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Abstract: The thermodynamics of dinitrogen adsorption in faujasite-type zeolites, Na-Y, Ca-Y and
Sr-Y, were investigated by means of variable-temperature infrared spectroscopy, a technique that
affords determination of the standard adsorption enthalpy (∆H0) and entropy (∆S0) from an analysis
of the IR spectra recorded over a range of temperatures. The results obtained, taken together with
previously reported values for N2 adsorption on protonic zeolites, revealed a non-linear correlation
between ∆H0 and ∆S0. Implications of such a correlation for gas separation and purification by
adsorption in porous solids are highlighted.
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1. Introduction

By virtue of their (relatively) high thermal stability, large gas adsorption capacity, and low cost,
zeolites (and related porous solids) are currently used in industrial processes, such as oxygen and
nitrogen production from air, upgrading (sweetening) of natural gas, and purification of hydrogen
obtained from steam reforming of hydrocarbons or from syngas [1–5], to quote only a few examples.
Future applications of zeolites as selective gas adsorbents can also be envisaged, such as in carbon
capture and sequestration (CCS) from the flue gas of coal-fuelled power stations and for improving
indoor air quality inside submarines and manned spacecraft [6–11].

In addition to their stability and low cost, an intrinsic advantage of zeolites over other gas
adsorbents, such as activated carbons and porous polymers [12,13], is the facility with which cation
exchange can be carried out on zeolites, which provides a means to tune the strength of the electrostatic
field at the cation sites that constitutes a major factor determining gas-solid interaction energy.
It should be noted, however, that thermodynamic (equilibrium) gas separation, storage and delivery
are ruled by both adsorption enthalpy (∆H0) and entropy (∆S0), which together determine the
Gibbs free energy of the process. Moreover, an enthalpy-entropy correlation, frequently referred
to as compensation [14,15], could be non-linear, as found some time ago in the case of hydrogen
adsorption in zeolites [16,17]. Herein we give corresponding values for nitrogen, as measured by
variable-temperature IR (VTIR) spectroscopy. An abridged outline of this experimental method is
given below, to facilitate understanding for non-specialized readers.

2. Outline of the VTIR Method

Variable-temperature infrared (VTIR) spectroscopy is an instrumental technique [18,19] that
allows one to obtain, not only the spectroscopic signature of a gas-solid adsorption complex, but also
the magnitude of the standard enthalpy (∆H0) and entropy (∆S0) involved in the adsorption process,
provided that adsorption brings about a change in a characteristic IR absorption mode of the gas
molecule, or gives origin to such a vibration mode. Whenever that is the case, let Equation (1) below
describe the gas adsorption equilibrium:
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molecule, or gives origin to such a vibration mode. Whenever that is the case, let Equation (1) below 
describe the gas adsorption equilibrium: 

S(s) + M(g)  S-M(ads) (1) 

For an ideal system, the integrated intensity of the characteristic IR absorption band being 
monitored should be proportional to surface coverage, θ, of the adsorption sites. Hence, that intensity 
(absorbance) gives information of the activity (in the thermodynamic sense) of both the adsorbed 
species and the empty sites (1 − θ). Simultaneously, the gas equilibrium pressure, p, gives the activity 
of the gas phase. Therefore, by measuring IR absorbance and equilibrium pressure at any given 
temperature, the equilibrium constant, K, at that temperature can be determined; and the variation 
of K with T (along a series of IR spectroscopic measurements taken over a temperature range) is 
related to ΔH0 and ΔS0 through the well-known van ’t Hoff equation: 

K(T) = exp(−ΔH0/RT) exp(ΔS0/R) (2) 

Assuming Langmuir-type adsorption, combination of Equation (2) with Equation (3) leads to 
Equation (4) below: 

θ = K(T)p/[1 + K(T)p] (3) 

ln {θ/[(1 − θ)p]} = (−ΔH0/RT) + (ΔS0/R) (4) 

