## Supporting Information: Quantitative Assessment of Tetrel Bonding Utilizing Vibrational Spectroscopy

Daniel Sethio, Vytor Oliveira, Elfi Kraka\*

Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States

E-mail: ekraka@gmail.com



Figure S1: Schematic representation of monomers (36-63) with atomic charges from the natural population analysis calculated at CCSD(T)/aug-cc-pVTZ level of theory. Colors are used to correlate charges to specific atoms.



Figure S2: Noncovalent interactions (NCIs) plot of complexes **1-35** calculated at gradient isosurfaces s = 0.5 au., where green indicates weak attractive, blue indicates strong attractive, and red surface indicates repulsive noncovalent interactions.



Figure S3: Selected molecular orbitals of the T-acceptors. Calculated at  $\rm HF/6-31G(d)$  level of theory.



Figure S4: CCSD(T)/aug-cc-pVTZ electron difference density distributions  $\Delta \rho(\mathbf{r})$  given for complexes **1-35**.  $\Delta \rho(\mathbf{r})$  is plotted for an electron density surface with a constant density value of 0.001 a.u. Blue regions indicate an increase in the electron density, red regions indicate a density decrease relative to the superimposed density of the monomer.



Figure S5: Combination of donor and acceptor NBO orbitals involved in the electron delocalization of selected complexes. Delocalization energies are given in kcal/mol

## 

|             |                                                                  | CCSD(T    | )/aug-cc-pVT  | Z    | CCSD(T    | )/aug-cc-pV52 |      |
|-------------|------------------------------------------------------------------|-----------|---------------|------|-----------|---------------|------|
| #           | Complex (symm.)                                                  | $E_{int}$ | $E_{int}(CP)$ | BSSE | $E_{int}$ | $E_{int}(CP)$ | BSSI |
| C - Tet     | rel bond                                                         |           |               |      |           |               |      |
| 1           | FCH <sub>3</sub> …FH (C <sub>3v</sub> )                          | -1.51     | -1.30         | 0.21 | -1.36     | -1.33         | 0.0  |
| 2           | $FCH_3 \cdots OH_2 (C_s)$                                        | -2.11     | -1.89         | 0.22 | -1.96     | -1.93         | 0.0  |
| 3           | $FCH_3 \cdots NH_3 (C_{3v})$                                     | -2.27     | -2.07         | 0.20 | -2.15     | -2.12         | 0.0  |
| 4           | $ClCH_3 \cdots NH_3 (C_{3v})$                                    | -2.09     | -1.90         | 0.19 | -2.00     | -1.96         | 0.0  |
| 5           | $\operatorname{BrCH}_3 \cdots \operatorname{NH}_3 (C_{3v})$      | -2.02     | -1.81         | 0.21 | -1.91     | -1.88         | 0.0  |
| 6           | $HOCH_3 \cdots NH_3 (C_s)$                                       | -1.39     | -1.23         | 0.16 | -1.27     | -1.25         | 0.0  |
| 7           | $CF_4 \cdots NH_3 (C_{3v})$                                      | -1.69     | -1.30         | 0.39 | -1.38     | -1.32         | 0.0  |
| Si - Tet    | trel bond                                                        |           |               |      |           |               |      |
| 8           | FSiH <sub>3</sub> ···FH (C <sub>s</sub> )                        | -2.34     | -1.91         | 0.43 | -2.08     | -2.02         | 0.0  |
| 9           | $FSiH_3 \cdots OH_2$ (C <sub>s</sub> )                           | -4.55     | -3.96         | 0.59 | -4.31     | -4.24         | 0.0  |
| 10          | $FSiH_3 \cdots NH_3 (C_{3v})$                                    | -8.91     | -8.06         | 0.85 | -8.81     | -8.72         | 0.0  |
| 11          | $ClSiH_3 \cdots NH_3 (C_{3v})$                                   | -8.16     | -7.44         | 0.72 | -8.19     | -8.09         | 0.1  |
| 12          | $BrSiH_3 \cdots NH_3 (C_{3v})$                                   | -8.35     | -7.58         | 0.77 | -8.39     | -8.30         | 0.0  |
| 13          | $HOS_{1}H_{3}\cdots NH_{3}(C_{s})$                               | -4.81     | -4.29         | 0.52 | -4.70     | -4.64         | 0.0  |
