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Abstract: A series of novel benzofuran derivatives containing biaryl moiety were designed and
synthesized by the Suzuki cross-coupling reactions. The reactions, performed in the presence of
K2CO3, EtOH/H2O and Pd(II) complex as catalyst, gave the corresponding products in good to
excellent yields. The methodology allows the facile production of heterobiaryl compounds, a unique
architectural motif that is ubiquitous in medicinal chemistry.

Keywords: heterobiaryl compounds; palladium(II) complex catalyst; Suzuki cross-coupling;
aqueous phase

1. Introduction

2-Arylbenzo[b]furan moiety is a common structural subunit found in natural products [1–3]
and synthetic compounds with important biological activities [4–7]. For example, a representative
complex of the natural 3-deformylated 2-arylbenzo[b]furan is ailanthoidol in (Figure 1, 1), which
was isolated from the chloroform-soluble fraction of the tree of Zanthoxylum ailanthoides, was found
to have a broad range of biological activities such as anticancer [8], immunosuppressive [9–11],
antivirus [12–15], antioxidant [10,11], antifungal [16], and antifeedant activities [17]. Meanwhile,
5-(3-hydroxypropyl-7-methoxy-2-(3′-methoxy-4′-hydroxyphenyl)benzo[b]furan-3-carbaldehyde
(XH-14) (Figure 1, 2), which has been widely used in China for the treatment of coronary heart diseases
such as myocardial infarction and angina pectoris [18], was isolated from the plant Salvia miltorrhiza
Bunge (Chinese name “Danshen”). Jun [19] obtained three XH-14 analogues whose anti-inflammatory
effects were examined in lipopolysaccharide(LPS)-stimulated RAW 264-7 macrophages. The results
showed that three structurally modified derivatives (Figure 1, 3a–3c) inhibited significantly the
production of inflammatory mediator nitric oxide without showing cytotoxicity. Moreover, Nishi
and coworkers synthesized a series of 2-phenylbenzofuran derivatives with both carboxy and 5- or
6-diphenylmethylcarbamoyl groups (Figure 1, 4a–4c), which showed inhibitory activities against both
enzymes and were more active against human type I enzyme than against type II enzyme [20].
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containing biaryl moiety.  
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by the Guo group [29]. Second, the optimal reaction conditions were studied by employing the Suzuki 
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examined the catalytic activity using common palladium salts PdCl2 or Pd(OAc)2 as catalyst in the 

presence of K2CO3 in EtOH/H2O (1:1) at 80 °C, only moderate yields of 55% or 61% were achieved 

(Table 1, entries 1–2), but the reaction proceeded well in 91% yield in the presence of our newly 

developed Pd(II) complex catalyst (10) [30] (Table 1, entry 3). Compared to loading of catalyst 1 

mol%–4 mol%, the yield was obviously enhanced to 97% when 3 mol% Pd(II) complex catalyst was 

used (Table 1, entry 5). The effects of base on the reaction were next examined. 28%, 40%, 53%, 78% 

and 63% yield of the desired product was obtained when using NEt3, NaF, NaHCO3, NaOH and 

Cs2CO3 as a base, respectively (Table 1, entries 7–11). Replacing co-solvent EtOH/H2O (1:1) with H2O, 

EtOH, DMF or DMSO further optimized the reaction condition respectively, giving the product in 

only trace amounts (Table 1, entries 12–15). Further optimizations showed that increasing the reaction 

time did not improve the reaction outcome (Table 1, entries 17–21) and decreasing reaction 
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Motivated by the above-mentioned 2-arylbenzo[b]furan derivatives as valuable building blocks
with a wide range of biological activities, to discover new potentially active agents, in this research,
a series of novel benzofuran derivatives containing biaryl moiety were designed and synthesized.
Biaryls are recurring functional groups in many natural products, pharmaceuticals and bioactive
compounds [21–23]. Palladium-catalyzed cross-coupling of aryl halides with organoboronic acids,
known as the Suzuki cross-coupling reaction, is a versatile and highly utilized reaction for the selective
formation of carbon-carbon bonds, in particular for the synthesis of biaryls [24–28]. This paper
describes the Suzuki reaction applied to the synthesis of novel benzofuran derivatives containing
biaryl moiety.

