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Abstract: Acquiring full knowledge of the reactivity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is
crucial for the better understanding of the transformation and degradation of TCDD-like dioxins in
the environment. To clarify the reactivity of the organic hydroperoxides toward TCDD, in this study,
the reactions between the neutral/anion of the hydrogen peroxide (H2O2) and TCDD have been
systematically investigated theoretically. It was found that the neutral H2O2 is relatively difficult
to react with TCDD compared with its anion, exhibiting the pH dependence of the title reaction.
As for the anion of H2O2, it reacts with TCDD through two reaction mechanisms, i.e., nucleophilic
substitution and nucleophilic addition. For the former, the terminal O atom of HO2

− nucleophilically
attacks the C atom of the C-Cl bond in TCDD to form an intermediate containing an O-O bond,
accompanying the dissociation of the chlorine atom. For the latter, the terminal O atom of HO2

− can
be easily attached to the C atom of the C-O bond in TCDD, resulting in the decomposition of C-O
bond and the formation of an intermediate containing an O-O bond. For these formed intermediates
in both reaction mechanisms, their O-O bonds can be homolytically cleaved to produce different
radicals. In addition, the selected substitution effects including F-, Br-, and CH3- substituents on the
above reactions have also been studied. Hopefully, the present results can provide new insights into
the reactivity of the organic hydroperoxides toward TCDD-like environmental pollutants.

Keywords: 2,3,7,8-tetrachlorodibenzo-p-dioxin; hydrogen peroxide; reaction mechanisms;
theoretical calculations

1. Introduction

It is well known that persistent organic pollutants (POPs) are organic compounds that persist in the
environment for long periods of time, which have been regulated under the Stockholm Convention. As one
of the typical POPs, polychlorinated dibenzo-p-dioxins (PCDDs) are a class of environmental
pollutants arising from anthropogenic sources (e.g., waste incineration of chlorine-containing substances)
and natural sources (e.g., volcanoes and forest fires). They have imposed many adverse
impacts on ecological environments and human health. Especially, as the most toxic dioxin,
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been classified as a Group 1 carcinogen by the
International Agency for Research on Cancer (IARC). To understand the formation [1–8] and
transformation or degradation [9–27] mechanisms of PCDDs, many experimental and theoretical
investigations have been carried out. Several methods involving microbial degradation [9–11],
photocatalysis [12–14], incineration and thermal treatment [15,16], have been proposed to degrade
PCDDs. However, the high stabilities of PCDDs make them difficult to react with other species due
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to their special structures. In fact, only a few free radicals, such as OH, NO3, and O3, can react with
PCDDs. Therefore, seeking new reactive species that can react with PCDDs is crucial for the study of
the transformation of PCDDs.

Recently, more and more studies have shown experimentally that hydrogen peroxide (H2O2)
and its derivatives can react with chlorinated benzoquinones under mild conditions, producing
highly reactive free radicals (e.g., hydroxyl radical, organic alkoxyl radicals, and quinone ketoxy
radicals) [28–31]. Moreover, these produced radicals can cause oxidative damages to DNA, protein,
and lipids [32]. In addition, it was found that explicit water molecules play an important role in the
formation of these free radicals theoretically [33,34].

Inspired by the abovementioned high reactivity of H2O2 toward chlorinated benzoquinones [28–31],
we wonder if H2O2 can react with TCDD since chlorinated benzoquinones and TCDD possess some
similarities in structure and property, where both of them have a planar ring structure containing
C-Cl bond and are good electron acceptors [35–38]. If they do react, what are the detailed reaction
mechanisms? Obviously, clarification of above questions can enable us to better understand the
potential reactivity of H2O2 and its derivatives in the transformation of TCDD. Unfortunately, to the
best of our knowledge, no relevant studies have been reported so far. In view of the high toxicity of
TCDD, theoretical studies on the above reaction are highly desirable.

Therefore, in this study, using TCDD as a model compound for PCDDs, its reactions with
neutral H2O2 and its anion have been systematically explored using the density functional theory
(DFT). The possible reaction mechanisms have been discussed for the whole reaction. Moreover,
the substitution effects of F-, Br- and CH3- groups on the title reaction have also been explored.
Expectedly, the present results not only enable us to better understand the potential reactivity of
organic hydroperoxides, but also promote the performance of the related experimental studies on the
transformation of the TCDD-like environmental pollutants.

2. Results and Discussion

In view of the fact that neutral H2O2 and its anion coexist due to the occurrence of the acid-base
dissociation equilibrium in solution, the reactions of the neutral and anion of H2O2 with TCDD are
discussed respectively.