| 14          | $\operatorname{SiH}_4 \cdots \operatorname{NH}_3 (C_{3v})$       | -2.41     | -2.12         | 0.29 | -2.32     | -2.29         | 0.0  |
| 15          | $S_1F_2H_2\cdots NH_3(C_s)$                                      | -11.73    | -10.47        | 1.26 | -11.46    | -11.32        | 0.1  |
| 16a<br>16b  | $SiF_3H\cdots NH_3(C_s)$                                         | -19.43    | -17.34        | 1.89 | -19.06    | -18.84        | 0.2  |
| 17          | $SIF_3 \Pi \cdots N \Pi_3 (C_{3v})$                              | -27.00    | -20.00        | 2.17 | -27.29    | -27.01        | 0.2  |
| <br>Ge - Te | etrel bond                                                       |           |               |      |           |               |      |
| uc - 10     |                                                                  |           |               |      |           |               |      |
| 18          | $FGeH_3 \cdots NH_3 (C_{3v})$                                    | -9.17     | -8.58         | 0.59 | -9.04     | -8.97         | 0.0  |
| 19          | $CIGeH_3 \cdots NH_3 (C_{3v})$                                   | -7.29     | -6.82         | 0.47 | -7.28     | -7.20         | 0.0  |
| 20          | $\operatorname{BrGeH}_{3} \cdots \operatorname{NH}_{3} (C_{3v})$ | -7.08     | -6.60         | 0.48 | -7.09     | -7.01         | 0.0  |
| 21          | $HOGeH_3 \cdots NH_3 (C_s)$                                      | -5.08     | -4.68         | 0.40 | -4.97     | -4.92         | 0.0  |
| 22          | $GeH_4 \cdots NH_3 (C_{3v})$                                     | -2.08     | -1.88         | 0.20 | -2.01     | -1.99         | 0.0  |
| Double      | bond - Tetrel bond                                               |           |               |      |           |               |      |
| 23          | $\rm CO_2 \cdots NH_3~(C_s)$                                     | -3.21     | -2.95         | 0.26 | -3.09     | -3.04         | 0.0  |
| <b>24</b>   | $SCO \cdots NH_3 (C_s)$                                          | -1.99     | -1.71         | 0.28 | -1.79     | -1.75         | 0.0  |
| 25          | $CF_2O\cdots NH_3$ (C <sub>s</sub> )                             | -5.81     | -5.09         | 0.72 | -5.35     | -5.25         | 0.1  |
| 26a         | $CF_2S\cdots NH_3$ (C <sub>s</sub> )                             | -4.02     | -3.34         | 0.68 | -3.53     | -3.44         | 0.0  |
| 26b         | $CF_2S\cdots NH_3$ (C <sub>s</sub> )                             | -22.68    | -19.85        | 2.83 | -23.73    | -23.27        | 0.4  |
| 27          | $SiF_2O\cdots NH_3$ (C <sub>s</sub> )                            | -52.10    | -50.12        | 1.98 | -53.34    | -53.07        | 0.2  |
| Anionio     | c - Tetrel bond                                                  |           |               |      |           |               |      |
| 28          | $\mathrm{CH_3}^+ \cdots \mathrm{NH_3} (\mathrm{C_{3v}})$         | -135.20   | -133.96       | 1.24 | -135.92   | -135.74       | 0.1  |
| 29          | $\text{FNH}_3^+ \cdots \text{NH}_3 (C_{3v})$                     | -23.56    | -23.20        | 0.36 | -23.49    | -23.43        | 0.0  |
| 30          | $FCH_3 \cdots Cl^- (C_{3v})$                                     | -10.16    | -9.73         | 0.43 | -10.11    | -9.98         | 0.1  |
| 31          | $FSiH_3 \cdots Cl^- (C_{3v})$                                    | -32.76    | -31.52        | 1.24 | -33.42    | -33.14        | 0.2  |
| 32          | $FGeH_3 \cdots Cl^- (C_{3v})$                                    | -36.81    | -35.79        | 1.02 | -37.18    | -36.93        | 0.2  |
| 33          | $CO_2 \cdots Cl^- (C_s)$                                         | -8.89     | -8.43         | 0.46 | -8.89     | -8.77         | 0.1  |
| 34          | $SCO\cdots Cl^{-}(C_s)$                                          | -5.88     | -5.48         | 0.40 | -5.85     | -5.75         | 0.1  |
| 35          | $CF_2S\cdots Cl^-$ (C <sub>s</sub> )                             | -49.44    | -46.46        | 2.98 | -50.61    | -50.02        | 0.5  |

