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Abstract: The cancer incidence world-wide has caused an increase in the demand for effective forms
of treatment. One unconventional form of treatment for cancer is photodynamic therapy (PDT).
PDT has 3 fundamental factors, namely a photosensitiser (PS) drug, light and oxygen. When a PS
drug is administered to a patient, it can either passively or actively accumulate within a tumour site
and once exposed to a specific wavelength of light, it is excited to produce reactive oxygen species
(ROS), resulting in tumour destruction. However, the efficacy of ROS generation for tumour damage
is highly dependent on the uptake of the PS in tumour cells. Thus, PS selective/targeted uptake and
delivery in tumour cells is a crucial factor in PDT cancer drug absorption studies. Generally, within
non-targeted drug delivery mechanisms, only minor amounts of PS are able to passively accumulate
in tumour sites (due to the enhanced permeability and retention (EPR) effect) and the remainder
distributes into healthy tissues, causing unwanted side effects and poor treatment prognosis. Thus, to
improve the efficacy of PDT cancer treatment, research is currently focused on the development
of specific receptor-based PS-nanocarrier platform drugs, which promote the active uptake and
absorption of PS drugs in tumour sites only, avoiding unwanted side effects, as well as treatment
enhancement. Therefore, the aim of this review paper is to focus on current actively targeted or
passively delivered PS nanoparticle drug delivery systems, that have been previously investigated
for the PDT treatment of cancer and so to deduce their overall efficacy and recent advancements.
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1. Introduction

Currently, cancer is the second leading cause of death after stroke and heart disease and so
represents a major health concern worldwide [1,2]. While improved diagnostic and conventional
treatment measures have helped decrease the incidence rates of some cancers such as colorectal and
prostate, the current death rates from liver, pancreas, cervical, breast and lung cancers are still on the
rise [3,4].

The main issue when treating cancer patients with conventional therapies such as chemotherapy
or radiation, is that these forms of treatment tend to have a low selectivity for cancer cells and so
are required to be administered in high toxic drug loads to be considered effective [5]. These high
toxic drug loads also tend to affect normal body cells as well, often inducing severe unwanted side
effects when patients undergo these forms of treatment [5]. Moreover, additional obstacles that most
conventional cancer treatments face arise from tumour heterogeneity, drug resistance and systematic
toxicities [6].
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Thus, the current worldwide spread and rise in cancer incidence and mortality, with the difficulties
conventional treatments face, have placed a high demand on research and drug developers for more
effective forms of treatment [6].

2. Photodynamic Therapy

Photodynamic therapy (PDT) is a promising unconventional treatment method, which has been
used for the control of a variety of cancers [7]. PDT is a synchronised process, which first requires the
administration of a photosensitiser (PS) drug, either topically or intravenously to a patient, dependent
on the location of a tumour (Figure 1) [7].
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Figure 1. PDT treatment of cancer. The PS drug is administered to a patient and via the bloodstream,
it is transported to the tumour site, whereby it localises in tumour cells. Laser light is then applied to
this site, whereby it penetrates the skin and activates the PS. The PS then undergoes a photoreaction to
produce ROS and/or singlet oxygen, which in turn induces cytotoxic cell death in tumour tissues.

The PS drug compound is then passively or actively absorbed (dependent on drug delivery
mechanism) by either cancer cells or tissues [8]. To a certain extent an advantage of PDT is that it can
achieve discriminate tumour cell destruction and so induce only slight damage in healthy tissues [8].
This is because PS drugs tend to preferentially localise in diseased tissue via the enhanced permeability
retention—EPR passive effect [8]. However, current research is working towards improving this form
of passive PS drug uptake to be a more specific and targeted PS delivery in cancer cells only, so that
photosensitivity, localised healthy tissue destruction and other additional unwanted side effects can
possibly be eliminated [9].

Once the PS has successfully localised in targeted tumours, it is then activated by exposing it to a
specific wavelength of light (Figure 2) [9]. The PS then absorbs these light photons and so becomes
excited and stimulated from a ground state to a higher level of energy, known as a singlet state [10].
Then through a mechanism known as intersystem crossing (which results in a change in the spin of an
electron) an excited singlet state PS can then convert into a triplet state PS [8]. The triplet state PS then
interacts with surrounding molecules in tumours and so produces reactive oxygen species (ROS) or
highly reactive singlet oxygen (1O2) species via two different pathways [8]. Within the first pathway
either a hydrogen atom or electron is transferred from the excited triplet PS to surrounding substrates,
causing free radicals to be produced [11]. These free radicals then react with oxygen to form ROS, such
as superoxide and hydroxyl radicals. In the second pathway energy is transferred from the excited
triplet state PS and ground state molecular oxygen (3O2), resulting in the formation of highly reactive
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singlet oxygen (1O2) species [12]. These final resulting ROS and singlet oxygen species are cytotoxic
and so trigger apoptotic, necrotic or autophagy-associated cell death mechanisms in tumour cells via
oxidation (Figure 2) [6–11]. Both PDT pathway reactions may occur simultaneously, however PSs
generally favour the first pathway of ROS generation followed by apoptotic cell death within in vitro
anti-cancer PDT [12]. Moreover, the ratio between these pathway processes often depends on the type
of PS used, sub-cellular localisation of the PS, as well as the concentration of molecular oxygen within
the tumour’s cellular microenvironment [13].
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activation in tumour cells at a specific wavelength of light leading to transfer of oxygen molecules or
other substrates in surrounding areas, generating cytotoxic ROS, which triggers apoptotic or necrotic
forms of cell death and so tumour cells are destroyed.

It must be noted that in the absence of an external photo-activating light source, PS drugs remain
minimally toxic in the body [9]. Therefore, PDT can provide an alternative treatment method to assist
in the eradication of target cancer cells/tissues, while avoiding systematic toxicity and unwanted side
effects when compared to conventional therapies (which affect the entire body and not just localised
healthy cells) [9], however PS drug delivery mechanisms still require optimization [4].