2.1. Reaction of Neutral H2O2 with TCDD

Similar to the reaction between chlorinated benzoquinones and H2O2 [33,34], the reaction between
H2O2 and TCDD is initiated by the formation of an initial intermediate. Then, nucleophilic attack
of H2O2 on TCDD occurs to produce an unstable intermediate containing an O-O bond. Finally,
the unstable intermediate decomposes via the homolytical cleavage of the O-O bond, resulting in the
production of radicals. The detailed reaction mechanisms are described as follows.

2.1.1. Direct Reaction of the Neutral H2O2 with TCDD

For the direct reaction of the neutral H2O2 with TCDD, four nucleophilic attack modes named
as 1, 2, 3, and 4 have been constructed considering the D2h symmetry of TCDD and the different
orientations of the H atom in H2O2. As shown in Figure 1, the corresponding transition states TSn
(n = 1–4) for each mode have been located.
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Figure 1. Calculated transition states for the direct nucleophilic attack of neutral H2O2 on TCDD.
The selected distances are given in Å and the data in square brackets refer to the imaginary frequency
of the transition state, which is true for the remaining figures.

As displayed in Figure 1, the O atom of H2O2 nucleophilically attacks the C atom of the C-Cl bond
in TCDD, accompanying the proton transfer (PT) from the attacking O atom of H2O2 to the dissociated
chlorine atom of TCDD. As presented in Table 1, the free energy barriers for the four nucleophilic attack
modes are 62.43, 62.39, 64.04 and 61.63 kcal/mol, respectively. Similarly, the M06-2X/6-311++G(d,p)
level of theory can also give consistent results. Obviously, such high energy barriers suggest that it is
very difficult for the title reaction to occur under normal conditions.

Table 1. Free energy barriers for the direct nucleophilic substitution of TCDD by H2O2 in different
attack modes a.

Attack Modes ∆G*1 ∆G*2 ∆G*2 − ∆G*1

Mode 1 62.43/62.22 63.63 1.20
Mode 2 62.39/62.77 61.47 −0.91
Mode 3 64.04/64.33 62.97 −1.07
Mode 4 61.63/62.89 61.27 −0.36

a All units are in kcal/mol. ∆G*1 and ∆G*2 refer to the results in the gas phase and in aqueous solution, respectively.
The data behind the slash are the results at the M06-2X/6-311++G(d,p) level of theory.

Can the bulk solvent effects promote the above processes? To clarify this point, the solvent effects
in aqueous solution have been considered employing the SMD model. As presented in Table 1, the free
energy barriers mentioned above have been changed slightly upon solvation, where the changes of
the free energy barriers range from 1.20 to −1.07 kcal/mol. Therefore, it is still difficult for the direct
reaction between neutral H2O2 and TCDD to take place even though solvent effects are included.

2.1.2. Water-Assisted Reaction of Neutral H2O2 with TCDD

In view of the fact that a water molecule plays an important catalytic role in promoting the
PT process and the above NAP involves the PT process, the reaction of H2O2 with TCDD has been
explored below with the assistance of different numbers of explicit water molecules ranging from one
to three on the basis of the above nucleophilic attack mode 1. For simplicity, the symbols IMx(nw)
and TSx(nw) have been employed to stand for the optimized intermediates (IMs) and transition states
(TSs), where x and n denote the formation sequence of the mentioned species and the numbers of
water molecules involved, respectively. For instance, IM1(1w) and IM2(2w) represent the first and
second intermediates in the reaction pathways involving one and two water molecules, respectively.
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For the four reaction pathways involving zero, one, two, and three water molecules, they have been
named as pathways A, B, C and D, respectively.

Formation of the Initial Intermediate

As the first step of the whole reaction, the initial intermediates have been explored based on the
IRC analyses of the corresponding transition states TS1(nw)n=0–3 in the NAPs. As shown in Figure 2,
different initial intermediates IM1(nw)n=0–3 have been located. Correspondingly, the molecular
graphs and topological analyses of them are given in Figure S1 and Table S1 of the Supplementary
Materials, respectively.
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As displayed in Figure 2 and Figure S1, TCDD, H2O2, and H2O interact with each other
via intermolecular H-bonds in the formed IMs, which can be confirmed by the presence of the
corresponding BCPs. In IM1(0w), one of the H atoms of H2O2 forms an intermolecular H-bond with
the chlorine atom of TCDD. For the water molecules introduced, they interact with both TCDD and
H2O2 simultaneously via intermolecular H-bonds. As presented in Table S1, the above intermolecular
H-bonds are mostly predominated by the electrostatic interactions as can be seen from the positive
values of the ∇2ρbcp and Hbcp of the electron density at the BCPs. Actually, this point is also be
reflected by the large H-bonding distances shown in Figure 2.