\*Interaction energies  $(E_{int})$ , counterpoise (CP) corrected interaction energies and basis set superposition error calculated at CCSD(T)/aug-cc-pVTZ and DLPNO-CCSD(T)/aug-cc-pV5Z levels. All energies were obtained using CCSD(T)/aug-cc-pVTZ geometries. Values are given in kcal/mol.

## Table S2: Deviation from DLPNO-CCSD(T)/aug-cc-pV5Z interaction energies $^{\ast}$

| #                                                              | Complex (symm.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (a)                                                                                                                 | (b)                                                                                                         | (c)                                                                                                           |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| C - Tet                                                        | rel bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |                                                                                                             |                                                                                                               |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                | $\begin{array}{l} \operatorname{FCH}_3\cdots\operatorname{FH}(\operatorname{C}_{3\mathrm{v}})\\ \operatorname{FCH}_3\cdots\operatorname{OH}_2(\operatorname{C}_s)\\ \operatorname{FCH}_3\cdots\operatorname{NH}_3(\operatorname{C}_{3\mathrm{v}})\\ \operatorname{ClCH}_3\cdots\operatorname{NH}_3(\operatorname{C}_{3\mathrm{v}})\\ \operatorname{BrCH}_3\cdots\operatorname{NH}_3(\operatorname{C}_{3\mathrm{v}})\\ \operatorname{BrCH}_3\cdots\operatorname{NH}_3(\operatorname{C}_{3\mathrm{v}})\\ \operatorname{HOCH}_3\cdots\operatorname{NH}_3(\operatorname{C}_{3\mathrm{v}})\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.03<br>-0.04<br>-0.05<br>-0.06<br>-0.07<br>-0.02<br>-0.02                                                         | $\begin{array}{c} 0.18 \\ 0.18 \\ 0.15 \\ 0.13 \\ 0.14 \\ 0.14 \\ 0.37 \end{array}$                         | $\begin{array}{c} 0.15 \\ 0.15 \\ 0.12 \\ 0.09 \\ 0.11 \\ 0.12 \\ 0.31 \end{array}$                           |  |
| Si - Tet                                                       | rel bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |                                                                                                             |                                                                                                               |  |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16a<br>16b<br>17 | $\begin{array}{l} {\rm FSiH}_{3}\cdots {\rm FH}\;({\rm C}_{\rm s})\\ {\rm FSiH}_{3}\cdots {\rm OH}_{2}\;({\rm C}_{\rm s})\\ {\rm FSiH}_{3}\cdots {\rm NH}_{3}\;({\rm C}_{3\rm v})\\ {\rm ClSiH}_{3}\cdots {\rm NH}_{3}\;({\rm C}_{3\rm v})\\ {\rm BrSiH}_{3}\cdots {\rm NH}_{3}\;({\rm C}_{3\rm v})\\ {\rm HOSiH}_{3}\cdots {\rm NH}_{3}\;({\rm C}_{3\rm v})\\ {\rm SiH}_{4}\cdots {\rm NH}_{3}\;({\rm C}_{3\rm v})\\ {\rm SiF}_{2}{\rm H}_{2}\cdots {\rm NH}_{3}\;({\rm C}_{{\rm s}})\\ {\rm SiF}_{3}{\rm H}\cdots {\rm NH}_{3}\;({\rm C}_{{\rm s}})\\ {\rm SiF}_{3}{\rm H}\cdots {\rm NH}_{3}\;({\rm C}_{{\rm s}})\\ {\rm SiF}_{4}\cdots {\rm SiF}_{4}\;({\rm C}_{{\rm s}})\\ {\rm SiF}_$ | $\begin{array}{c} -0.11\\ -0.28\\ -0.66\\ -0.65\\ -0.72\\ -0.35\\ -0.17\\ -0.85\\ -1.30\\ -1.65\\ -1.75\end{array}$ | $\begin{array}{c} 0.32\\ 0.31\\ 0.19\\ 0.07\\ 0.05\\ 0.17\\ 0.12\\ 0.41\\ 0.59\\ 0.52\\ 0.80\\ \end{array}$ | $\begin{array}{c} 0.26\\ 0.24\\ 0.10\\ -0.03\\ -0.04\\ 0.11\\ 0.09\\ 0.27\\ 0.37\\ 0.24\\ 0.50\\ \end{array}$ |  |
| Ge - Te                                                        | etrel bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                     |                                                                                                             |                                                                                                               |  |
| 18<br>19<br>20<br>21<br>22                                     | $\begin{array}{l} \operatorname{FGeH}_{3}\cdots\operatorname{NH}_{3}\left(\operatorname{C}_{3v}\right)\\ \operatorname{ClGeH}_{3}\cdots\operatorname{NH}_{3}\left(\operatorname{C}_{3v}\right)\\ \operatorname{BrGeH}_{3}\cdots\operatorname{NH}_{3}\left(\operatorname{C}_{3v}\right)\\ \operatorname{HOGeH}_{3}\cdots\operatorname{NH}_{3}\left(\operatorname{C}_{s}\right)\\ \operatorname{GeH}_{4}\cdots\operatorname{NH}_{3}\left(\operatorname{C}_{3v}\right) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.39<br>-0.38<br>-0.41<br>-0.24<br>-0.11                                                                           | $0.20 \\ 0.09 \\ 0.07 \\ 0.16 \\ 0.09$                                                                      | $0.13 \\ 0.01 \\ -0.01 \\ 0.11 \\ 0.07$                                                                       |  |
| Double                                                         | bond - Tetrel bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                             |                                                                                                               |  |
| 23<br>24<br>25<br>26a<br>26b<br>27                             | $\begin{array}{c} {\rm CO}_2 {\cdots} {\rm NH}_3 \ ({\rm C}_{\rm s}) \\ {\rm SCO} {\cdots} {\rm NH}_3 \ ({\rm C}_{\rm s}) \\ {\rm CF}_2 {\rm O} {\cdots} {\rm NH}_3 \ ({\rm C}_{\rm s}) \\ {\rm CF}_2 {\rm S} {\cdots} {\rm NH}_3 \ ({\rm C}_{\rm s}) \\ {\rm CF}_2 {\rm S} {\cdots} {\rm NH}_3 \ ({\rm C}_{\rm s}) \\ {\rm SiF}_2 {\rm O} {\cdots} {\rm NH}_3 \ ({\rm C}_{\rm s}) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.09<br>-0.04<br>-0.16<br>0.10<br>-3.42<br>-2.95                                                                   | 0.17<br>0.24<br>0.56<br>-0.58<br>-0.59<br>-0.97                                                             | 0.12<br>0.20<br>0.46<br>-0.49<br>-1.05<br>-1.24                                                               |  |
| Anionic - Tetrel bond                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |                                                                                                             |                                                                                                               |  |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                   | $\begin{array}{c} {\rm CH_3}^+ \cdots {\rm NH_3} \ ({\rm C}_{3v}) \\ {\rm FNH_3}^+ \cdots {\rm NH_3} \ ({\rm C}_{3v}) \\ {\rm FCH_3} \cdots {\rm CI}^- \ ({\rm C}_{3v}) \\ {\rm FSiH_3} \cdots {\rm CI}^- \ ({\rm C}_{3v}) \\ {\rm FGeH_3} \cdots {\rm CI}^- \ ({\rm C}_{3v}) \\ {\rm FGeH_3} \cdots {\rm CI}^- \ ({\rm C}_{3v}) \\ {\rm SCO} \cdots {\rm CI}^- \ ({\rm C}_{s}) \\ {\rm SCO} \cdots {\rm CI}^- \ ({\rm C}_{s}) \\ {\rm CF}_2 {\rm S} \cdots {\rm CI}^- \ ({\rm C}_{s}) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.78<br>-0.23<br>-0.25<br>-1.62<br>-1.14<br>-0.34<br>-0.27<br>-3.56<br>0.71                                        | -0.54<br>0.13<br>0.18<br>-0.38<br>-0.12<br>0.12<br>0.12<br>0.13<br>-0.58                                    | -0.72<br>0.07<br>0.05<br>-0.66<br>-0.37<br>0.00<br>0.03<br>-1.17<br>0.28                                      |  |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11                                                                                                                | 0.20                                                                                                        | 0.20                                                                                                          |  |

\*Difference between DLPNO-CCSD(T)/aug-cc-pV5Z  $E_{int}(CP)$  and CCSD(T)/aug-cc-pVTZ  $E_{int}(CP)$  (a) and CCSD(T)/aug-cc-pVTZ  $E_{int}$  (b). Difference between DLPNO-CCSD(T)/aug-cc-pVTZ  $E_{int}$  and CCSD(T)/aug-cc-pVTZ  $E_{int}$  (c). Energies and mean absolute deviation (MAD) given in kcal/mol.