3. Photosensitisers

Photosensitisers (PSs) are chromophore-containing compounds, which are either natural or
synthetic in chemical composition [14,15]. PSs have the ability to absorb light at a particular wavelength
and so generate cytotoxic ROS, which in turn allows PDT treatments to induce chemical or physical
damage in target cancer tissues [7]. However, within PDT applications it is important for PS drugs
to have high molar absorption coefficient within the PDT therapeutic red region of the visible light
spectrum (650–780 nm), as to ensure minimal patient photosensitivity before PS excitation, as well
as to avoid light absorption by other endogenous human body pigments [13,16]. Moreover, these
particular wavelength parameters also ensure maximum light absorption for PS excitation and ROS
generation, as well as optimal tissue penetration at targeted tumour sites, to warrant effective PDT
cancer treatments [10,14].

Commonly, PSs are classified into three groups according to their functional capabilities
namely; first-, second- and third- generation [10]. Examples of first-generation PS drugs include;
haematoporphyrin derivatives, they are stable; however, they tend to induce photosensitivity in
patients and have a poor light tissue depth excitation range [11,14]. Second-generation PSs tend to
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have a better PDT efficacy as they have less side effects with far deeper tissue laser light excitation
ranges [11,14]. Examples of second-generation PSs include; phthalocyanines, benzoporphyrins,
purpurins, hypercin and chlorines [11,14,17]. Third-generation PSs consist of second-generation PSs
which have bound to passive targeting nanoparticles (NPs) or active targeting agents (i.e., aptamers,
peptides etc.) and so tend to report enhanced uptake and the best PDT treatment outcomes in cancer
patients [10,14].

Currently, examples of clinically approved first- and second-generation PS in oncology
include; Porfimer sodium (Photofrin), 5-Aminolevulinic acid (Levulan), Methyl aminolevulinate
(Metvixia), Meta tetra(hydroxyphenyl) chlorin (Foscan), N-aspartyl chlorin e6 (NPe6, Laserphyrin),
Benzoporphyrin derivative monoacid ring A (Visudyne) and N-hexyl ester of ALA (Cysview) [14,15,17].
Whereas, examples of first- and second-generation PSs that are currently under clinical trials include;
Hypocrellin A, Pheophorbide-a, Chlorin e6, Methylene Blue, Hypericin, Phthalocyanine, Rose
Bengal, HPPH: 2-(1-Hexyl-oxyethyl)-2-devinyl pyropheophorbide-alpha [14,16,17]. In relation to
third-generation PSs, to date, none have received clinical approval for PDT cancer treatments and so
remain an important area of research.

Lastly, research is beginning to focus in the development of fourth-generation PS (i.e., a
second-generation PS encapsulated in a NP delivery system—making it a third-generation PS, with a
co-encapsulated small-molecular inhibitor capable of blocking tumour survival pathways post PDT
treatment in order to improve its overall efficacy in clinical settings and so halt possible tumour
reoccurrence [18,19]. At this stage, combination treatments with respect to PDT and inhibitors in
clinical setting are limited to the treatment of macular degeneration, in which case vascular endothelial
growth factors (VEGFs) inhibitors are employed to deter neovascularization of tumours [18,19].

4. Photodynamic Therapy Challenges

Despite the many positive features of PDT cancer therapy, this form of treatment is still not always
fully adapted in clinical settings [7]. Most of these PDT clinical setting drawbacks are due to some of
the inherent properties first and second-generation PS drugs have in relation to their solubility, mode
of delivery and targeted tumour tissue selectivity [9,16].

In order to ensure the overall efficacy of PDT in terms of inducing complete cell death and overall
tumour destruction, maximum levels of ROS generation are required and this is highly dependent on
the uptake and concentration level of a PS in cancer cells [10].

Generally, non-targeted conventional PS drug delivery mechanisms have a poor PDT clinical
prognosis, since only minor amounts of the PS drugs are able to passively accumulate in tumour sites
(due to EPR), limiting the overall effectiveness of PDT [8,15]. The remainder of the photosynthetic
drug either distributes into healthy tissues (causing unwanted side effects—patient photosensitivity
or localised healthy tissue damage) or is destroyed by the bodies’ immunological barriers [10].
Moreover, another common issue in clinical settings is that most second and third generation PS
drugs are hydrophobic in nature and so have a limited solubility in water, causing them to aggregate
during administration, decreasing ROS generation [9].

Additionally, since ROS have only a short half-life, only cells that are close to the proximal
area of ROS generation i.e., PS localisation, are directly affected by PDT. Moreover, the radius of
action of singlet oxygen is very small ≤0.02 µm [13]. Thus, the overall extent of PDT induced
cytotoxicity and photodamage is highly dependent on a PSs bioavailabity, as well as its extracellular
and intracellular localisation [12]. Moreover, most PSs have shortcomings such as poor water solubility,
bioavailability, biodistribution, and target specificity [12]. Nevertheless, NP PS drug carriers are now
being investigated, as to ensure PS drug aqueous dispersibility, with improved targeted delivery and
concentrated sub-cellular localisation in tumours mitochondria, lysosomes, endoplasmic reticulum,
plasma membrane, etc., which play a major role cell death, for more effective PDT cancer treatment
outcomes [12,13].
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Thus, PS drug selective/targeted uptake and active delivery in tumour cells is a crucial factor
in PDT cancer drug absorption studies in order to improve the efficacy of PDT cancer treatment.
Therefore, current research is focused on developing effective third generation NP drug delivery
systems which incorporate second generation PSs [11,16]. These targeted drug delivery approach
should more effectively solubilise and traffic PS within the human body to cross cellular plasma
membranes and so actively target, localise and accumulate directly in tumour cells/tissues only,
resulting in minimal damage and toxicity to normal tissues, as well as to encourage maximum ROS
generation within sub-cellular localised tumour cells for PDT treatment enhancement [11,12].

5. Nanoparticles for Enhanced Passive or Active Photosensitiser Drug Delivery

Recently, PDT research has reported the combination of PS drugs with NPs since they can overcome
some of the limitations conventional PS drug delivery methods experience in clinical settings [20].