As presented in Table 2, IM1(0w) has been stabilized by 1.52 kcal/mol relative to those of the
separated reactants. Moreover, the stabilization energy increases with the increasing of the numbers of
water molecules. For example, IM1(1w), IM1(2w), and IM1(3w) have been stabilized by about 6.83,
13.82 and 21.31 kcal/mol, respectively. Meanwhile, the enthalpy changes for these formation processes
are negative values, suggesting that the formation processes of these IMs are exothermic reactions.
Importantly, the released reaction heat increases with the increasing of the numbers of water molecules,
which is necessary for the following NAP.

Table 2. Calculated relative energy (∆E), enthalpy changes (∆H), and Gibbs free energy changes (∆G)
for the available intermediates, transition states, and products relative to the isolated reactants in the
different reaction pathways involving neutral H2O2

a.

Pathways Parameters IM1 TS1 IM2 TS2 Pro

A
∆E −1.52 52.10 −7.82 −2.93(4.89) −2.43
∆H −0.83 51.47 −7.61 −3.37 −1.48
∆G 4.26 62.43 −0.33 5.94 −3.75

B
∆E −6.83 41.75 −13.74 −7.92(5.82) −9.46
∆H −6.55 40.64 −14.06 −9.14 −9.03
∆G 7.93 60.94 1.82 10.35 −2.58

C
∆E −13.82 31.84 −20.31 −9.04(11.27) −15.90
∆H −14.16 29.92 −21.07 −10.49 −15.94
∆G 10.27 60.08 2.70 16.79 −1.16

D
∆E −21.31 23.72 −25.79 −12.01(13.78) −21.46
∆H −22.00 21.37 −27.13 −13.89 −22.83
∆G 10.26 59.91 5.88 22.25 3.11

a All the units are in kcal/mol. The data in parentheses are the results relative to the corresponding IM2(nw).

Nucleophilic Substitution Process

As displayed in Figure 2, all the transition states TS1(nw)n=0–3 in the NAPs have been located,
which have been further verified by the IRC calculations. As shown in Figure 3, the microscopic details
during the NAP can be observed. For example, for the direct reaction in the absence of water molecules,
one of the O atoms (O25) of H2O2 directly attacks the C atom (C12) of TCDD, accompanying the
simultaneous dissociation of the H26 atom of H2O2 and Cl18 atom of TCDD. As a result, the second
intermediate IM2(0w) containing an O-O bond can be formed. Note that the O25-H26 bond of H2O2

begins to increase significantly until the formation of the transition state, exhibiting the asynchrony of
the nucleophilic substitution reaction. As for the process assisted by one water molecule, as shown in
Figure 3, the introduced water molecule accepts the proton of H2O2 and donates its own proton to the
chlorine atom of TCDD simultaneously, reflecting the bridge role of water molecule in the assistance of
PT. Moreover, no zwitterionic species have been located during the PT process. Therefore, the above
PT processes should proceed concertedly. Similarly, the same is also true for the processes involving
two and three water molecules.
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To better understand the catalytic role of water molecules in the above process, the selected
distances involving the attacked C atom of TCDD in TSs have been analyzed. As displayed in Figure 2,
the distances between the dissociated Cl atoms and its linked C atom (RC···Cl) in TS1(nw)n=0–3 decrease
with the increasing of the numbers of water molecules. For instance, RC···Cl is 2.284, 2.192, 2.153 and
2.139 Å in TS1(nw)n=0–3 involving zero, one, two, and three water molecules, respectively. On the other
hand, the opposite is true for the distance between the attacking O atom of H2O2 and the attacked C
atom of TCDD. Obviously, less structural deformations occur for H2O2 and TCDD in the presence of
water molecules compared with the direct reaction, implying the decrease of the energy barriers with
the assistance of water molecules.

Expectedly, as shown in Table 2, the original electronic energy barrier in the NAP has been
decreased significantly with the increasing of the numbers of water molecules. For example, it has
been decreased by 28.38 to 23.72 kcal/mol with the assistance of three water molecules, exhibiting
the positive catalytic role of water molecules. On the other hand, the free energy barriers have been
changed slightly.