Equation (4) can also be written as: 

ln {A/[(AM − A)p]} = (−ΔH0/RT) + (ΔS0/R) (5) 

where A stands for the actual IR intensity being measured and AM is the maximum absorbance at full 
surface coverage (θ = 1). It is thus clear that, after recording IR absorption and equilibrium pressure 
over a temperature range, a van ’t Hoff plot of Equation (4) or (5) gives direct access to the 
corresponding values of ΔH0 and ΔS0 which characterize the thermodynamics of the gas-solid 
adsorption process. Details of the assumptions made, and hence on the applicability of Equations (4) 
and (5) can be found elsewhere [19,20]. 

3. Experimental Protocol 

The Na-Y, Ca-Y and Sr-Y zeolites used herein were obtained by repeated ion exchange of 
portions of the same parent NH4-Y sample (Zeolyst, Si:Al = 2.55) with a 0.5 M solution of the 
corresponding (Na, Ca and Sr) nitrate; total ion exchange was checked by IR spectroscopy. Powder 
X-ray diffraction showed (in all cases) good crystallinity and absence of any diffraction line not 
corresponding to the FAU structure type. 

For VTIR spectroscopic measurements, thin self-supported wafers of the zeolite samples were 
prepared and activated (outgassed) in a dynamic vacuum (residual pressure smaller than 10 −4 mbar) 
for 5 h at 650 K inside an IR cell [21,22] (shown in the Figure 1) that allowed in situ sample activation, 
gas dosage and variable-temperature IR spectroscopy to be carried out. After sample activation, the 
cell was cooled with liquid nitrogen and dosed with an amount of nitrogen gas small enough to 
prevent formation of geminal Mn+(N2)2 adsorbed species (M = Na, Ca, Sr), which would otherwise 
complicate determination of the corresponding IR absorbance [23]. The cell was then closed, and 
series of VTIR spectra were recorded (upon gradual warming up of the IR cell) while simultaneously 
registering temperature and gas equilibrium pressure. For this purpose, the cell was equipped with 
a platinum resistance thermometer (Tinsley) and a capacitance pressure gauge (MKS, Baratron). 
Transmission FT-IR spectra were recorded, at 2 cm−1 resolution, using a Bruker Vertex 80v 
spectrometer. Sixty-four scans were accumulated for each spectrum. 

S-M(ads) (1)

For an ideal system, the integrated intensity of the characteristic IR absorption band being
monitored should be proportional to surface coverage, θ, of the adsorption sites. Hence, that intensity
(absorbance) gives information of the activity (in the thermodynamic sense) of both the adsorbed
species and the empty sites (1 − θ). Simultaneously, the gas equilibrium pressure, p, gives the activity
of the gas phase. Therefore, by measuring IR absorbance and equilibrium pressure at any given
temperature, the equilibrium constant, K, at that temperature can be determined; and the variation of
K with T (along a series of IR spectroscopic measurements taken over a temperature range) is related
to ∆H0 and ∆S0 through the well-known van’t Hoff equation:

K(T) = exp(−∆H0/RT) exp(∆S0/R) (2)

Assuming Langmuir-type adsorption, combination of Equation (2) with Equation (3) leads to
Equation (4) below:

θ = K(T)p/[1 + K(T)p] (3)

ln {θ/[(1 − θ)p]} = (−∆H0/RT) + (∆S0/R) (4)

Equation (4) can also be written as:

ln {A/[(AM − A)p]} = (−∆H0/RT) + (∆S0/R) (5)

where A stands for the actual IR intensity being measured and AM is the maximum absorbance at
full surface coverage (θ = 1). It is thus clear that, after recording IR absorption and equilibrium
pressure over a temperature range, a van’t Hoff plot of Equation (4) or (5) gives direct access to
the corresponding values of ∆H0 and ∆S0 which characterize the thermodynamics of the gas-solid
adsorption process. Details of the assumptions made, and hence on the applicability of Equations (4)
and (5) can be found elsewhere [19,20].