NPs have hydrophilic properties and so when PS drugs are combined with NPs, this significantly
enhances their overall solubility and so increases their passive cellular uptake due to the EPR effect [11].
This is because the EPR effect allows NP drug carriers to enter tiny spaces between tumour cells,
suppressing lymphatic filtration and so the PS drug uptake in tumour cells is increased (Figure 3) [11].
Additionally, NPs tend to mimic biological molecules, thus when combined with therapeutic drugs such
as PSs, the passive cellular tumour uptake of the drug is enhanced [14]. This is due to the fact that PS NP
drug carrying systems go by unnoticed by immune system barriers and so remain unharmed by various
immune components, allowing for effective PS drug delivery and cellular uptake in tumours [14].

Moreover, NPs are easy to synthesise, have the ability to support high loading volumes of therapeutic
drugs (due to there are-to-volume ratios), have a small size (so easily accumulate in cells) and their surface
chemistry is simple allowing for possible functionalisation [8]. In a NP drug delivery-based approach, a
PS is either encapsulated or immobilised on the NPs surface using covalent or non-covalent interactions
to form a nanophotosensitiser (NPPS) [15,20]. Thus, the utilisation of NPs within cancer PDT therapy as
effective PS drug delivery systems in research is fast becoming popular [14].
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strategies used for the PDT treatment of cancer.

However, since the ultimate goal of PDT is to selectively kill tumour cells with minimal
collateral damage to surrounding normal healthy tissues, actively functionalised NPPS drug delivery
mechanisms are the current hot topic of research. Thus, in order to improve tumour PS drug uptake
selectively and sub-cellular localisation, research studies have been conducted in order to further
functionalise NPPS drug delivery systems by linking specific active targeting moieties (biomolecules
or ligands) such as antibodies, peptides or aptamers to their surface (Figure 3) [15,20]. These moieties
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have a specific affinity for specific receptors, which are only overexpressed on the tumour cells
(direct active targeting) and their vasculature (indirect active targeting), but not on normal cells [16].
This surface functionalisation of NPPS drug delivery systems facilitates a more effective, specific
and active accumulation and sub-cellular of PSs in tumour tissues or cells (via receptor mediated
endocytosis—RME) and so overall increases the efficacy of PDT with decremental damage to normal
healthy tissues (Figure 3) [9,15–17,20].

6. Nanoparticle Platforms for Active or Passive Photosensitiser Drug Delivery

To date, many different organic and inorganic nano-platforms have been studied for efficient and
targeted PS drug delivery; since they assist in overcoming some of the drawbacks associated with the
stability and physiological conditions conventional PS drug delivery face and so enhance the efficacy
of PDT [5,20].

Organic NPs are solid particles composed of organic compounds such as lipids, protein,
polysaccharides or polymers [21]. Examples of organic NP platforms for PDT include liposomes and
polymeric NPs (e.g., Albumin, Chitosan, Hyaluronic acid, polymeric micelles, hydrogels, dendrimers,
hyperbranched polymers and biodegradable polymers), as well as protein-based NPs (e.g., amino
acids, peptides, albumin, gelatin, collagen, silk) (Table 1) [14,22]. These NPs bear the advantage of
having low toxicity, as well as mostly improve the solubility of PS drugs and their passive or active
accumulation within the target tumour site [14]. PS are generally strategically encapsulated in these
types of flexible and versatile NP platforms, for achieving safe and controlled PS drug delivery [14,21].

Inorganic NPs are of metal oxide or metallic composition that normally consist of an inner
inorganic core and an outer organic shell, which stabilises the particle in biological environments [14,15].
Moreover, the surface of inorganic NPs can easily be functionalised with various biomolecules for
actively selective PS drug targeting of tumorous tissues [16,23,24]. Inorganic NPs have several
advantages over organic NPs, including high stability, precise control over shape and size, as well as
tuneable optical properties [20,24]. Generally, PSs drugs are incorporated by either physical absorption
or covalent attachment onto the reactive surface groups of inorganic NPs [15,23]. However, this PS
drug incorporation is highly dependent on the chemical nature of the PS and porosity of the NP (if
very porous PS can be physically encased in it, to protect it from degradation) [14,16]. Examples of
inorganic biocompatible NP PS drug-based delivery systems include ceramic (silica), quantum dots,
magnetic, metallic (gold, silver, zinc or titanium dioxide) and carbon based (fullerene, carbon nanotube
and graphene oxide) [14,21,25,26] (Table 1).

Overall, NPs offer a versatile platform for PDT drug delivery by either passively delivering or
actively targeting PS in tumour cells, as well offering PDT additional advantages such as enhanced
light penetration [16].

Table 1. Composition-structure and properties of organic and inorganic nanoparticles.

Organic
Nanoparticles Type Composition/Structure Properties Reference
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Nanoparticles 
Type Composition/Structure Properties Reference 
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[5,9,20] 
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Poly(lactide-coglycolide) 
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monomers, hydrogels, 
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size, biocompatible 

[9,20,27,28] 
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permeability, 

and rapid clearance 
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Polymeric

Poly(lactide-coglycolide)
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biocompatible

[9,20,27,28]
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loading of hydrophobic drugs,
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However, the mode of loading/binding of a PS drug onto a NP vehicle does play a very important
role in terms of ensuring an effective dose reaches tumour sites [11,35,36]. NP platforms can either
have a PS drug physically entrapped and so loaded within the vehicle core (e.g., micelles) or chemically
conjugated/bound onto its NPs surface (e.g., gold NPs) [6,36]. Generally, PS drugs that are entrapped
or loaded within NPs drug delivery cores, show better clinical absorption in tumour sites than PS drugs,
which are bound onto a NPs surface [6,36]. This is because NP surface absorbed PS drug molecules are
sometimes chemically or physically desorbed by in vivo environments, leading to premature drug loss
even before a target site is reached [5,10,11]. However, PS drugs, which are physically entrapped in
NP cores, often report enhanced delivery, since this encapsulation protects the PS drug from external
in vivo factors and so allows it to reach and concentrate in a target site [36,37]. Once a NP encapsulated
PS concentrates at a target site it can become photo activated, and so react with cellular oxygen to
generate ROS, initiating its release and cytotoxic nature [5,11,14]. Also, another important aspect that
researchers need to aware of is that when choosing a NP platform, one needs to ensure that it can hold
or has efficient PS drug loading to induce effective PDT activity [16,36,38]. However, the chosen NP
platform should not be overloaded with PS drugs, as this can cause aggregation or self-quenching and
so reduce PDT efficacy [16,36,38].