Cleavage of the O-O Bond

After the NAP, the second intermediates IM2(nw)n=0–3 containing an O-O bond have been formed.
As shown in Figure 2, all of them have been characterized by the intermolecular H-bonds, which can
be further confirmed by the presence of the BCPs as shown in Figure S1.

As shown in Figure 2, the O-O bonds in IM2(nw)n=0–3 have been elongated more or less compared
to that of the H2O2, indicating the weakening of them. Actually, as presented in Table S1, this
point can be further confirmed by the decreases of the electron density at the BCP of the O-O bonds
upon the formation of IM2(nw)n=0–3. Moreover, to further evaluate the strength of the O-O bonds,
the vertical and adiabatic bond dissociation energies (BDEs) of the O-O bonds have been calculated for
IM2(nw)n=0–3 as well as that of H2O2 for comparison. Here, the vertical BDE is calculated as the energy
difference between the optimized intermediate and the dissociated fragments without considering
the structural relaxation. As for the adiabatic BDE, it is calculated as the enthalpy difference between
the optimized species before and after dissociation. As presented in Table 3, the O-O bond has been
significantly weakened upon the formation of IM2(nw)n=0–3. For example, the vertical BDE of the
O-O bond of H2O2 (48.62 kcal/mol) has been decreased by about 28.30 to 20.32 kcal/mol in IM2(0w).
Meanwhile, significant decreases for the adiabatic BDE have also been observed. Therefore, it is easy
to homolytically cleave these O-O bonds in IM2(nw)n=0–3 thermodynamically.
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Table 3. Calculated BDEs of the O-O bond in H2O2 and the second intermediates a.

Species H2O2 IM2(0w) IM2(1w) IM2(2w) IM2(3w)

BDE 48.62/44.08 20.32/6.14 19.81/5.03 18.89/5.14 18.96/4.96
a All the units are in kcal/mol. The data behind the slash refer to the adiabatic BDEs.

Moreover, as shown in Figure 2, the corresponding TSs for the cleavage of the O-O bond have also
been located. As presented in Table 2, for IM2(0w), the calculated free energy barrier is 6.27 kcal/mol
relative to IM2(0w). Moreover, the energy barriers are 8.53, 14.09 and 16.37 kcal/mol in the presence of
one, two, and three water molecules, respectively. In fact, these transition states are lower in energy
relative to the initial reactants. For example, TS2(2w) and TS2(3w) are lower in energy by 9.04 and
12.01 kcal/mol than the initial reactants. Thermodynamically, the calculated Gibbs free energy changes
in the conversion process from IM2(nw)n=0–3 to products are −3.42, −4.40, −3.87, and −2.77 kcal/mol
for the pathways A, B, C, and D, corresponding to the equilibrium constants of 3.22 × 102, 1.69 × 103,
6.82 × 102, and 1.07 × 102, respectively. Therefore, it is feasible for the intermediates IM2(nw)n=0–3 to
produce two radicals via the homolysis of the O-O bond.

Compared with the NAPs, as shown in Table 2, the energy barriers for the cleavage of the
O-O bond are relatively small. Therefore, the NAP should be the rate-determining step for the
above reaction.

2.2. Reaction of TCDD with HO2
− Anion

Moreover, the reaction of the anion of H2O2 with TCDD has also been explored. As a result,
two reaction mechanisms, i.e., nucleophilic substitution and nucleophilic addition, have been
verified below.

2.2.1. Nucleophilic Substitution Process

As shown in Figure 4, two different nucleophilic attack modes, i.e., modes S1 and S2, have
been designed based on the structural symmetry of TCDD. Similar to the above reaction involving
neutral H2O2, two initial intermediates IM1(S1) and IM1(S2) for the two modes have first been located.
Subsequently, the nucleophilic attack of HO2

− on TCDD occurs via transition states TS1(S1) and
TS1(S2), leading to the production of the second intermediates IM2(S1) and IM2(S2) containing an
O-O bond. As expected, the following process should proceed to produce radicals via the homolytic
cleavage of the O-O bond. Especially, unlike the reaction of the neutral H2O2 mentioned above,
no explicit water molecules are required here.
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Further energy analyses suggest that the two initially formed intermediates IM1(S1) and IM1(S2)
have been stabilized by about 24.16 and 23.17 kcal/mol relative to the initial reactants, respectively.
Similarly, the corresponding transition states are also lower in energy by about 16.08 and 15.39 kcal/mol
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relative to the initial reactants. As a result, the calculated free energy barriers for the nucleophilic
attack of TCDD by HO2

− are 7.64 and 7.08 kcal/mol relative to the initial intermediates, respectively.
In aqueous solution, the corresponding free energy barriers are 23.64 and 23.03 kcal/mol relative to the
initial intermediates, respectively. Compared with the results in the gas phase, the important solvent
effects should be stressed here.