2. Results and Discussion

The designed novel benzofuran derivatives containing biaryl moiety (9) were prepared
in two steps (Scheme 1). First, 2-(4-bromophenyl)benzofuran (7) was obtained following the
method, Pd(II)/CuI/PPh3-co-catalyzed coupling-cyclization reaction of the commercially available
2-iodophenol (5) with 4-bromo-1-ethynylbenzene (6) in the presence of NEt3 in water at 80 ◦C, reported
by the Guo group [29]. Second, the optimal reaction conditions were studied by employing the
Suzuki cross-coupling of 2-(4-bromophenyl)benzofuran (7) with 4-methoxyphenylboronic acid as
model reaction for the synthesis of the 2-arylbenzo[b]furan derivatives. As can be seen in Table 1,
we first examined the catalytic activity using common palladium salts PdCl2 or Pd(OAc)2 as catalyst
in the presence of K2CO3 in EtOH/H2O (1:1) at 80 ◦C, only moderate yields of 55% or 61% were
achieved (Table 1, entries 1–2), but the reaction proceeded well in 91% yield in the presence of our
newly developed Pd(II) complex catalyst (10) [30] (Table 1, entry 3). Compared to loading of catalyst 1
mol%–4 mol%, the yield was obviously enhanced to 97% when 3 mol% Pd(II) complex catalyst was
used (Table 1, entry 5). The effects of base on the reaction were next examined. 28%, 40%, 53%, 78%
and 63% yield of the desired product was obtained when using NEt3, NaF, NaHCO3, NaOH and
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Cs2CO3 as a base, respectively (Table 1, entries 7–11). Replacing co-solvent EtOH/H2O (1:1) with H2O,
EtOH, DMF or DMSO further optimized the reaction condition respectively, giving the product in only
trace amounts (Table 1, entries 12–15). Further optimizations showed that increasing the reaction time
did not improve the reaction outcome (Table 1, entries 17–21) and decreasing reaction temperature
obtained poor yields (Table 1, entries 16–17).
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8 Pd(II) (10) 3 NaF EtOH + H2O 80 4 40 

9 Pd(II) (10) 3 KHCO3 EtOH + H2O 80 4 53 

10 Pd(II) (10) 3 NaOH EtOH + H2O 80 4 78 
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19 Pd(II) (10) 3 K2CO3 EtOH + H2O 80 2 93 

20 Pd(II) (10) 3 K2CO3 EtOH + H2O 80 3 95 

21 Pd(II) (10) 3 K2CO3 EtOH + H2O 80 5 98 

a Reaction conditions: 0.05 mmol 2-(4-bromophenyl)benzofuran, 0.08 mmol 4-methoxyphenylboronic 

acid, 0.1 mmol base, 6 mL solvent, in air. b Isolated yield. 

Then, under the best conditions, the use of different arylboronic acid for efficient synthesis of 

new 2-arylbenzo[b]furan derivatives was examined. The desired products were obtained in good to 

excellent yields (92%–98%) with substrates that contained electron-withdrawing and donating 

groups (Table 2, entries 1–4). The effect of steric hindrance was also tested with ortho-substituted 

boronic acid showing slightly lower yield (85%) (Table 2, entry 5).  
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Loading of

Catalyst
(mol%)

Base
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(◦C)
Time

(h)
Yield b

(%)