Furthermore, NPs may be coated with a PEG shielding outer layer that allows for stability
of the drug delivery system, as well as provides biocompatibility and so allows NP PSs to
have longer circulation times in the body [20,36]. Moreover, NP drug delivery systems can be
up-converted and so provide a supplementary advantage by converting low energy radiation
to high-energy emission, thereby further facilitating the PDT destruction process in deep-seated
tumours [5,14,21]. Likewise, biocompatible functionalised magnetic NPs, such as superparamagnetic
iron oxide nanoparticles (SPIONs), allow for concentrated PS drug delivery to invasive tumour sites,
by utilising an external magnetic driving field force, which when applied directly above a tumour
site causes magnetic NPs to aggregate and so rapidly intensifies PS uptake in this target region (i.e.,
physical targeting) [32,38]. Moreover, studies by Dang et al. (2017), have noted the use of manganese
dioxide (MnO2) or perfluorocarbon (PFC) NPs to overcome the limitation of hypoxia against PDT,
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since they increase the oxygen levels in a TME when they decompose and so promote higher levels of
ROS generation in target tumour sites, effectively enhancing PDT induced cell death [39]. Additionally,
scintillating NPs are energy transducers which have the capability to convert X-rays into UV-visible
photons and so through the utilisation of X-rays PDT PS deep seated tumour cell damage can be
triggered, examples include the use of PS carrying upconversion nanoparticles (UCNPs) that can be
excited by NIR light (e.g., 980 nm) and emit UV–visible light for enhanced therapeutic efficacy [40].
Lastly, metallic natured NPs, such a gold NPs, provide PDT with enhanced tumour destruction due
to their photothermal properties, whereby they convert near-infra red light into heat and so provide
multimodal cancer treatment opportunities [21,38].

7. Functionalised Nanoparticles for Effective and Active Targeted Photodynamic Therapy Tumour
Selectivity Photosensitiser Drug Delivery

A tumour’s microenvironment (TME) is continuously changing and this complex behaviour plays
an important role in cancer progression and PDT treatment, since a TME can hinder drug delivery
systems and so render a treatment ineffective [24]. Thus, most NP PSs need to be constructed and
functionalised according to the TME that they are targeting for a successful biophysiological interaction
to occur, as to ensure effective PS drug uptake and retention for active indirect PS drug targeting [24,36].
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Figure 4. Diagram showing specifically active and targeted PS drug delivery to tumours via receptor
mediated targeting. Tumour absorption of functionalised NPPSs is significantly increased via their
surface modification with specific biomolecules or ligands. This active targeting mechanism takes
advantage of highly specific interactions between biomolecules/ligands and certain TME tissues/blood
vessels or cell surface antigens (receptor moieties) to increase cellular uptake and tumour retention of
PS drugs. These active NPPSs drug systems enhance overall PS uptake in tumour cells only, which
significantly enhances PDT induced tumour destruction, with the additional advantage that normal
cells/tissues remain unaffected.

Tumour cell/tissue-specificity of PS drug delivery can be significantly increased via the surface
modification of NPPSs to bind with targeting surface receptor moieties for active direct PS drug
targeting [9,15]. The surface functionalisation of PS nano drug carrying systems with targeting receptor
moieties which are overexpressed in tumour sites only, allows nano carriers to precisely recognise
targeted tumours and so allow for active absorption and uptake of PS drugs in these specific cancer
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cells only (Figures 3 and 4) [9,14,15]. This particular type of drug targeting system is known as the
“magic bullet” or “smart drug delivery systems” in PDT cancer therapy [4,9]. The drug delivery
systems consist mainly of two components, the first part of the system is able to recognise and bind to
the target tumour site (providing precise drug transport) and the second part of the system being the
actual PS drug itself, should be able provide effective PDT therapeutic action [4]. Thus, PDT active
cancer nano-drug therapy targeting, implies the use of externally conjugated target moieties to a NP
PS drug delivery system in order to enhance PS uptake and concentration in specific tumour cells [4].

Therefore, in order to functionalise nano-carrier particles to only target specific surface tumour
receptor sites and so actively enhance PS drug uptake via RME and overall PDT, they are usually bound
with specific targeting biomolecules/surface ligands [15]. These biomolecules or surface molecules
for active tumour targeting include; antibodies, aptamers, peptides or small molecules that recognise
tumour cell-specific or tumour associated antigens in the TME (Figure 4) [41,42]. Research has shown
that this approach improves and concentrates PS drug localisation and active uptake in specific tumour
cells only, while reducing the undesirable side effects of PS drugs to surrounding healthy tissues and
unwanted phototoxicity [6,16]. Thus, for targeted and effective PDT, functionalised NPs are often
used in research to efficiently incorporate and deliver hydrophobic PS drugs into only specific target
tissues/cells, whereby via light activation they only produce ROS in tumorous tissues, destroying
cancer cells only and leaving healthy tissues unharmed [16].

There are two approaches used for PDT PS drug tumour receptor-mediated targeting (Figure 4).
Within the first approach the TME, such as the extracellular matrix or endothelial cell surface receptors,
which are specifically expressed on tumours blood vessels, are targeted for enhanced PS drug
delivery [3,28]. The second approach is to directly target tumour cell surface receptors for intracellular
delivery of NPPS drugs [3,41]. Within this approach, NPPSs are functionalised to target the extracellular
portion of tumour antigens that are overexpressed on the transmembrane of cancer cells and so PS
drugs are taken up intracellularly specifically via RME [42].