Overall, for the nucleophilic substitution process, the reaction of HO2
− with TCDD is more

favorable than that of the reaction involving the neutral H2O2, exhibiting the dependence of the title
reaction on the pH value of the media.

2.2.2. Nucleophilic Addition Process

Besides the nucleophilic substitution reaction, the nucleophilic addition reaction of HO2
− has

also been observed. As shown in Figure 5, the terminal O atom of HO2
− can be attached to the C

atom of the C-O bond in TCDD through three addition modes (A1, A2, and A3) due to the different
orientations of HO2

−.
Firstly, the three intermediates IM1(A1), IM1(A2), and IM1(A3) can be formed barrierlessly, which

are stabilized by about 28.57, 31.11 and 30.01 kcal/mol relative to the separated reactants, respectively.
Meanwhile, the relevant transition states for their conversions have been located. As a result,
the forward (reverse) free energy barriers are 3.56(5.69) and 6.45(5.70) kcal/mol for the conversions
from IM1(A1) to IM1(A2) and from IM1(A2) to IM1(A3), respectively. Therefore, IM1(A2) is the most
favorable intermediate, both thermodynamically and kinetically. Subsequently, the decomposition
of the C-O bond connecting two six-membered rings occurs easily. Here, the calculated free energy
barriers for the decomposition processes of the above three intermediates are 0.96, 0.29 and 0.29
kcal/mol. In aqueous solution, the corresponding free energy barrier is only 0.82 kcal/mol for IM1(A2).
Obviously, low energy barriers suggest that the C-O bond can be readily cleaved, producing a new
intermediate containing an O-O bond. As shown in Figure 5, taking the most stable IM1(A2) as an
example, the second intermediate IM2(A2) can be formed after the cleavage of the C-O bond. Finally,
the O-O bond of IM2(A2) can be homolytically cleaved via transition state TS2(A2), resulting in the
formation of OH radical. Here, the calculated free energy barrier is 14.16 kcal/mol for the cleavage of
the O-O bond.

Overall, the nucleophilic addition process is more favorable kinetically compared with the above
nucleophilic substitution process.
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2.3. Substitution Effects

To further explore the reactivity of the organic hydroperoxides with TCDD and its derivatives,
the substitution effects including F-, Br-, and CH3- substitutes have been investigated.

For the neutral H2O2, its reactions with the F- and Br-substituted TCDD have been investigated
as well as the reaction between TCDD and the CH3-substituted H2O2. Here, the NAP involving three
water molecules is considered since it is the rate-determining step as mentioned above. As shown in
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Figure 6, the located transition states are similar to the TS1(3w) mentioned above. For the reactions of
F- and Br- substituted cases, the calculated free energy barriers are lower by 0.68 and 1.44 kcal/mol
than those resulting before substitution. As for the reaction of the CH3-substituted H2O2 with TCDD,
the free energy barrier is higher by 3.54 kcal/mol than that before substitution. Therefore, for the
reaction involving neutral organic hydroperoxides, the energy barriers have not been significantly
influenced upon substitution.

As for the above nucleophilic substitution reactions involving the anion of organic hydroperoxides,
taking model S1 for example, the corresponding transition states have been given in Figure 6. For the
reactions of HO2

− with F- and Br- substituted TCDD, the calculated free energy barriers are higher by
1.32 and 0.27 kcal/mol than the reaction before substitution. Similarly, for the reaction of the CH3

−

substituted HO2
− with TCDD, the calculated free energy barrier is higher by about 3.13 kcal/mol than

the reaction before substitution. Therefore, it is also feasible for the reaction to take place between the
anions of the organic hydroperoxides and TCDD as well as its derivatives.
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As for the nucleophilic addition reaction, the addition mode A2 has been explored. As shown
in Figure 6, the corresponding transition states associated with the C-O bond cleavage have been
located. Similar to the reaction before substitution, all the intermediates and transition states are lower
in energy than the separated reactants. Moreover, the free energy barriers are only 0.29, 0.37, and 1.38
kcal/mol for the C-O bond cleavage process, respectively. Therefore, the feasibility of the nucleophilic
addition reaction has been confirmed once again.