1 PdCl2 2 K2CO3 EtOH + H2O 80 4 55
2 Pd(OAc)2 2 K2CO3 EtOH + H2O 80 4 61
3 Pd(II) (10) 2 K2CO3 EtOH + H2O 80 4 91
4 Pd(II) (10) 1 K2CO3 EtOH + H2O 80 4 62
5 Pd(II) (10) 3 K2CO3 EtOH + H2O 80 4 97
6 Pd(II) (10) 4 K2CO3 EtOH + H2O 80 4 95
7 Pd(II) (10) 3 NEt3 EtOH + H2O 80 4 28
8 Pd(II) (10) 3 NaF EtOH + H2O 80 4 40
9 Pd(II) (10) 3 KHCO3 EtOH + H2O 80 4 53
10 Pd(II) (10) 3 NaOH EtOH + H2O 80 4 78
11 Pd(II) (10) 3 Cs2CO3 EtOH + H2O 80 4 63
12 Pd(II) (10) 3 K2CO3 EtOH 80 4 32
13 Pd(II) (10) 3 K2CO3 H2O 80 4 0
14 Pd(II) (10) 3 K2CO3 DMSO 80 4 0
15 Pd(II) (10) 3 K2CO3 DMF 80 4 trace
16 Pd(II) (10) 3 K2CO3 EtOH + H2O 40 4 13
17 Pd(II) (10) 3 K2CO3 EtOH + H2O 60 4 47
18 Pd(II) (10) 3 K2CO3 EtOH + H2O 80 1 71
19 Pd(II) (10) 3 K2CO3 EtOH + H2O 80 2 93
20 Pd(II) (10) 3 K2CO3 EtOH + H2O 80 3 95
21 Pd(II) (10) 3 K2CO3 EtOH + H2O 80 5 98
a Reaction conditions: 0.05 mmol 2-(4-bromophenyl)benzofuran, 0.08 mmol 4-methoxyphenylboronic acid, 0.1 mmol
base, 6 mL solvent, in air. b Isolated yield.
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Then, under the best conditions, the use of different arylboronic acid for efficient synthesis of
new 2-arylbenzo[b]furan derivatives was examined. The desired products were obtained in good to
excellent yields (92%–98%) with substrates that contained electron-withdrawing and donating groups
(Table 2, entries 1–4). The effect of steric hindrance was also tested with ortho-substituted boronic acid
showing slightly lower yield (85%) (Table 2, entry 5).

Table 2. Synthesis of new 2-arylbenzo[b]furan derivatives a.

Entry Arylboronic Acid (8) Product (9) Yield b (%)

1
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a Reaction conditions: 0.05 mmol 2-(4-bromophenyl)benzofuran, 0.08 mmol arylboronic acid, 0.1 mmol K2CO3,
3% mmol Pd(II) (10), 6 mL EtOH + H2O (1:1), 80 ◦C, 4 h, in air. b Isolated yield.

3. Experimental

3.1. General Information

Commercial reagents employed in the synthesis were analytical grade, obtained from Alfa Aesar
(Ward Hill, MA, USA) and used as received without any prior purification. Silica gel GF254 (Qingdao
Haiyang Chemical Co., Ltd., Qingdao, China) was used for analytical thin-layer chromatography
(TLC) (glass coating 0.25 mm thick) using hexane and dichloromethane as the eluent. 1H-NMR,
13C-NMR spectra were recorded on a BRUKER DRX (400 MHz) spectrometer (Billerica, MA, USA)
using tetramethylsilane as the internal standard and CDCl3 or CD2Cl2 as the solvent. Low-resolution
mass-spectra were recorded on an Agilent gas chromatography mass spectrometry 7890A-5795C
instrument. High-resolution mass spectra (HRMS) were obtained using Agilent 6210 ESI/TOF mass
spectrometer (Santa Clara, CA, USA). Melting points were determined using a Mettler FP5 melting
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point apparatus (Columbus, OH, USA) in open capillaries and were uncorrected. The 1H-NMR,
13C-NMR and HRMS for all the synthesized compounds are available in the supplementary materials.