7.1. Tumour Microenvironment, Tissue and Vascular Photosensitiser Nano-Drug Active Indirect Targeting

Angiogenesis is the synthesis of new blood vessels [43]. Since blood vessels in a TME provide an
ample supply of nutrients and oxygen, their formation is vital in order to ensure a tumour survival,
proliferation and metastatic spread [15,43]. Hence, selectively targeting PS nano-drug delivery to
a TME (extracellular matrix, stroma, tissues or vascular nature), will enhance PDT ROS generation
within these specific regions [20,43]. This in turn allows for direct damage to a tumour’s microvascular
feed/blood vessels and so indirectly induces tumour destruction, due deprivation of nutrients and
oxygen, enhancing the overall treatment efficacy of PDT [4,14,37].

Tumour vasculature endothelial targets such as vascular endothelial growth-factor receptors
(VEGFRs), αvβ3 integrins, matrix metalloproteinase receptors (MMPs), collagen and vascular
cell-adhesion molecule-1 (VCAM-1), have been exploited to achieve tumour-selective accumulation
of PS nano-drug carriers in a tumour’s microvascular blood vessels [4,15]. Whereas, tumour
associated immune cells (TAMS), tumour associated fibroblasts (e.g., FAP, α-SMA, FGFRs, tenascin-C
and thrombospondin-1) and tumour initiating stem cells (e.g., CD133, EpCAM and aldehyde
dehydrogenases), have been utilised to allow for NPPSs drug targeting within a TME [43].

However, this PDT mechanism of specific PS tumour vascular drug targeting remains debated,
as some researchers argue that by excessively decreasing the vascular permeability of a tumour
and its stroma, that this in turn sometimes causes hypoxia and decreased PS drug delivery [32,43].
It is better to account for enhanced tumour migration and metastasis, as well as PS drug
resistance [43]. Therefore, TME NPPS drug targeting strategies need to be carefully designed,
as to ensure tumour-inhibitory functions are targeted and not tumour-promoting functions [32].
Moreover, researchers tend to rather recommend using NPPS drug tumour direct cell targeting
strategies in combination with TME and vascular drug targeting in order to ensure effective tumour
destruction and enhanced PDT outcomes [4,43].
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7.2. Tumour Cell Photosensitiser Nano-Drug Active Direct Targeting

In relation to functionalised NPs for specifically active PS drug delivery to selectively and directly
destroy tumour cells and so indirectly enhance PDT, tumour cell transmembrane receptors can be
directly targeted [4]. Tumour specific cell receptors which are usually exploited in targeting and
delivering NPPS drugs directly into cancer cells are G-protein coupled receptors, integrins, folate
receptors, transferrin receptors, ligand receptors (CD44), epidermal growth factor receptor (EGFR),
fibroblast growth factors (FGFRs), sigma receptors, follicle stimulating hormone receptors, C-type
lectin receptors, biotin receptors, and neuropilin receptors [4,17,21]. Depending on the intracellular
location of the PSs, PDT ROS induces irreversible damage in target tumour cells, plasma membranes or
vital subcellular organelles such as lysosomes, mitochondria, endoplasmic reticulum, Golgi apparatus
or nucleus and so either apoptotic or necrotic forms cell death result in tumour destruction [14].

7.3. Types of Targeting Moieties for Active Tumour-Targeting Photosensitiser Nano-Drug Delivery Systems

In order to improve tumour selectivity and uptake of PS drugs via active targeting in either tumour
cells or TME, NPPSs drug-carrying systems are often conjugated with specific targeting biomolecules
or ligand moieties [15]. The moieties include monoclonal antibodies (mAb) and other proteins (such
as transferrin), nucleic acids (aptamers), small molecules (folic acid), polymers (hyaluronic acid) and
peptides (proteins), which are over-expressed on tumour cells only (Figure 4) [15,42]. These moieties
have a specific affinity for receptors that are over-expressed on tumour cells and their vascular, but
not normal cells and so facilitate effective PSs accumulation in tumour target sites only, increasing
the efficacy of PDT with lessened collateral damage and unwanted side effects [17]. Recent research
approaches (over the last 5 years) enhance NPPSs drug delivery using tumour-targeting moieties, and
so increase the efficacy of PDT have been summarised in Table 2.

Monoclonal antibodies (mAb) are a preferred class of targeting molecules for tumour cell receptor
sites in order to enhance active and specific nano-PS drug delivery and so improve the cytotoxicity
of PDT [32]. Some of the FDA approved mAb for targeted drug delivery in cancer cells include;
Rituximab for the treatment of B-cell non-Hodgkin’s lymphoma, Trastuzumab for the treatment of
human epidermal growth factor receptor 2 (HER2) expressing breast cancer, Bevacizumab for the
treatment of vascular VEGFR expressing colorectal cancer, Cetuximab for the treatment of EGFR
expressing colorectal cancer and head/neck cancer [4,43–46].

Research has noted that transferrin receptors (TfR) are over-expressed on tumour cells, due
to their increased metabolic activity [47]. Moreover, the complex of transferrin-bound iron and
transferrin receptor is a major route of cellular iron uptake via clathrin-coated pits to cellular endosomal
compartments [47]. This membrane transferrin receptor-mediated endocytosis iron uptake pathway
can be successfully exploited for the delivery of anti-tumour PS drugs, by functionalizing NPs which
carry PS with transferrin proteins [4].

Aptamers are RNA or DNA nucleic acids capable of binding to target antigens with specificity
conformations, which can correspond to antibodies [48,49]. They have many advantageous properties
that include their small size, lack of immunogenicity in terms of provoking an immune response and
ease of isolation [49]. Aptamers can be conjugated to PS drug delivery NPs to improve specific drug
targeting delivery in tumour cells and so enhance PDT therapeutics [4,48]. The most successful and
FDA approved aptamers for enhanced drug cancer drug delivery are those that are able to bind cancer
cells which overexpress VEGFR proteins [9,14,48].