3. Experimental Protocol

The Na-Y, Ca-Y and Sr-Y zeolites used herein were obtained by repeated ion exchange of portions
of the same parent NH4-Y sample (Zeolyst, Si:Al = 2.55) with a 0.5 M solution of the corresponding
(Na, Ca and Sr) nitrate; total ion exchange was checked by IR spectroscopy. Powder X-ray diffraction
showed (in all cases) good crystallinity and absence of any diffraction line not corresponding to the
FAU structure type.

For VTIR spectroscopic measurements, thin self-supported wafers of the zeolite samples were
prepared and activated (outgassed) in a dynamic vacuum (residual pressure smaller than 10 −4 mbar)
for 5 h at 650 K inside an IR cell [21,22] (shown in the Figure 1) that allowed in situ sample activation,
gas dosage and variable-temperature IR spectroscopy to be carried out. After sample activation, the cell
was cooled with liquid nitrogen and dosed with an amount of nitrogen gas small enough to prevent
formation of geminal Mn+(N2)2 adsorbed species (M = Na, Ca, Sr), which would otherwise complicate
determination of the corresponding IR absorbance [23]. The cell was then closed, and series of VTIR
spectra were recorded (upon gradual warming up of the IR cell) while simultaneously registering
temperature and gas equilibrium pressure. For this purpose, the cell was equipped with a platinum
resistance thermometer (Tinsley) and a capacitance pressure gauge (MKS, Baratron). Transmission
FT-IR spectra were recorded, at 2 cm−1 resolution, using a Bruker Vertex 80v spectrometer. Sixty-four
scans were accumulated for each spectrum.
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Figure 1. Scheme of the homemade (stainless-steel) variable-temperature IR cell: (1) sample wafer, (2) 
sample holder,( 3) magnetically driven anchoring piece, (4) quartz tube, (5) hook for fixing the sample 
wafer inside the furnace, (6) furnace, (7) Viton O-ring, (8) cell body, (9) refrigerated region, (10 and 
(11) optical windows, (12) indium gaskets, (13) valve, (14) Teflon gasket, (15) pressure gauge. Refs. 
[21,22]. 

4. Results and Discussion  

4.1. Dinitrogen Adsorption in Na-Y 

Figure 2a shows FT-IR spectra recorded, over a range of temperature, for N2 (fixed dose) 
adsorbed in Na-Y. A single IR absorption band is seen, which peaks at 2336 cm−1. According to 
abundant literature reports [24–27], this band is assigned to the N–N stretching mode of the N2 
molecule interacting end-on with a Na+ cation (situated on the internal wall of the zeolite supercage). 
Such an interaction leads to polarization of the adsorbed molecule and brings about activation in the 
IR of the N–N stretching vibration, which is only Raman active in the gas phase; at a frequency of 
2330 cm−1 [25]. Concomitantly, a small hypsochromic shift was expected [28,29], which resulted to be 
of 6 cm−1 in the present case. 

Figure 1. Scheme of the homemade (stainless-steel) variable-temperature IR cell: (1) sample wafer,
(2) sample holder, (3) magnetically driven anchoring piece, (4) quartz tube, (5) hook for fixing the
sample wafer inside the furnace, (6) furnace, (7) Viton O-ring, (8) cell body, (9) refrigerated region,
(10) and (11) optical windows, (12) indium gaskets, (13) valve, (14) Teflon gasket, (15) pressure gauge.
Refs. [21,22].

4. Results and Discussion

4.1. Dinitrogen Adsorption in Na-Y

Figure 2a shows FT-IR spectra recorded, over a range of temperature, for N2 (fixed dose)
adsorbed in Na-Y. A single IR absorption band is seen, which peaks at 2336 cm−1. According to
abundant literature reports [24–27], this band is assigned to the N–N stretching mode of the N2

molecule interacting end-on with a Na+ cation (situated on the internal wall of the zeolite supercage).
Such an interaction leads to polarization of the adsorbed molecule and brings about activation in the
IR of the N–N stretching vibration, which is only Raman active in the gas phase; at a frequency of
2330 cm−1 [25]. Concomitantly, a small hypsochromic shift was expected [28,29], which resulted to be
of 6 cm−1 in the present case.