Table S3: Atomic Cartesian coordinates (in Å) of complexes 1-35 optimized at the CCSD(T)/aug-cc-pVTZ level of theory.

| 1 | $FCH_3 \cdots F_2$ | H, $C_{3v}$ |          |
|---|--------------------|-------------|----------|
| С | -0.64760           | 0.00000     | 0.00000  |
| F | -2.03974           | 0.00000     | 0.00000  |
| Η | -0.29694           | 0.51589     | -0.89355 |
| Η | -0.29694           | -1.03178    | 0.00000  |
| Η | -0.29694           | 0.51589     | 0.89355  |
| F | 2.32388            | 0.00000     | 0.00000  |
| Η | 3.24545            | 0.00000     | 0.00000  |

| <b>2</b> | $\mathrm{FCH}_3\mathrm{\cdots}\mathrm{OH}_2,\mathrm{C}_s$ |          |          |  |  |
|----------|-----------------------------------------------------------|----------|----------|--|--|
| С        | 0.58503                                                   | -0.01958 | 0.00000  |  |  |
| F        | 1.97844                                                   | 0.01163  | 0.00000  |  |  |
| Η        | 0.25798                                                   | -1.05889 | 0.00000  |  |  |
| Η        | 0.22171                                                   | 0.48606  | -0.89362 |  |  |
| Η        | 0.22171                                                   | 0.48606  | 0.89362  |  |  |
| 0        | -2.44987                                                  | 0.00395  | 0.00000  |  |  |
| Η        | -3.06002                                                  | -0.73963 | 0.00000  |  |  |
| Η        | -3.02146                                                  | 0.77758  | 0.00000  |  |  |
|          |                                                           |          |          |  |  |

| 3 | $\mathrm{FCH}_3 \mathrm{\cdots} \mathrm{N}$ | $H_3, C_{3v}$ |          |
|---|---------------------------------------------|---------------|----------|
| С | -0.59814                                    | 0.00000       | 0.00000  |
| F | -1.99271                                    | 0.00000       | 0.00000  |
| Η | -0.24618                                    | -0.51535      | -0.89263 |
| Н | -0.24618                                    | 1.03070       | 0.00000  |

| Η | -0.24618 | -0.51535 | 0.89263  |
|---|----------|----------|----------|
| Ν | 2.61945  | 0.00000  | 0.00000  |
| Η | 3.00978  | 0.46868  | 0.81177  |
| Η | 3.00978  | 0.46868  | -0.81177 |
| Н | 3.00978  | -0.93735 | 0.00000  |

| 4                   | $\mathrm{ClCH}_3\cdots$ | $\mathrm{NH}_3, \mathrm{C}_{3v}$ |          |
|---------------------|-------------------------|----------------------------------|----------|
| С                   | 0.06943                 | 0.00000                          | 0.00000  |
| $\operatorname{Cl}$ | -1.72827                | 0.00000                          | 0.00000  |
| Η                   | 0.41195                 | -0.51492                         | -0.89188 |
| Η                   | 0.41195                 | 1.02985                          | 0.00000  |
| Η                   | 0.41195                 | -0.51492                         | 0.89188  |
| Ν                   | 3.35811                 | 0.00000                          | 0.00000  |
| Η                   | 3.74840                 | 0.46869                          | 0.81179  |
| Η                   | 3.74840                 | 0.46869                          | -0.81179 |
| Η                   | 3.74840                 | -0.93738                         | 0.00000  |

| 5  | $\operatorname{BrCH}_3\cdots$ | $\mathrm{NH}_3, \mathrm{C}_{3v}$ |          |
|----|-------------------------------|----------------------------------|----------|
| С  | 0.86226                       | 0.00000                          | 0.00000  |
| Br | -1.09071                      | 0.00000                          | 0.00000  |
| Η  | 1.19569                       | -0.51600                         | -0.89374 |
| Η  | 1.19569                       | 1.03200                          | 0.00000  |
| Η  | 1.19569                       | -0.51600                         | 0.89374  |
| Ν  | 4.16614                       | 0.00000                          | 0.00000  |
| Η  | 4.55633                       | 0.46871                          | 0.81183  |
| Н  | 4.55633                       | 0.46871                          | -0.81183 |

| 6 | $(OH)CH_3$ | $\cdots$ NH <sub>3</sub> , C <sub>s</sub> |          |
|---|------------|-------------------------------------------|----------|
| Η | -2.49864   | 0.81659                                   | 0.00000  |
| Ο | -2.13732   | -0.07379                                  | 0.00000  |
| С | -0.71198   | 0.03232                                   | 0.00000  |
| Η | -0.32011   | -0.98345                                  | 0.00000  |
| Η | -0.33794   | 0.54691                                   | 0.88947  |
| Η | -0.33794   | 0.54691                                   | -0.88947 |
| Ν | 2.65001    | 0.01052                                   | 0.00000  |
| Η | 3.28000    | 0.80658                                   | 0.00000  |
| Η | 2.89631    | -0.54671                                  | -0.81216 |
| Н | 2.89631    | -0.54671                                  | 0.81216  |