Hyaluronic acid (or hyaluronan) (HA) is a polysaccharide that is found within extracellular body
fluids and is responsible for cellular growth, differentiation and migration in normal body cells [50].
However, HA is often found to be elevated in various types of tumour cancer cells and so gives them
ability to invade and metastasise in other tissues [50]. Recently, researchers have started to investigate
HA as a targeting moiety for NP PS enhanced drug delivery in PDT, since it can specifically bind to
various cancer cells that over-express CD44 which is a HA tumour receptor [3,4,44,50].
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Folic acid (FA) is an important Vitamin B in human body as it is the essential precursor for the
synthesis of nucleic acids and some amino acids [51]. FA ligand is not produced by human cells and
so requires cellular uptake via either receptor mediated endocytosis (RME) or carrier-based uptake
mechanisms [51]. Within ovary, brain, kidney, breast, and lung malignancies it has been noted that
these types of cancers tend to overexpress membrane bound folic acid receptors alpha (FR-α), since
they have a high affinity for FA [51]. Thus, FA conjugation to nano-drug delivery systems has become
a widely exploited strategy in order to enhance the specific cancer cell uptake of PS in targeted PDT
applications [4,51].

Lastly, NPs carrying drugs can be functionalised with peptide or protein sequences, which target
specific tumour cell surface receptors and so enhanced PS drug delivery [52]. Cell saturating and
infusing peptides such as RGD are the most commonly targeted cancer moieties within enhanced
drug delivery applications, as they bind strongly with αvβ3 integrins [52,53]. Moreover, with PDT
nano-PS drug delivery studies, lipid NPs are among the most often utilised [4,15]. An alternative way
for enhanced PS active uptake is to functionalise NP surfaces with certain short (approx. 30 amino
acids) cell-penetrating peptides (CPPs) sequences which can pierce cell membranes and so transport
PS drugs into cells or they can even be designed to directly target subcellular organelles [53].
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Table 2. Targeting moiety approaches used to enhance NP PSs active drug delivery systems in tumours.

Targeting
Moiety

Direct or
Indirect
Targeting

Tumour
Overexpression
Receptor

Cancer Cell Line or Tumour
Model Study Type PS NP Results Ref

mAB Direct erbB2 receptors SK-BR-3 human breast cancer cells In vitro Porphyrin Gold Monophasic method NP PS
elicited targeted PDT. [54]

mAB Direct EGFR receptor MKN45 human gastric cancer cells In vitro Curcumin Chitosan/tripolyph
osphate (TTP)

Enhanced uptake, superior PDT
effect with a fourfold decrease in
the IC50, however, PDT was
limited to superficial tumours due
to light penetration.

[55]

mAB Direct HER2 receptor Breast carcinoma cell lines
(SK-BR-3 & MDA-MB-231) In vitro Zinc phthalocyanine

derivative (C11Pc) PEG-Gold

Enhanced efficacy of PDT cell
death when tumour-associated
antigens were present on
malignant cells.

[56]

mAB Direct EGFR receptor
CAL-27 oral squamous cell
carcinoma (OSCC) & xenograft
oral cancer tumour mouse model

In vitro &
in vivo Chlorin e6 Titanium dioxide (TiO2)

PEG-up conversion

Enhanced intratumoural delivery,
penetrated deep thick tumours
with delayed tumour growth &
80% cell death.

[57]

mAB-Cetuximab Direct EGFR receptor A431 squamous carcinoma cell line
& xenografted mice

In vitro &
in vivo Chlorin e6

Methoxy poly(ethylene
glycol)-b-poly(lactide)
(mPEG-b-PLA) micelles

Enhanced uptake & effective PDT,
at lowered doses tumour growth
was inhibited by 84.8%.

[58]

mAB Direct
Prostate-specific
membrane antigen
(PSMA-1)

Prostate cancer PC3pip cell line &
xenografted mice

In vitro &
in vivo

Silicon phthalocyanine
PC 4 Gold

Nanodrug system enhanced
uptake four fold, with significant
cell death & tumours remained in
remission 14 days post PDT.

[59]

mAB & Peptide Direct

HER2 receptor or
jacalin, a lectin specific
for carbohydrate T
anitigen

HT-29 colorectal adenocarcinoma
cells & SK-BR-3 breast
adenocarcinoma cells

In vitro Zinc phthalocyanine
photosensitiser (C11Pc) PEG-Gold

Both T antigen & overexpressed
HER-2 reported enhanced targeted
PDT with 80–90% in HT-29 cells &
>99% in SK-BR-3 cells.

[60]

Transferrin Direct Transferrin-receptor
(TfR)

A549 human lung adenocarcinoma
cell line & A549 tumour-bearing
model

In vitro &
in vivo Hypocrellin A (HA)

Poly(D,L-Lactide-co-glycolide
(PLGA) & carboxymethyl
chitosan (CMC)
nanoparticle

Selective uptake, apoptotic cancer
cell death & significant tumour
inhibition rate of 63% after target
PDT treatment for 15 days in
mouse models.

[61]

Transferrin Direct Transferrin-receptor
(TfR)

Murine CT26 colon carcinoma cells
& CT26 tumour-bearing mice.

In vitro &
in vivo IR780 iodide Self-assembled

transferrin-IR780

Notable targeting & tumour
suppression in PDT cancer
therapy.

[62]

DNA Aptamer Direct Specific targeting
aptamers-TLS11a

HepG2 Hepatocellular carcinoma
cell line xenograph mouse model

In vitro &
in vivo Chlorin e6 Gold

Programmable synergistic,
targeted PDT, with
hypoxia-activated chemotherapy
treatment for hepatocellular
carcinoma.

[63]
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Table 2. Cont.

Targeting
Moiety

Direct or
Indirect
Targeting

Tumour
Overexpression
Receptor

Cancer Cell Line or Tumour
Model Study Type PS NP Results Ref

DNA
G-quadruplex
Aptamer

Direct

Sgc8 leukemia aptamer,
which can specifically
bind to protein tyrosine
kinase 7 (PTK7)
receptor

CEM cells CEM (CCL-119, T-cell
line, human & Ramos (CRL-1596,
B-cell line, human Burkitt’s
lymphoma) & Cervical cancer
(HeLa) mouse models

In vitro &
in vivo

5, 10, 15, 20-tetrakis
(1-methylpy
ridinium-4-yl)
porphyrin (TMPyP4)

Zr-based nanoscale
metal-organic frameworks
(Zr-NMOFs)

Nanosystem induced 90% cell
death of targeted cells &
maintained more than 76% tumour
inhibition within the entire
experimental period.