For further information, Figure 2b shows a full IR spectrum covering the region of 2200 to
3800 cm−1 both, before (black line) and after dosing with nitrogen (grey line). In the N–N stretching
region, no other IR absorption band is seen aside from that one at 2336 cm−1 already discussed above.
In the O–H stretching region two faint bands can be seen, at 3746 and 3698 cm−1. The former one is
typical of silanols, while the latter is likely to arise from a trace of extra-framework aluminium giving
rise to Lewis acid sites (LAS). None of these IR absorption bands seems to be significantly affected by
nitrogen, at the temperature and pressure range at which VTIR spectra were recorded. Note also that
no IR absorption band is present in the range of 3650–3550 cm−1, where framework Si(OH)Al groups



Molecules 2018, 23, 2978 4 of 8

(Brønsted acid sites) would be expected to show up [26] in the case of incomplete cation exchange (of
the parent ammonic form of the zeolite). Very similar features in the O–H stretching region were also
shown by the zeolite samples Ca-Y and Sr-Y.

After computer integration of the IR absorption bands shown in Figure 2a, the corresponding
van’t Hoff plot, Figure 2c, of the left-hand side of Equation (5) versus 1/T was obtained. From this
linear plot, the values of ∆H0 and ∆S0 ruling the thermodynamics of the gas-solid adsorption process
resulted in −19.7 kJ mol−1 and −143 J mol−1 K−1 respectively. Error limits are estimated to be smaller
than ±2 kJ mol−1 for enthalpy and ±10 J mol−1 K−1 for entropy.Molecules 2018, 23, x FOR PEER REVIEW  4 of 8 
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From top to bottom temperature increases from 129 to 177 K; and equilibrium pressure from 2.34 to 
5.67 mbar. (b) Blank spectrum of the zeolite sample in the 2200 to 3800 cm−1 (black line) and after 
dosing with N2 (grey line). The inset shows a magnification of the O–H stretching region. (c) van’t 
Hoff plot for N2 adsorbed in Na-Y, data obtained from the IR absorption band at 2336 cm−1. 
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dinitrogen adsorption in the Ca-Y zeolite. The peak wavenumber appears at 2339 cm−1, slightly higher 
than that found for the case of the N2/Na-Y system, as expected on account of the larger positive 
electric charge of the cation. The corresponding plot of the left-hand side of Equation (5) versus the 
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Figure 2. (a) Variable-temperature IR spectra (in the N–N stretching region) of N2 adsorbed in Na-Y.
From top to bottom temperature increases from 129 to 177 K; and equilibrium pressure from 2.34 to
5.67 mbar. (b) Blank spectrum of the zeolite sample in the 2200 to 3800 cm−1 (black line) and after
dosing with N2 (grey line). The inset shows a magnification of the O–H stretching region. (c) van’t
Hoff plot for N2 adsorbed in Na-Y, data obtained from the IR absorption band at 2336 cm−1.

4.2. Dinitrogen Adsorption in Ca-Y and Sr-Y

Figure 3a depicts representative VTIR spectra, covering the range of 207 to 266 K, obtained for
dinitrogen adsorption in the Ca-Y zeolite. The peak wavenumber appears at 2339 cm−1, slightly higher
than that found for the case of the N2/Na-Y system, as expected on account of the larger positive
electric charge of the cation. The corresponding plot of the left-hand side of Equation (5) versus the
reciprocal of the temperature, for the whole series of spectra recorded, is shown in Figure 4. From this
linear plot, the corresponding values of standard adsorption enthalpy and entropy were found to be
−33.5(±2) kJ mol−1 and −151(±10) J mol−1 K−1, respectively.