| 7 | $\mathrm{CF}_4 {\cdots} \mathrm{NH}$ | $C_3, C_{3v}$ |          |
|---|--------------------------------------|---------------|----------|
| С | -0.55900                             | 0.00000       | 0.00000  |
| F | -1.88668                             | 0.00000       | 0.00000  |
| F | -0.13050                             | -0.62387      | -1.08058 |
| F | -0.13050                             | 1.24774       | 0.00000  |
| F | -0.13050                             | -0.62387      | 1.08058  |
| Ν | 2.86699                              | 0.00000       | 0.00000  |
| Η | 3.25551                              | 0.46896       | 0.81227  |
| Η | 3.25551                              | 0.46896       | -0.81227 |
| Η | 3.25551                              | -0.93793      | 0.00000  |

 $\mathbf{8} \qquad \mathrm{FSiH}_3 \cdots \mathrm{FH}, \, \mathrm{C}_s$ 

| Si | 0.43320  | 0.01974  | 0.00000  |
|----|----------|----------|----------|
| F  | 2.04988  | -0.02546 | 0.00000  |
| Н  | -0.03966 | -1.38225 | 0.00000  |
| Н  | 0.00693  | 0.72855  | -1.22281 |
| Н  | 0.00693  | 0.72855  | 1.22281  |
| F  | -2.53084 | 0.03461  | 0.00000  |
| Η  | -2.93319 | -0.79531 | 0.00000  |

| 9  | $FSiH_3\cdots C$ | $\mathrm{OH}_2,\mathrm{C}_s$ |          |
|----|------------------|------------------------------|----------|
| Si | 0.01186          | 0.31211                      | 0.00000  |
| F  | -0.00996         | 1.93530                      | 0.00000  |
| Η  | 1.43780          | -0.07630                     | 0.00000  |
| Н  | -0.68509         | -0.11005                     | -1.23076 |
| Η  | -0.68509         | -0.11005                     | 1.23076  |
| 0  | -0.05586         | -2.46085                     | 0.00000  |
| Η  | 0.33866          | -2.89719                     | -0.76172 |
| Н  | 0.33866          | -2.89719                     | 0.76172  |

| 10 | $FSiH_3\cdots NH_3, C_{3v}$ |          |          |
|----|-----------------------------|----------|----------|
| Si | -0.20928                    | 0.00000  | 0.00000  |
| F  | -1.84579                    | 0.00000  | 0.00000  |
| Η  | 0.12338                     | -0.72003 | -1.24713 |
| Η  | 0.12338                     | 1.44006  | 0.00000  |
| Η  | 0.12338                     | -0.72003 | 1.24713  |
| Ν  | 2.31409                     | 0.00000  | 0.00000  |
| Η  | 2.69382                     | 0.47094  | 0.81569  |

| Η | 2.69382 | 0.47094  | -0.81569 |
|---|---------|----------|----------|
| Η | 2.69382 | -0.94188 | 0.00000  |

| 11 | $ClSiH_3 \cdots NH_3, C_{3v}$ |          |          |
|----|-------------------------------|----------|----------|
| Si | 0.33660                       | 0.00000  | 0.00000  |
| Cl | -1.78021                      | 0.00000  | 0.00000  |
| Н  | 0.66936                       | -0.71839 | -1.24428 |
| Н  | 0.66936                       | 1.43677  | 0.00000  |
| Н  | 0.66936                       | -0.71839 | 1.24428  |
| Ν  | 2.91649                       | 0.00000  | 0.00000  |
| Н  | 3.29796                       | 0.47068  | 0.81525  |
| Η  | 3.29796                       | 0.47068  | -0.81525 |
| Н  | 3.29796                       | -0.94136 | 0.00000  |

| 12                  | $BrSiH_3 \cdots NH_3, C_{3v}$ |          |          |
|---------------------|-------------------------------|----------|----------|
| Si                  | 1.06281                       | 0.00000  | 0.00000  |
| $\operatorname{Br}$ | -1.22723                      | 0.00000  | 0.00000  |
| Η                   | 1.38429                       | -0.71948 | -1.24615 |
| Η                   | 1.38429                       | 1.43893  | 0.00000  |
| Η                   | 1.38429                       | -0.71948 | 1.24615  |
| Ν                   | 3.62836                       | 0.00000  | 0.00000  |
| Η                   | 4.00960                       | 0.47077  | 0.81539  |
| Η                   | 4.00960                       | 0.47077  | -0.81539 |
| Η                   | 4.00960                       | -0.94154 | 0.00000  |

**13** (HO)SiH<sub>3</sub>···NH<sub>3</sub>, 
$$C_s$$

| Η  | -2.48714 | 0.75291  | 0.00000  |
|----|----------|----------|----------|
| Ο  | -2.00799 | -0.07791 | 0.00000  |
| Si | -0.33120 | 0.02073  | 0.00000  |
| Η  | 0.07573  | -1.39753 | 0.00000  |
| Η  | 0.10142  | 0.74724  | 1.21938  |
| Η  | 0.10142  | 0.74724  | -1.21938 |
| Ν  | 2.49327  | -0.00992 | 0.00000  |
| Η  | 2.89338  | 0.92319  | 0.00000  |
| Η  | 2.86755  | -0.48701 | -0.81436 |
| Η  | 2.86755  | -0.48701 | 0.81436  |

