL properties of these new fluorescent organic helicenes were measured and compared with
the corresponding organometallic phosphorescent cycloplatinated derivatives. All the examples had
the similar |glum| value of 10−3, but mono-azabora [n]helicenes had the larger φF values (21.0% and
49.0%). Otani et al. [92] developed a facile two-step synthesis of polyazahelicenes (H26), which were
composed of a 6-5-6-6-6-5-6 system, and showed high CPL activity under both neutral and acidic
conditions (|glum|: up to 9.0 × 10−3). Shinokubo et al. [93] synthesized a bisbutadiyne bridged
azahelicene dimer with a figure-eight shape (H27), which exhibited a large φF (55.0%) and a high
|glum| (8.5 × 10−3). The enhancement was due to the rigid conformation of the dimer.

Nowadays, grafting metallic ions onto π-helical structures is not difficult and can produce
novel properties. Therefore, transition metal-based helicenes have emerged as novel attractive
chiral molecules. For example, organometallic helicenes with a transition metal (Pt, Ir) included
in the helical π-framework as a metal center have been candidates for optoelectronic applications
(OLEDs, switches, sensors, etc.). Autschbach and Crassous et al. [83] reported the first examples of
rhenium-based phosphors (H28) and (H29) that exhibited CPL. By incorporating a rhenium (ReI) atom
in an extended helical π-conjugated bi-pyridine system, the π-conjugation pathway was increased
and the charge-transfer excitations within the π-helical ligand were enhanced. Compared with
the neutral one H28, the cationic ReI complex H29 exhibited a relatively larger φF (6.0%), but a
little bit lower |glum| (1.4 × 10−3). They also reported the first examples (H30 and H31) of a
helicene-based multiresponsive acid/base chiroptical switch based on the synthesized enantiopure
rollover cycloplatinated [Pt(CH3)(dmso)(bipy-H)] complexes [82]. Unfortunately, both the φF and
|glum| values were smaller. Moreover, they prepared enantiopure mono-cycloplatinated-[8]helicene
(H32) and bis-cycloplatinated-[6]helicene derivatives (H33) and (H34) [94]. Through the method of
column chromatography and using crystallization of diastereomeric, the obtained H33 and H34 had
the similar values of φF (~10.0%), but H34 displayed a higher |glum| value of the order 10−2. In 2017,
Avarvari et al. [95] reported the first examples of chiral metal diimine dithiolene complexes. Using
a platinum (II) center coordinated by 2,2’-bipyridine and helicene-dithiolene ligands, luminescent
Pt(bipy) [6]helicene compound (H35) was synthesized. The complex was emissive in fluid solutions,
and the emission band was centered at 715 nm, but the anisotropy factor was only 3 × 10−4.
Interestingly, the Ir–NHC-helicene complexes (H36) and (H37) [96] displayed very long-lived CP
blue-green phosphorescence with unusually long lifetimes and circular polarization. It depended on
both the P/M stereochemistry of helical system and the D/L stereochemistry of iridium. Each pair of
enantiomers displayed mirror image CP phosphorescence with the |glum| of 9 × 10−4 for H36 and
1.5 × 10−3 for H37, respectively.

Helicene-like refers to helical derivatives which include both aromatic or heteroaromatic and
partially saturated rings in their π-conjugated scaffolds. These compounds display extremely
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interesting optoelectronic properties and applications in a variety of fields. Up to now, high quantum
yields were only reported for helicene-like molecules in which the π-conjugation is not fully extended
to the whole molecules. The structures H38–H41 in Table 4 are helicene-like molecules, respectively. A
racemic sample of 2,2′,7,7′-tetrahydroxy-1,1′-binaphthyl (H38) was resolved by Muller et al. [97] with
(S)-proline and the separated enantiomers were independently converted to atropisomeric bis-oxazines
by aromatic Mannich reaction. These chirally pure oxazines were converted to the helicene-like
cyclic ethers. The CPL profile was consistent with the isolation of the targeted helical-like molecules
in optically pure form, prepared from the achiral primary amines. Nozaki et al. [98] synthesized
[7]helicene-like compounds with a fluorene unit (H39) using a platinum-catalyzed double cyclization
reaction. Introduction of a fluorene substructure into a helicene framework would be the key for
such a high fluorescence property and provide a promising molecular design for emissive helicenes
and helicene-like compounds. Tanaka et al. [99] achieved the phenanthrenol-based [9]helicene-like
molecules (H40 and H41) via the rhodium-mediated intramolecular [2 + 2 + 2] cycloadditions of
3-phenanthrenol-linked triynes.