In summary, organic hydroperoxides, especially for their anions, can react with TCDD and its
derivatives. Taking the reaction of ROO−(R=H or alkyl groups) with TCDD for example, the reaction
mechanisms between them can be proposed below. As displayed in Figure 7, on the one hand,
the reaction can occur through nucleophilic substitution mechanism to produce an intermediate
containing an O-O bond. On the other hand, nucleophilic addition mechanism is also feasible for the
reaction, leading to the decomposition of the C-O bond of TCDD and the formation of an intermediate
containing an O-O bond. Finally, the O-O bond in these intermediates can be cleaved homolytically to
produce different radicals depending on the introduced substitutes. Given the fact that these highly
reactive radicals can cause oxidative damages to organisms, the above reaction mechanisms can be
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used to partially explain the potential toxicity mechanism of TCDD-like environmental contaminants.
Certainly, more complicated experiments are required to further verify the above findings.
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3. Computational Details

All the geometries have been fully optimized at the B3LYP/6-311++G(d,p) level of theory,
where the reliability of the method has been verified by numerous systems [39–50]. Subsequently,
vibrational frequency analysis has been carried out to identify the nature of the optimized species.
For the located transition states (TSs), intrinsic reaction coordinate (IRC) [51,52] calculations have also
been performed to further verify their correctness. For comparison, M06-2X/6-311++G(d,p) level
of theory has also been employed for the direct nucleophilic substitution process involving neutral
H2O2. As mentioned below, the calculated results are well consistent with the results of the B3LYP
level. Thus, considering the compromise between computational accuracy and cost, the results at the
B3LYP/6-311++G(d,p) level of theory have been mainly discussed if not otherwise noted.

To evaluate bulk solvent effects on the nucleophilic attack process (NAP), full optimizations have
been performed for the selected species in aqueous solution employing the solvent model density
(SMD) [53] solvation model. To explore the positive role of water molecules in the reaction, one,
two, and three explicit water molecules have been introduced. Here, similar to previous studies on
water-assisted proton transfer systems [33,34,54], the introduced water molecules have been located
between the proton donor and proton acceptor through intermolecular H-bonds. Note that more water
molecules without participating in the proton transfer have a slight influence on the reduction of the
barrier heights [54].

To characterize the formation and nature of the intermolecular H-bonds formed in the
intermediates, atoms in molecules (AIM) theory was employed based on the optimized geometries.
In the AIM analyses [55], the locations of the bond critical point (BCP) and ring critical point (RCP)
denote the presence of the interatomic interactions and the formation of a ring structure, respectively.
Moreover, the nature of the H-bonding interaction can be predicted from the topological parameters of
the electron density (ρbcp) at the BCP of the H-bonds, e.g., the Laplacian of electron density (∇2ρbcp)
and energy density (Hbcp) including the kinetic and potential energy density (Gbcp and Vbcp).

All calculations were performed by using the Gaussian 09 program [56].

4. Conclusions

In this study, the reactivity of H2O2 and its anion toward TCDD and its selected derivatives has
been systematically investigated theoretically. It was found that the neutral H2O2 is relatively difficult
to react with TCDD even though the reaction process is assisted by explicit water molecules. On the
contrary, the anion of H2O2 can easily react with TCDD, exhibiting the pH dependence of the title
reaction. Overall, HO2

− can react with TCDD via two different reaction mechanisms, i.e., nucleophilic
substitution and nucleophilic addition. For the former, the terminal O atom of HO2

− nucleophilically
attacks the C atom of the C-Cl bond in TCDD to form an intermediate containing an O-O bond,
accompanying the dissociation of the chlorine atom. For the latter, the terminal O atom of HO2

− can
be easily attached to the C atom of the C-O bond in TCDD, resulting in the decomposition of the C-O
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bond and the formation of a new intermediate containing an O-O bond. Finally, different radicals can
be produced via the cleavage of the O-O bond in those formed intermediates. Given the fact that the
produced highly reactive radicals can lead to potential damage to organisms, the reaction mechanisms
herein are expected to provide an alternative elucidation for the potential toxicity mechanism of
TCDD-like environmental contaminants. Certainly, related experiments are highly desirable to further
confirm the present findings.

Supplementary Materials: The following are available online. Figure S1: Molecular graphs of the intermediates
(IM) and transition states (TS) in the different reaction pathways involving neutral H2O2. Table S1: Topological
parameters for the intermediates in the different reaction pathways involving neutral H2O2. Table S2: Cartesian
coordinates of the optimized species in the present study. Table S3: Calculated energy parameters for the optimized
species in the present study.
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