| 14 | $\operatorname{SiH}_4\cdots\operatorname{NH}_3, \operatorname{C}_{3v}$ |          |          |
|----|------------------------------------------------------------------------|----------|----------|
| Si | -1.13339                                                               | 0.00000  | 0.00000  |
| Η  | -2.62311                                                               | 0.00000  | 0.00000  |
| Η  | -0.67520                                                               | -0.70437 | -1.22000 |
| Η  | -0.67520                                                               | 1.40873  | 0.00000  |
| Η  | -0.67520                                                               | -0.70437 | 1.22000  |
| Ν  | 2.06884                                                                | 0.00000  | 0.00000  |
| Η  | 2.45533                                                                | 0.46945  | 0.81310  |
| Η  | 2.45533                                                                | 0.46945  | -0.81310 |
| Η  | 2.45533                                                                | -0.93887 | 0.00000  |

| 15 | $SiF_2H_2\cdots$ | $\rm NH_3,  C_s$ |         |
|----|------------------|------------------|---------|
| F  | -0.12376         | 1.22628          | 0.00000 |
| Si | 0.25601          | -0.33778         | 0.00000 |
| F  | 1.87344          | -0.28456         | 0.00000 |

S-14

| Η | -0.05846 | -1.00506 | 1.26959  |
|---|----------|----------|----------|
| Н | -0.05846 | -1.00506 | -1.26959 |
| Ν | -2.29934 | -0.38588 | 0.00000  |
| Н | -2.54738 | 0.59923  | 0.00000  |
| Н | -2.73886 | -0.80171 | -0.81548 |
| Н | -2.73886 | -0.80171 | 0.81548  |

| 16a | $SiF_3H\cdots NH_3, C_s$ |          |          |  |
|-----|--------------------------|----------|----------|--|
| Η   | 1.75218                  | -0.00856 | 0.00000  |  |
| Si  | 0.29667                  | 0.17654  | 0.00000  |  |
| F   | 0.24053                  | 1.79282  | 0.00000  |  |
| F   | -0.52830                 | -0.08799 | -1.35509 |  |
| F   | -0.52830                 | -0.08799 | 1.35509  |  |
| Ν   | 0.32143                  | -2.02817 | 0.00000  |  |
| Η   | -0.63431                 | -2.37362 | 0.00000  |  |
| Η   | 0.78216                  | -2.40878 | 0.82139  |  |
| Н   | 0.78216                  | -2.40878 | -0.82139 |  |

| 16b | $\mathrm{HSiF}_3\cdots\mathrm{NH}_3,\mathrm{C}_{3v}$ |          |          |
|-----|------------------------------------------------------|----------|----------|
| Si  | 0.47664                                              | 0.00000  | 0.00000  |
| Н   | 1.95077                                              | 0.00000  | 0.00000  |
| F   | 0.23699                                              | 0.80167  | -1.38853 |
| F   | 0.23699                                              | -1.60333 | 0.00000  |
| F   | 0.23699                                              | 0.80167  | 1.38853  |
| Ν   | -1.62736                                             | 0.00000  | 0.00000  |
| Н   | -1.99087                                             | -0.47405 | 0.82109  |

| Η | -1.99087 | -0.47405 | -0.82109 |
|---|----------|----------|----------|
| Η | -1.99087 | 0.94811  | 0.00000  |

| 17 | $\operatorname{SiF}_4\cdots\operatorname{NH}_3, \operatorname{C}_{3v}$ |          |          |
|----|------------------------------------------------------------------------|----------|----------|
| Si | -0.14293                                                               | 0.00000  | 0.00000  |
| F  | -1.75198                                                               | 0.00000  | 0.00000  |
| F  | 0.05853                                                                | -0.79697 | -1.38040 |
| F  | 0.05853                                                                | 1.59395  | 0.00000  |
| F  | 0.05853                                                                | -0.79697 | 1.38040  |
| Ν  | 1.92903                                                                | 0.00000  | 0.00000  |
| Η  | 2.29379                                                                | 0.47403  | 0.82104  |
| Η  | 2.29379                                                                | 0.47403  | -0.82104 |
| Н  | 2.29379                                                                | -0.94806 | 0.00000  |

| 18 | $FGeH_3 \cdots NH_3, C_{3v}$ |          |          |
|----|------------------------------|----------|----------|
| Ge | -0.10836                     | 0.00000  | 0.00000  |
| F  | -1.92384                     | 0.00000  | 0.00000  |
| Η  | 0.18762                      | -0.75421 | -1.30632 |
| Η  | 0.18762                      | 1.50841  | 0.00000  |
| Η  | 0.18762                      | -0.75421 | 1.30632  |
| Ν  | 2.51587                      | 0.00000  | 0.00000  |
| Η  | 2.89814                      | 0.47046  | 0.81486  |
| Η  | 2.89814                      | 0.47046  | -0.81486 |
| Η  | 2.89814                      | -0.94092 | 0.00000  |