[64]

DNA Aptamer Direct

Sgc8 leukemia aptamer,
which can specifically
bind to protein tyrosine
kinase 7 (PTK7)
receptor

CEM (CCL-119, T-cell line, human
& Ramos (CRL-1596, B-cell line,
human Burkitt’s lymphoma)

In vitro &
in vivo Chlorin e6 Gold nanorod

Enhanced uptake & targeting, with
notable PDT & photothermal cell
destruction.

[65]

Hyaluronic acid Direct &
Indirect CD44 ligands Human colon HT29 cell line &

murine tumour model
In vitro &
in vivo Chlorin e6

Hyaluronic acid conjugated
to 5β-cholanic acid
(5β-CA)

Effective biocompatibility, tumour
targeting & suppression capacity.
Tumour growth was significantly
inhibited by 9.61 ± 1.09-fold.

[50]

Hyaluronic acid Direct &
Indirect CD44 ligands B16F10 melanoma cells in tumour

model mice In vivo Chlorin e6 Carbon dot
Complete suppression of tumours
& effective transdermal PDT of
melanoma skin cancers

[66]

Folic acid Direct Folate receptor 1
(FOLR1)

A549 & SBC5 lung cancer cells &
mouse lung orthotopic tumour
models

In vitro &
in vivo Porphyrin Porphyrin-lipid

(porphysomes)

Only 24 to 28% of lung cancer cells
noted to be viable after PDT
treatment.

[67]

Folic acid Direct Folic acid receptor Rat brain C6 glioma cancer cell line In vitro Spiropyran (SP) Gold acrylic copolymer
with imidazole groups

71.8% improved cellular uptake &
enhanced tumour targeted PDT. [68]

Folic acid Direct Folic acid receptor KB oral cancer cell line In vitro Hematoporphyrin
-stearylamine (HpSa) Solid lipid (SLN) Increased cellular uptake &

enhanced PS phototoxicity. [69]

Folic acid Direct Folic acid receptor KB oral cancer cell line & murine
xenograft model

In vitro &
in vivo

Meta-tetra
(hydroxyphenyl)
chlorin (m-THPC)

Polymeric micelles
Reduced photosensitivity, with
enhanced PDT & 92% tumour
growth inhibition.

[70]

Folic acid Direct Folic acid receptor Human cervical carcinoma (HeLa)
cells In vitro Protoporphyrin IX

(PpIX) Gold Enhanced drug delivery &
phototoxic properties. [71]

Folic acid Direct Folic acid receptor Human breast MDA-MB-231
cancer cells In vitro Chlorin e6 Silica based

Enhanced uptake & PDT-induced
mitochondrial damage & apoptotic
cell death was observed.

[72]

Folic acid Direct Folic acid receptor Human cervical carcinoma (HeLa)
cells & tumour mouse model

In vitro &
in vivo Chlorin e6

Thermosensitive liposomes
(TSL) with photothermal
copper sulfide (CuS)

Enhanced uptake with controlled
PS release, excellent phototoxicity
& inhibited tumour growth.

[73]

Folic acid &
DNA Aptamer

Direct &
Indirect

C base-rich longer
DNA would form
C-quadruplex & folic
acid binds to receptors

Human breast cancer MCF-7 cell
line & tumour mouse model

In vitro &
in vivo Chlorin e6

Polyacrylic acid (PAA)
coated upconversion
nanoparticles (UCNPs)

Precise tumour targeting &
efficient PDT with a switchable
DNA/upconversion
nanocomposite.

[74]
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Table 2. Cont.

Targeting
Moiety

Direct or
Indirect
Targeting

Tumour
Overexpression
Receptor

Cancer Cell Line or Tumour
Model Study Type PS NP Results Ref

Folic acid &
Peptide

Direct &
Indirect

Folic acid receptor &
cRGD targeting peptide
to recognise αVβ3
integrin receptor

Human breast cancer MCF-7 cell
line In vitro Chlorin e6 &

Indocyanine green Polymeric Enhanced uptake & 85.9% tumour
apoptosis. [75]

Fibronectin
mimetic peptide
(Fmp)

Indirect Integrin β1
Head & neck squamous carcinoma
cell lines M4E, 686LN, & TU212 &
murine xenograft model

In vitro &
in vivo

Silicon phthalocyanine
PC 4 Iron-Oxide

Enhanced uptake PDT efficacy
with reduced PDT drug dose,
showed nonspecific toxicity &
greater inhibition of tumour
growth than non-targeted drugs.

[76]

Cyclic peptide
(c(RGDfc) Indirect Integrin αvβ3 receptor

UMUC3 human bladder cancer,
Hela cells human cervical cancer &
A549 human pulmonary
carcinoma cell line & UMUC3
tumour mouse model

In vitro &
in vivo

AIE luminogens
(AIEgens)
2-((4-(2,2-bis(4
methoxyphenyl)-1-
phenylvinyl) phenyl)
(phenyl) methylene)
malononitrile (TPE-red)

Aggregation-induced
emission (AIE)

High tumour uptake efficacy with
targeted PDT. [77]

Peptide
-Heptapepte
(ATWLPP)

Indirect
Specific for the VEGF
receptor, neuropilin-1
(NRP-1)

MDA-MB-231 breast cancer cells &
rats bearing intracranial glioma

In vitro &
in vivo Chlorin e6 Silica based Enhanced uptake, with effective

interstitial PDT. [78]

Peptide Direct Asialoglycoprotein
receptor (ASGPR)

Human liver (HepG2) & Cervical
(HeLa) cells In vitro

Tetraphenylporphyrin
tetrasulfonic acid
hydrate (TPPS)

Pullulan-Functionalised
Fe3O4 Nanoparticles with
Mesopore Silica

Capable of targeting specific
receptors, with efficient
phototoxicity.

[79]

Peptide Direct &
Indirect

EGF peptide
(YHWYGYTPQNVI-
amide)

E29 rat glioma cancer cell line &
tumour mouse model

In vitro &
in vivo

Silicon phthalocyanine
PC 4 PEG-Gold

Drug conjugate enhanced PS
delivery, as well as enhanced PDT
therapeutic efficacy two-fold.