3.2. General Procedure for Suzuki Coupling

2-(4-Bromophenyl)benzofuran (0.05 mmol, 0.0137 g), palladium(II) (10) (0.0015 mmol, 0.0012 g),
K2CO3 (0.1 mmol, 0.0138 g) and relevant arylboronic acid (0.08 mmol) were dissolved in EtOH +
H2O (v/v = 1:1, 6 mL) and the resulting suspension stirred at 80 ◦C for 4 h. After cooling to
ambient temperature brine (10 mL) was added to the mixture, the aqueous layer was extracted with
dichloromethane (3 × 10 mL). The combined organic layers were dried (Na2SO4) and concentrated, and
the residue was purified by thin layer chromatography to give the 2-arylbenzo[b]furan derivatives 9a–9g.

2-(4′-Methoxybiphenyl-4-yl)benzofuran (9a). White powder m.p. 270–271 ◦C; 1H-NMR (400 MHz, CDCl3):
δ 7.92 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.60–7.51 (m, 4H), 7.27–7.25 (m, 2H), 7.04 (s, 1H), 7.01
(d, J = 8.0 Hz, 2H), 3.86 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ 159.4, 155.8, 154.9, 140.8, 132.9, 129.3,
128.7, 128.0, 126.9, 125.3, 124.2, 122.9, 120.8, 114.3, 111.1, 101.1, 55.3. GC-MS (EI): 300.1 ([M]+). HRMS
(ESI) m/z: calcd for C21H16O2 [M + H]+ 301.1223; found 301.1227.

1-(4′-Benzofuran-2-ylbiphenyl-4-yl)ethanone (9b). White powder m.p. 273–275 ◦C; 1H-NMR (400 MHz,
CD2Cl2): δ 7.97 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 4H), 7.55 (d, J = 8.0 Hz,
1H), 7.47 (d, J = 8.0 Hz, 1H), 7.25–7.15 (m, 2H), 7.05 (s, 1H), 2.53 (s, 3H). 13C-NMR (100 MHz, CD2Cl2):
δ 197.2, 155.3, 155.0, 144.6, 139.7, 136.1, 130.2, 129.1, 128.9, 127.5, 126.9, 125.3, 124.5, 123.0, 120.9, 111.0,
101.9, 26.4. GC-MS (EI): 312.2 ([M]+). HRMS (ESI) m/z: calcd for C22H16O2 [M + H]+ 313.1223; found
313.1219.

2-(4′-Propylbiphenyl-4-yl)benzofuran (9c). Pale yellow solid m.p. 244–246 ◦C; 1H NMR (400 MHz, CDCl3):
δ 7.91 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 10.0 Hz, 2H), 7.53 (dd, J = 9.3, 1.3 Hz,
2H), 7.32–7.19 (m, 4H), 7.03 (d, J = 0.5 Hz, 1H), 2.70–2.56 (m, 2H), 1.77–1.59 (m, 2H), 0.98 (t, J = 7.3 Hz,
3H). 13C NMR (100 MHz, CDCl3): δ 155.80, 154.93, 142.25, 141.21, 137.75, 129.30, 129.08, 128.99, 127.23,
126.78, 125.31, 124.22, 122.94, 120.85, 111.15, 101.26, 37.72, 24.54, 13.88. GC-MS (EI): 312.1 ([M]+). HRMS
(ESI) m/z: calcd for C23H20O [M + H]+ 313.1587; found 313.1593.

2-(3′-Methylbiphenyl-4-yl)benzofuran (9d). Pale yellow solid mp 168–169 ◦C (lit. 162–164 ◦C [7]); 1H-NMR
(400 MHz, CDCl3): δ 7.93 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.54
(d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 12.0 Hz, 1H), 7.30–7.17 (m, 3H), 7.05 (s, 1H), 2.43
(s, 3H). 13C-NMR (100 MHz, CDCl3): δ 155.7, 154.9, 141.4, 140.4, 138.4, 131.9, 129.3, 128.7, 128.3, 127.7,
127.4, 125.3, 124.2, 124.1, 122.9, 120.8, 111.1, 101.3, 21.5. GC-MS (EI): 284.1 ([M]+).