 $\mathbf{19} \quad \mathrm{ClGeH}_3\mathrm{\cdots}\mathrm{NH}_3,\,\mathrm{C}_{3v}$ 

| Ge                  | 0.21998  | 0.00000  | 0.00000  |
|---------------------|----------|----------|----------|
| $\operatorname{Cl}$ | -1.99578 | 0.00000  | 0.00000  |
| Η                   | 0.56785  | -0.74722 | -1.29422 |
| Η                   | 0.56785  | 1.49443  | 0.00000  |
| Η                   | 0.56785  | -0.74722 | 1.29422  |
| Ν                   | 2.97467  | 0.00000  | 0.00000  |
| Η                   | 3.35953  | 0.46997  | 0.81402  |
| Η                   | 3.35953  | 0.46997  | -0.81402 |
| Η                   | 3.35953  | -0.93995 | 0.00000  |

| 20                  | $BrGeH_3 \cdots NH_3, C_{3v}$ |          |          |
|---------------------|-------------------------------|----------|----------|
| Ge                  | 0.79891                       | 0.00000  | 0.00000  |
| $\operatorname{Br}$ | -1.57624                      | 0.00000  | 0.00000  |
| Η                   | 1.14870                       | -0.74687 | -1.29360 |
| Η                   | 1.14870                       | 1.49372  | 0.00000  |
| Η                   | 1.14870                       | -0.74687 | 1.29360  |
| Ν                   | 3.56508                       | 0.00000  | 0.00000  |
| Η                   | 3.94994                       | 0.46998  | 0.81403  |
| Η                   | 3.94994                       | 0.46998  | -0.81403 |
| Н                   | 3.94994                       | -0.93997 | 0.00000  |

| <b>21</b> | $(\mathrm{HO})\mathrm{GeH}_{3}\mathrm{\cdots}\mathrm{NH}_{3},\mathrm{C}_{s}$ |          |         |
|-----------|------------------------------------------------------------------------------|----------|---------|
| Η         | -2.43370                                                                     | 0.76387  | 0.00000 |
| Ο         | -2.00116                                                                     | -0.09434 | 0.00000 |
| Ge        | -0.18595                                                                     | 0.01398  | 0.00000 |
| Н         | 0.20520                                                                      | -1.47028 | 0.00000 |

| Η | 0.22916 | 0.77228  | 1.27946  |
|---|---------|----------|----------|
| Η | 0.22916 | 0.77228  | -1.27946 |
| Ν | 2.72363 | -0.01997 | 0.00000  |
| Η | 3.13198 | 0.90970  | 0.00000  |
| Η | 3.09702 | -0.49920 | -0.81368 |
| Н | 3.09702 | -0.49920 | 0.81368  |

| 22 | $GeH_4 \cdots NH_3, C_{3v}$ |          |          |
|----|-----------------------------|----------|----------|
| Ge | -0.60690                    | 0.00000  | 0.00000  |
| Η  | -2.15735                    | 0.00000  | 0.00000  |
| Η  | -0.12312                    | -0.73139 | -1.26680 |
| Η  | -0.12312                    | 1.46278  | 0.00000  |
| Η  | -0.12312                    | -0.73139 | 1.26680  |
| Ν  | 2.71572                     | 0.00000  | 0.00000  |
| Η  | 3.10263                     | 0.46934  | 0.81291  |
| Η  | 3.10263                     | 0.46934  | -0.81291 |
| Н  | 3.10263                     | -0.93867 | 0.00000  |

| <b>23</b>    | $CO_2 \cdots NH_3, C_s$ |          |          |
|--------------|-------------------------|----------|----------|
| Η            | -2.46031                | 0.93617  | 0.00000  |
| Ν            | -2.10155                | -0.01349 | 0.00000  |
| $\mathbf{C}$ | 0.82078                 | 0.00415  | 0.00000  |
| Ο            | 0.83040                 | 1.17131  | 0.00000  |
| Ο            | 0.86401                 | -1.16202 | 0.00000  |
| Н            | -2.50221                | -0.47280 | -0.81190 |
| Н            | -2.50221                | -0.47280 | 0.81190  |

| <b>24</b>    | $SCO \cdots NH_3, C_s$ |          |          |
|--------------|------------------------|----------|----------|
| Η            | -2.74176               | 0.25897  | 0.00000  |
| Ν            | -2.51252               | -0.73021 | 0.00000  |
| С            | 0.40035                | 0.61529  | 0.00000  |
| Ο            | -0.30293               | 1.54197  | 0.00000  |
| $\mathbf{S}$ | 1.37539                | -0.61935 | 0.00000  |
| Η            | -2.97013               | -1.13168 | -0.81234 |
| Η            | -2.97013               | -1.13168 | 0.81234  |

| <b>25</b> | $\mathrm{CF}_2\mathrm{O}{\cdots}\mathrm{NH}_3,\mathrm{C}_s$ |          |          |
|-----------|-------------------------------------------------------------|----------|----------|
| Ν         | -2.13545                                                    | 0.02830  | 0.00000  |
| С         | 0.54866                                                     | 0.15032  | 0.00000  |
| 0         | 0.63058                                                     | 1.32554  | 0.00000  |
| F         | 0.54839                                                     | -0.62376 | -1.06358 |
| F         | 0.54839                                                     | -0.62376 | 1.06358  |
| Η         | -2.68397                                                    | -0.82584 | 0.00000  |
| Η         | -2.43069                                                    | 0.56117  | -0.81244 |
| Н         | -2.43069                                                    | 0.56117  | 0.81244  |

**26a**  $CF_2S\cdots NH_3$ ,  $C_s$ Ν -2.24144 1.00020 0.000000.28875С -0.411640.00000  $\mathbf{S}$ 1.337000.806780.00000 F -0.18946 -1.01830-1.05969F -0.18946 -1.01830 1.05969

| Η | -3.16833 | 0.58588 | 0.00000  |
|---|----------|---------|----------|
| Н | -2.19908 | 1.60796 | -0.81245 |
| Η | -2.19908 | 1.60796 | 0.81245  |

| 26b          | $CF_2S\cdots NH_3, C_s$ |          |          |
|--------------|-------------------------|----------|----------|
| Ν            | -0.81775                | 1.37793  | 0.00000  |
| С            | -0.18921                | -0.07947 | 0.00000  |
| $\mathbf{S}$ | 1.51010                 | 0.00257  | 0.00000  |
| F            | -0.83680                | -0.61886 | -1.08325 |
| F            | -0.83680                | -0.61886 | 1.08325  |
| Η            | -1.83974                | 1.36073  | 0.00000  |
| Н            | -0.45152                | 1.84535  | -0.82816 |
| Н            | -0.45152                | 1.84535  | 0.82816  |