[80]

Peptide Indirect

Cationic
diphenylalanine
(H-Phe-Phe-NH2·HCl,
CDP)

MCF-7 breast cancer & tumour
bearing mice

In vitro &
in vivo Chlorin e6 Cationic dipeptide

Enhance drug targeting & uptake,
with PS controlled release &
almost complete tumour
eradication.

[29]

Peptide Indirect

Fluorenylmethoxycar
bonyl-L-histidine
(Fmoc-H), &
N-benzyloxycar
bonyl-Lhistidine-L-
phenylalanine (Z-HF)

MCF-7 breast cancer & tumour
bearing mice

In vitro &
in vivo Chlorin e6 Metallo Fmoc-H/Zn2+ &

Z-HF/Zn2+

Desirable stability & smart
responsiveness, with enhanced
Chlorin e6 internalization.

[30]

Peptide Indirect
Cationic dipeptide
(H-Phe-Phe-NH2·HCl,
CDP)

MCF-7 breast cancer In vitro Rose Bengal (RB) Cationic dipeptide
Biocompatible, with improved
tissue uptake & induced serious
two-photon toxicity.

[31]

Peptide Indirect Neuropiline-1
(KDKPPR)

Human umbilical vein endothelial
cells (HUVEC) & skinfold chamber
model in mice

In vitro &
in vivo

5-(4-carboxy
phenyl)-10,15,20-
triphenylporphyrin

Silica-based (AguIX) Enhanced uptake, with improved
PDT photoxic effect. [81]
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Table 2. Cont.

Targeting
Moiety

Direct or
Indirect
Targeting

Tumour
Overexpression
Receptor

Cancer Cell Line or Tumour
Model Study Type PS NP Results Ref

Peptide Indirect F3 peptides
GS-9L & F98 rat glioma &
MDA-MB-435 human breast
carcinoma cell lines

In vitro Methylene blue Polyacrylamide
Enhanced targeting with excellent
PDT efficacy increasing with dose
& irradiation time.

[82]

Peptide Direct
Cationic
cell-penetrating
peptides Tat (48–57)

KB human oral epidermoid
carcinoma & MC28
methylcholanthrene-induced rat
fbrosarcoma cell lines

Chlorin e6 Cationic dipeptide
Enhanced endosomal membrane
targeting with high photodynamic
efficacy.

[83]

Peptide-Lactose Direct &
Indirect Galectin-1 receptor Human breast MCF-7 cell line In vitro Zinc phthalocyanine Gold Enhanced uptake, excellent ROS

generation & efficient PDT. [84]

Magnetic field
targeting Physical external magnetic force targeting Human breast MCF-7 cell line In vitro

Meso-tetrakis
(4-hydroxyphenyl)
porphyrin

PEGylated gold SPIONs
Enhanced PS uptake was noted &
after PDT treatment 79% cell death
was reported.

[32]

Magnetic field
targeting Physical external magnetic force targeting SW480 colon carcinoma cells &

athymic mouse model
In vitro &
in vivo

8 2,7,12,18-Tetrame
thyl-3,8-di(1-
propoxyethyl)
-13,17-bis-(3-hydrox
ypropyl)porphyrin
(PHPP)

Magnetic Fe3O4 chitosan
Excellent targeting & uptake,
non-toxicity & high photodynamic
efficacy.

[85]
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8. Conclusions and Perspectives

PDT is unquestionably a highly effective and alternative therapeutic treatment for cancers.
However, conventional PS drug delivery mechanisms have limitations in relation to poor
solubility in physiological environments, adverse pharmacokinetics and poor tumour selectivity [14].
Surface functionalised tumour-targeting moieties NPPS drug delivery systems, as previously discussed
can help overcome these limitations [14]. Biocompatible NPs have been developed to carry PS loads
passively to tumour sites and their surfaces can be further functionalised and modified with targeting
ligand moieties to make smart drug-delivery systems and so further actively augment the selective
accumulation of PS loaded NPs at target tumour sites [4,14]. However, NP PS drug delivery design
parameters need to be carefully considered to include precise surface functionalisation with appropriate
targeting biomolecules (for tumour cells, tissues or TMEs) and PS-loading capacity, in order to eliminate
non-specific PS toxicity in healthy tissues, as well as ensure specific and targeted PS uptake in target
tumours only [3,11,36]. Moreover, once cellular uptake of the active nano drug carrier system has
occurred, the rapid and responsive release of a PS needs to be considered as to ensure maximum ROS
generation in targeted for effective tumour destruction [9,31,36]. Research by Ding et al. 2016 noted that
stimuli-responsive NP carrier systems require further investigation, whereby PS drug biodistribution
in response to a specific stimuli, being either external (variations in temperature, magnetic field,
ultrasound intensity, light or electric pulses) or internal (changes in pH, enzyme concentration or
redox gradients) can assist in controlled PS release from its nanocarrier platform to promote PDT
efficacy [86].

In this review, we have evidenced the tremendous potential of specific receptor based
photosynthetic nanocarrier platform drugs to actively promote the selective absorption of PS drugs in
tumour sites only and so avoid unwanted side effects, as well as allow for the overall enhancement
of PDT treatment for various cancers (Table 2). However, it must be noted that the research findings
reported in Table 2 are in very early stages of in vitro research. Overall, active targeting alters the
natural distribution patterns of a nano drug carrier molecule by directing it to a specific tumour organ,
cell or organelle, whereas passive targeting relies on the natural distribution of a drug in a tumour via
the EPR effect [53]. Either way, both processes within clinical environments rely on blood circulation
and the location of the initial PS drug delivery for enhanced PDT and to date no actively targeted NP
PS drug systems are commercially available [53]. Thus, researchers need to start further exploring
and exploiting functionalised NPPSs for targeted PDT by performing more in vivo studies with more
effective theoretical and mathematical models to allow for pre-clinical development and success during
clinical trials [87,88]. The findings from these studies will allow for more conclusive results to be
obtained in order to determine and further investigate if there are any other unforeseen limitations for
this form of cancer treatment, in order to propel the application of targeted PDT PS drug delivery to
the forefront of oncological interventions in the near future [89].
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