Supplementary data

Altenusinoides A-B, Two New Altenusin/Thiazole Hybrids from the Marine Sponge-Derived Fungus *Alternaria* sp. SCSIO S02F49

Yaping Chen¹, Ruyan Chen², Jinhuai Xu², Yongqi Tian^{2,*}, Jiangping Xu^{1,*} and Yonghong Liu^{3,*}

- ¹ School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; E-mails: zlchenyaping@126.com (Y.C.).
- ² College of Biological science and technology, Fuzhou university, Fuzhou 350116, China; E-mails: 13107668079@163.com (R.C.); xujinhuai@yahoo.com (J.X.).

³ CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/ RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

* Correspondence: tian.yongqi@163.com (Y.T.); jpx@smu.edu.cn (J.X.); yonghongliu@scsio.ac.cn (Y.L.); Tel./Fax: +86-020-8902-3244 (Y.L.)

Contents	Pages
Table S1. Crystal date and structure refinement of 3	3
Table S2. ¹ H and ¹³ C-NMR Data for 5 and 6	4
Figure S1. ¹ H NMR (500 MHz, DMSO- <i>d6</i>) spectrum of 1	5
Figure S2. The ¹³ C NMR (125 MHz, DMSO- <i>d6</i>) spectrum of 1	5
Figure S3. The DEPT-135 (125 MHz, DMSO- <i>d6</i>) spectrum of 1	6
Figure S4. The HSQC spectrum of 1	6
Figure S5. The HMBC spectrum of 1	7
Figure S6. The HRESIMS spectrum of 1	7
Figure S7. ¹ H NMR (500 MHz, CD ₃ OD- <i>d</i> 4) spectrum of 1	8
Figure S8. 1D NOESY of 1	8
Figure S9. The ¹ H NMR (500 MHz, DMSO- <i>d6</i>) spectrum of 2	9
Figure S10. The ¹³ C NMR (125 MHz, DMSO- <i>d</i> 6) spectrum of 2	9
Figure S11. The DEPT-135 (125 MHz, DMSO- <i>d6</i>) spectrum of 2	10
Figure S12. The HSQC spectrum of 2	10
Figure S13. The HMBC spectrum of 2	11
Figure S14. The HRESIMS spectrum of 2	11
Figure S15. ¹ H NMR (500 MHz, CD ₃ OD- <i>d</i> 4) spectrum of 2	12
Figure S16. 1D NOESY of 2	12
Figure S17. The ¹ H NMR (500 MHz, DMSO- <i>d6</i>) spectrum of 3	13
Figure S18. The ¹³ C NMR (125 MHz, DMSO- <i>d6</i>) spectrum of 3	13
Figure S19. The DEPT-135 (125 MHz, DMSO- <i>d6</i>) spectrum of 3	14
Figure S20. The HSQC spectrum of 3	14
Figure S21. The HMBC spectrum of 3	15
Figure S22. The HRESIMS spectrum of 3	15
Figure S23. The ¹ H NMR (500 MHz, DMSO- <i>d</i> 6) spectrum of 4	16
Figure S24 The ¹³ C NMR (125 MHz, DMSO- <i>d6</i>) spectrum of 4	16
Figure S25. The DEPT-135 (125 MHz, DMSO- <i>d6</i>) spectrum of 4	17
Figure S26. The ¹ H NMR (500 MHz, DMSO- <i>d</i> 6) spectrum of 5	17
Figure S27. The ¹³ C NMR (125 MHz, DMSO- <i>d6</i>) spectrum of 5	18
Figure S28. The DEPT-135 (125 MHz, DMSO-d6) spectrum of 5	18
Figure S29. The ¹ H NMR (500 MHz, DMSO- <i>d6</i>) spectrum of 6	19
Figure S30. The ¹³ C NMR (125 MHz, DMSO- <i>d6</i>) spectrum of 6	19
Figure S31. The DEPT-135 (125 MHz, DMSO- <i>d6</i>) spectrum of 6	20
Figure S32. Phylogenetic trees of Alternaria sp. SCSIO S02F49	20