| 27 | $SiF_2O\cdots NH_3, C_s$ |          |          |
|----|--------------------------|----------|----------|
| Ν  | -0.42376                 | 1.66094  | 0.00000  |
| Si | 0.20327                  | -0.15088 | 0.00000  |
| 0  | 1.73129                  | -0.09429 | 0.00000  |
| F  | -0.68147                 | -0.62119 | -1.25214 |
| F  | -0.68147                 | -0.62119 | 1.25214  |
| Η  | -1.43724                 | 1.75497  | 0.00000  |
| Η  | -0.05066                 | 2.13614  | -0.81948 |
| Н  | -0.05066                 | 2.13614  | 0.81948  |

| <b>28</b> | $\operatorname{CH_3}^+ \cdots \operatorname{NH_3}, \operatorname{C}_{3v}$ |         |         |
|-----------|---------------------------------------------------------------------------|---------|---------|
| Ν         | 0.70513                                                                   | 0.00000 | 0.00000 |

| С | -0.80599 | 0.00000  | 0.00000  |
|---|----------|----------|----------|
| Н | -1.14296 | 0.51675  | -0.89504 |
| Н | -1.14296 | -1.03351 | 0.00000  |
| Н | -1.14296 | 0.51675  | 0.89504  |
| Н | 1.07613  | -0.47653 | 0.82539  |
| Н | 1.07613  | -0.47653 | -0.82539 |
| Η | 1.07613  | 0.95307  | 0.00000  |

| 29 | $\text{FNH}_3^+ \cdots \text{NH}_3,  \mathcal{C}_{3v}$ |          |          |
|----|--------------------------------------------------------|----------|----------|
| Ν  | -0.39134                                               | 0.00000  | 0.00000  |
| F  | -1.76513                                               | 0.00000  | 0.00000  |
| Η  | -0.05710                                               | -0.48443 | -0.83905 |
| Η  | -0.05710                                               | 0.96885  | 0.00000  |
| Η  | -0.05710                                               | -0.48443 | 0.83905  |
| Ν  | 2.22808                                                | 0.00000  | 0.00000  |
| Η  | 2.64176                                                | 0.46550  | 0.80625  |
| Η  | 2.64176                                                | 0.46550  | -0.80625 |
| Н  | 2.64176                                                | -0.93099 | 0.00000  |

| 30           | $FCH_3 \cdots C$ | $l^-, C_{3v}$ |          |
|--------------|------------------|---------------|----------|
| $\mathbf{C}$ | -1.23588         | 0.00000       | 0.00000  |
| F            | -2.65510         | 0.00000       | 0.00000  |
| Η            | -0.88447         | -0.51407      | -0.89040 |
| Η            | -0.88447         | 1.02814       | 0.00000  |
| Η            | -0.88447         | -0.51407      | 0.89040  |
| Cl           | 1.94309          | 0.00000       | 0.00000  |

| 31 | FSiH <sub>3</sub> …C | $\mathrm{Cl}^-, \mathrm{C}_{3v}$ |          |
|----|----------------------|----------------------------------|----------|
| Si | -0.65514             | 0.00000                          | 0.00000  |
| F  | -2.35776             | 0.00000                          | 0.00000  |
| Η  | -0.50131             | -0.73709                         | -1.27667 |
| Η  | -0.50131             | 1.47418                          | 0.00000  |
| Η  | -0.50131             | -0.73709                         | 1.27667  |
| Cl | 1.84845              | 0.00000                          | 0.00000  |

| <b>32</b> | $\mathrm{FGeH}_3\cdots\mathrm{Cl}^-,\ \mathrm{C}_{3v}$ |          |          |
|-----------|--------------------------------------------------------|----------|----------|
| Ge        | -0.41308                                               | 0.00000  | 0.00000  |
| F         | -2.30517                                               | 0.00000  | 0.00000  |
| Η         | -0.31390                                               | -0.76825 | -1.33064 |
| Η         | -0.31390                                               | 1.53649  | 0.00000  |
| Η         | -0.31390                                               | -0.76825 | 1.33064  |
| Cl        | 2.15274                                                | 0.00000  | 0.00000  |

| 33                  | $CO_2 \cdots Cl^-$ | $$ , $C_s$ |          |
|---------------------|--------------------|------------|----------|
| $\operatorname{Cl}$ | 0.00000            | 0.00000    | 1.66499  |
| С                   | 0.00000            | 0.00000    | -1.25540 |
| Ο                   | 0.00000            | 1.16587    | -1.34912 |
| 0                   | 0.00000            | -1.16587   | -1.34912 |

| <b>34</b> | $SCO···Cl^-, C_s$ |          |         |  |
|-----------|-------------------|----------|---------|--|
| Cl        | 2.05468           | 0.23409  | 0.00000 |  |
| С         | -0.96955          | -0.62147 | 0.00000 |  |

| 0            | -0.65121 | -1.73711 | 0.00000 |
|--------------|----------|----------|---------|
| $\mathbf{S}$ | -1.55759 | 0.84626  | 0.00000 |

- **35**  $CF_2S\cdots Cl^-, C_s$
- Cl-1.492190.665900.00000C0.15369-0.278570.00000S1.570570.704910.00000F0.00320-1.11800-1.07951
- $F = 0.00320 \quad -1.11800 \quad 1.07951$