2-(2′-Methylbiphenyl-4-yl)benzofuran (9e). Pale yellow solid m.p. 80–81 ◦C; 1H-NMR (400 MHz, CDCl3):
δ 7.84 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H),
7.23–7.14 (m, 6H), 6.97 (s, 1H), 2.24 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ 154.8, 153.9, 141.2, 140.2,
134.3, 130.9, 129.4, 128.6, 128.2, 127.9, 126.4, 124.8, 123.6, 123.2, 121.9, 119.8, 110.1, 100.2, 19.4. GC-MS
(EI): 284.1 ([M]+). HRMS (ESI) m/z: calcd for C21H16O [M + H]+ 285.1274; found 285.1279.

2-(3′,4′-Difluorobiphenyl-4-yl)benzofuran (9f). White powder m.p. 195–197 ◦C; 1H-NMR (400 MHz,
CDCl3): δ 7.93 (d, J = 8.5 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H),
7.43 (ddd, J = 11.5, 7.5, 2.2 Hz, 1H), 7.38–7.33 (m, 1H), 7.33–7.28 (m, 1H), 7.28–7.19 (m, 2H), 7.07 (s, 1H).
13C-NMR (100 MHz, CDCl3): δ 155.27 (s), 154.96 (s), 150.58 (dd, J = 248.0, 12.8 Hz), 150.07 (dd, J = 248.8,
12.8 Hz), 139.01 (s), 137.54 (dd, J = 5.9, 3.9 Hz), 129.94 (s), 129.15 (s), 127.27 (s), 125.44 (s), 124.49 (s),
123.05 (s), 122.87 (dd, J = 6.2, 3.5 Hz), 120.97 (s), 117.64 (d, J = 17.2 Hz), 115.84 (d, J = 17.7 Hz), 111.20
(s), 101.78 (s). GC-MS (EI): 306.1 ([M]+). HRMS (ESI) m/z: calcd for C20H12F2O [M + Na]+ 329.0748;
found 329.0751.

2-(3′,5′-Difluorobiphenyl-4-yl)benzofuran (9g). White powder m.p. 163–165 ◦C; 1H-NMR (400 MHz,
CDCl3): δ 7.93 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 8.6 Hz, 2H), 7.59 (dd, J = 8.0, 0.7 Hz, 1H), 7.53 (br d,
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J = 8.0 Hz, 1H), 7.35–7.27 (m, 1H), 7.27–7.21 (m, 1H), 7.19–7.09 (m, 2H), 7.07 (s, 1H), 6.80 (tt, J = 8.8,
2.3 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ 163.38 (dd, J = 248.2, 13.1 Hz), 155.15 (s), 155.01 (s), 143.72
(t, J = 9.5 Hz), 138.69 (t, J = 2.5 Hz), 130.55 (s), 129.13 (s), 127.33 (s), 125.45 (s), 124.58 (s), 123.08 (s),
121.02 (s), 111.23 (s), 109.96–109.52 (m), 102.75 (t, J = 25.4 Hz), 102.02 (s). GC-MS (EI): 306.1 ([M]+).
HRMS (ESI) m/z: calcd for C20H12F2O [M + H]+ 307.0929; found 307.0934.

4. Conclusions

In summary, a series of novel benzofuran derivatives containing biaryl moiety were designed
and synthesized. This work establishes that 2-(4-bromophenyl)benzofuran are suitable substrates for
Suzuki cross-coupling reactions with relevant arylboronic acids. We found that in the presence of
Pd(II) (10) as palladium catalyst, the Suzuki reactions proceed in relatively good yields in aqueous
medium. This could provide a promising access to new heterobiaryl compounds, valuable building
blocks for use in medicinal chemistry.

Supplementary Materials: The 1H-NMR, 13C-NMR and HRMS for all the synthesized compounds are
available online.
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