Identification code	Compound 3			
Empirical formula	C ₁₀ H ₉ NO ₃ S	C ₁₀ H ₉ NO ₃ S		
Formula weight	223.24			
Temperature	150(2) K			
Wavelength	1.54184 Å			
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 7.4592(18) Å	α= 79.413(13)°.		
	b = 8.3759(18) Å	$\beta = 80.323(15)^{\circ}.$		
	c = 8.7755(10) Å	$\gamma = 65.02(2)^{\circ}.$		
Volume	486.00(18) Å ³			
Z	2			
Density (calculated)	1.526 Mg/m ³			
Absorption coefficient	2.864 mm ⁻¹	2.864 mm ⁻¹		
F(000)	232	232		
Crystal size	0.370 x 0.240 x 0.170 m	0.370 x 0.240 x 0.170 mm ³		
Theta range for data collection	5.154 to 66.778°.	5.154 to 66.778°.		
Index ranges	-6<=h<=8, -8<=k<=9, -1	-6<=h<=8, -8<=k<=9, -10<=l<=10		
Reflections collected	2995	2995		
Independent reflections	1684 [R(int) = 0.0369]	1684 [R(int) = 0.0369]		
Completeness to theta = 66.778°	98.0 %	98.0 %		
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.51489	1.00000 and 0.51489		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²		
Data / restraints / parameters	1684 / 0 / 141	1684 / 0 / 141		
Goodness-of-fit on F ²	1.069	1.069		
Final R indices [I>2sigma(I)]	R1 = 0.0441, wR2 = 0.1	R1 = 0.0441, $wR2 = 0.1138$		
R indices (all data)	R1 = 0.0519, wR2 = 0.1	R1 = 0.0519, wR2 = 0.1235		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	0.286 and -0.523 e.Å ⁻³	0.286 and -0.523 e.Å ⁻³		

Table S1. Crystal date and structure refinement of 3

No.	5		6	
	$\delta_{\rm H}$ mult (<i>J</i> in Hz)	δc	$\delta_{\rm H}$ mult (J in Hz)	δς
1		144.8, C		133.9, C
2	6.21, s	109.3, CH	6.28, s	106.0, CH
3		158.5, C		160.6, C
4	6.25, s	99.7, CH	6.24, s	100.8, CH
5		160.4, C		158.7, C
6	6.20, s	106.2, CH	6.32, s	109.0, CH
7	3.69, s	55.3, CH ₃	3.70, s	55.4, CH ₃
1′		132.7, C		137.2, C
2'		125.3, C		169.6, C
3'	6.60, s	118.0, CH	2.95, dd (18.2 ,6.8)	41.3, CH ₂
			2.40, d (18.2)	
4'		143.5, C	4.16, dd (6.6, 2.7)	71.1, CH
5'		144.5, C		206.9, C
6'	6.54, s	117.1, CH	2.11, s	18.6, CH ₃
7'	2.05, s	19.8, CH ₃		
3-OH	9.47, brs		9.53, brs	
4'-OH	8.83, brs			
5'-OH	8.78, brs			

Figure S1. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 1

Figure S2. The ¹³C NMR (125 MHz, DMSO-d6) spectrum of 1 in DMSO

Figure S3. The DEPT-135 (125 MHz, DMSO-d₆) spectrum of 1

Figure S4. The HSQC spectrum of 1

Figure S6. The HRESIMS spectrum of 1

Figure S7. The ¹H NMR (500 MHz, CD₃OD-d₄) spectrum of 1

Figure S9. The ¹H NMR (500 MHz, DMSO-*d6*) spectrum of 2

Figure S10. The ¹³C NMR (125 MHz, DMSO-d6) spectrum of 2

Figure S11. The DEPT-135 (125 MHz, DMSO-d6) spectrum of 2

Figure S12. The HSQC spectrum of 2

Figure S13. The HMBC spectrum of 3

Figure S14. The HRESIMS spectrum of 3

Figure S15. The ¹H NMR (500 MHz, CD₃OD-*d*₄) spectrum of 2

Figure S16. 1D NOESY of 2

Figure S17. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 3

Figure S19. The DEPT-135 (125 MHz, DMSO-d₆) spectrum of 3

Figure S20. The HSQC spectrum of 3

Figure S22. The HRESIMS spectrum of 3

Figure S23. The ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 4

Figure S24. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of 4

Figure S25. The DEPT (125 MHz, DMSO-d₆) spectrum of 4

Figure S27. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of 5

Figure S29. The ¹H NMR (500 MHz, DMSO-d₆) spectrum of 6 in DMSO

Figure S30. The ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of 6

Figure S31. The DEPT-135 (125 MHz, DMSO-d₆) spectrum of 6

Figure S32. Phylogenetic trees of Alternaria sp. SCSIO S02F49