It is well known that most BODIPYs are planar and achiral, without the ability of exhibiting
CPL signals, but if the BODIPY core is linked by chiral substituents or the structure of the
BODIPY is modified, it can be formed into active dye exhibiting chiral properties. de la Moya’s
group [100] reported a simple design, and new structures (H42 and H43) were obtained by embedding
dihaloBODIPY in a helically labile chiral architecture (such as flexible enantiopure diamine or diol).
Knight and Hall et al. [101] reported helically chiral N,N,O,O-boron chelated dipyrromethenes
(H44) emitting solution-phase CPL in the red region (621–663 nm). Nabeshima′s group [102]
reported the synthesis of a macrocyclic bisBODIPY (bis(boron-dipyrromethene)) complex (H45) with
a figure-of-eight helicity. The large |glum| of 9 × 10−3 proved that H45 was one of the most
efficient red-emitting CPL emitter. They also reported a helically chiral BODIPY with a hitherto
N,N,O,C-boron-chelation motif (H46) [103]. Synthesized by a one-pot boron metathesis, nucleophilic
aromatic substitution (SNAr), Suzuki coupling, boron chelation, cascade reaction, H46 was the
first example emitting CPL from a non-C2-symmetric helically chiral N,N,O,C-BODIPY. The above
researches provide a valuable benchmark for future developments in this compound series.

Moreover, Chen et al. [104,105] had conveniently synthesized five pairs of optically stable
helical aromatic imides H47 containing different electron donating or withdrawing groups.
It was found that the enantiomers exhibited medium to high fluorescence quantum yields
and full-color emissions, which represented the first examples of chiral organic molecules
with full-color CPL. On the other hand, they prepared a series of enantiopure π-extended
1,16-diphenyl-3,14-diaryltetra-hydrobenzo[5]helicenediol derivatives (Ar-H[5]HOL) (H48) [106] by
Suzuki-Miyaura cross-coupling reactions starting from 7-methoxytetralone. Also they synthesized five
pairs of helical aromatic esters (H49) [107] with different electron-donating or electron-withdrawing
groups. The emission spectra of the enantiomers not only were in the blue-color region, but also
exhibited bright blue fluorescence with relatively high fluorescence quantum yields in solution and
films. Moreover, the enantiomers all showed intense CPL signals with relatively high |glum|.

Compared with the other chiral SOMs, more helical chiral molecules have been designed,
synthesized and analyzed. They usually exhibit longer CPL wavelengths, even at 715 nm.
The maximum quantum yield was obtained from H44 (φF = 73.0%) and the maximum dissymmetry
factor was obtained from H7 (|glum| = 2.8 × 10−2). Obviously, helical chiral molecules are the
representatives of SOMs suitable for the visible and near infrared region CPL spectrum.

4. Conclusions

Recently, the design and synthesis of novel CPL materials has attracted significant attention due
to the potential applications of these materials in bio-sensors, liquid crystal lasers, optical storage
devices, and 3D optical displays. Organic chiral molecules are some of the most promising candidate
materials for uses in advanced electronic CPL devices due to their tailored synthetic feasibility, low
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cost, high flexibility and processability. Therefore, it remains a relatively potential field to explore. In
this review, we summarized the developments of the CPL researches on small organic molecules in the
latest five years.

It can be seen that many studies have been focused on the design and synthesis of the chiral
SOMs, controlling their CPL properties. For example, using designs based on chirally-perturbed
simple π-extended achiral chromophores, good CPL behavior with high dissymmetry factor and
fluorescence quantum yield can be obtained. However, compared with lanthanide complexes,
aggregate organic molecules and macromolecules, most non-aggregate small organic molecules still
have lower dissymmetry factors. Moreover, there are some difficulties in the practical applications of
SOMs, especially in fields where strong CPL signs are required to emit when SOMs are in solid state
solvent. Therefore, there are many aspects needing to be studied in the future:

(1) Using helicene-like chromophores, it is easy to obtain the high |glum| values from small
organic molecules. However, the preparation of these molecules is usually complex, requiring
asymmetric catalysis and/or chiral resolution to obtain pure-enough enantiomers, which results
in low overall yields. (2) Two key parameters, the quantum yield and the dissymmetry factor, have to
be simultaneously optimized. One of the main difficulties in this field is that these two parameters
are intrinsically related: most of the times, the optimization of one property strongly and negatively
influences the other one. Modest emission quantum yields have restricted their examination in chiral
optoelectronic devices or bio-imaging. (3) For every type of application CPL over the entire visible
range is an important requirement. Up to now, however, their spectral responses are mainly in the
blue region, and only a few examples have displayed chiroptical properties above 600 nm. It is urgent
to further expand the chiroptical properties of SOMs to the near infrared region spectrum. The reason
is that the red to near infrared light (650–900 nm) is relatively transparent to biological tissue and thus
advantageous to imaging. (4) Most of them were studied in solution phase and were found to have low
|glum| values (10−5–10−2). From solution to condensed phase, the performance becomes even worse
because aggregation of chiral luminophores normally populates the nonradiative pathways and thus
quenches the light emission to a great extent. Fluorescence of most SOMs almost completely quenched
in solid state. Development of new chiral luminescent systems with both high emission efficiency
and a large dissymmetry factor in the condensed phase has been a challenging task. (5) Looking
beyond the focus of this work, one can speculate to what other applications CPL may be usefully
employed. For example, a new generation of chiral luminescent security tags could be created, where
an appropriate polarizer could be used to identify an item by the CPL signal generated from the optical
excitation of the tag. There is evidently much future promise for the field of CPL research.
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