Representative VTIR spectra (191 to 239 K) obtained for dinitrogen adsorption in Sr-Y are shown
in Figure 3b. All of them peak at 2336 cm−1, this wavenumber value, slightly smaller than that
found for the N2/Ca-Y system, reflects the smaller polarizing power (charge/radius ratio) of the Sr2+

ion as compared to that of Ca2+. The van’t Hoff plot for the N2/Sr-Y system is shown in Figure 4.
Corresponding values of ∆H0 and ∆S0 are −29(±2) kJ mol−1 and −150(±10) J mo−1 K−1, respectively.
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Figure 3. (a) Representative variable-temperature IR spectra of N2 adsorbed in Ca-Y. From top to
bottom temperature increases from 207 to 266 K; and equilibrium pressure from 1.05 to 1.77 mbar.
(b) Representative variable-temperature IR spectra of N2 adsorbed in Sr-Y. From top to bottom
temperature increases from 191 to 239 K; and equilibrium pressure from 2.27 to 3.28 mbar.
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Figure 4. van’t Hoff plots for N2 adsorbed in Ca-Y and Sr-Y, data obtained from the IR absorption
bands at 2339 (Ca2+···N2) and 2336 cm−1 (Sr2+···N2), respectively.

The set of ∆H0 and ∆S0 values reported above for N2 adsorption in alkaline zeolites is summarized
in Table 1, which also compiles corresponding results previously reported [30–32] for dinitrogen
adsorption in some protonic zeolites. The complete set of results is plotted in Figure 5a, which clearly
shows a non-linear enthalpy-entropy correlation. It is relevant to add that a similar correlation between
∆H0 and ∆S0 was reported some time ago [17] for the case of dihydrogen adsorption in alkaline
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zeolites, as shown in Figure 5b. In both cases it turns out that (referring to absolute values) the relative
range at which entropy changes gradually slows down as enthalpy increases more and more, thus
giving rise to the concave curves seen in Figure 5. Such a non-linear enthalpy-entropy correlation can
be rationalized by considering that, in principle, there is no definite limit for ∆H0 (which increases
with increasing interaction energy between the adsorbed molecules and the adsorption site), while
∆S0 does have an inherent limit, given by complete loss of motion freedom (a limit that is not expected
to be attained in physisorption).

Table 1. Thermodynamic data for nitrogen adsorbed on several zeolites. Error limits for ∆H0 and ∆S0

are ±2 kJ mol−1 and ±10 J mol−1 K−1, respectively.

Zeolite −∆H0 (kJ mol−1) −∆S0 b (J mol−1 K−1) Ref

H-MCM-56 13 106 [32]
H-MCM-22 14.5 107 [32]

H-Y 15.7 123 [30]
H-FER 19.1 133 [30,31]

H-ZSM-5 19.7 127 [30]
Na-Y 19.7 143 This work
Sr-Y 29 150 This work
Ca-Y 33.5 151 This work

b Referred to a standard state at 1 mbar. Within the perfect gas approximation, ∆S0 changes by an amount of
+57 J mol−1 K−1 when referred to a standard state at 1 bar.
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Figure 5. Standard adsorption enthalpy versus entropy for nitrogen (a) and hydrogen (b) adsorption
in several zeolites.

In this context, it is also relevant to add that Hercigonja et al. [33] have studied (by adsorption
calorimetry) the enthalpy-entropy compensation effect for n-hexane adsorption in several ion
exchanged ZSM-5 zeolites, finding linear ∆H0 versus ∆S0 plots in all cases. By contrast, they found no
linear compensation effect for the adsorption of the same gas in faujasite-type zeolites. These findings,
taken together with those reported herein for dinitrogen (and dihydrogen) adsorption, suggest that
valuable new insights could be expected from further research concerning adsorption enthalpy-entropy
correlation effects, which are highly relevant for both gas separation and gas delivery.
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