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Abstract: Accumulated studies have shown that environmental factors (EFs) can regulate the
expression of microRNA (miRNA) which is closely associated with several diseases. Therefore,
identifying miRNA-EF associations can facilitate the study of diseases. Recently, several
computational methods have been proposed to explore miRNA-EF interactions. In this paper, a novel
computational method, MEI-BRWMLL, is proposed to uncover the relationship between miRNA
and EF. The similarities of miRNA-miRNA are calculated by using miRNA sequence, miRNA-EF
interaction, and the similarities of EF-EF are calculated based on the anatomical therapeutic chemical
information, chemical structure and miRNA-EF interaction. The similarity network fusion is used
to fuse the similarity between miRNA and the similarity between EF, respectively. Further, the
multiple-label learning and bi-random walk are employed to identify the association between miRNA
and EF. The experimental results show that our method outperforms the state-of-the-art algorithms.

Keywords: microRNA; environmental factor; structure information; similarity network

1. Introduction

There is increasing evidence demonstrating that phenotypes are associated with genetic factors
(GFs) and environmental factors (EFs) [1,2]. Environmental factors, including stress, alcohol, pollution,
radiation and drugs play important roles in many diseases [3]. The perturbation of GF-EF interactions
may result in some diseases [4,5]. Thus, identifying the potential associations between GFs and EFs is
useful for biologists to understand the molecular bases of diseases.

MiRNA is a kind of typical GF with the length from 18 nt to 25 nt. It has been proved that miRNA
can regulate the expression of genes by binding to the 3′ untranslated region (UTR) or 5′ untranslated
region of mRNA in organisms [6,7]. In addition, accumulated evidence has demonstrated that miRNA
normally plays essential roles in many important biological processes, including cell growth, cell cycle
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control, cell differentiation, cell apoptosis, and so on [8]. Therefore, the functional abnormality of
miRNA can cause a broad range of diseases. For example, miR-150 can regulate the expression of
the genes GAB1 and FOXP1 and impact the B and T cell activity in chronic lymphocytic leukemia [9].
Recently, a growing number of studies have indicated that miRNAs interact with diverse EFs [10–12].
The perturbation of miRNA-EF interactions is also related to a number of human diseases. For example,
gemcitabine can down-regulate the expression of hsa-let-7b in pancreatic cancer cells [13,14]. Therefore,
identifying potential miRNA-EF interactions contributes to the study of diseases. In addition, with the
development of biotechnology, several databases such as miRbase [15], miRecord [16], dbDEMC [17]
and miREnvironment [18] have been developed to store miRNA and EF related data. Those databases
provide reliable data resources for predicting miRNA-EF interactions.

In recent years, many computational methods have been proposed to predict miRNA-EF
interactions [19]. Chen et al. [20] proposed a method called miREFScan based on Laplacian regularized
least squares to predict the interactions between miRNAs and EFs. This method is based on the
assumption that functionally similar miRNAs tend to be related with similar EFs [21]. Chen et al. [22]
presented a computational approach (miREFRWR) to infer miRNA-EF interactions based on a random
walk method. Jiang et al. [23] constructed a small molecule-miRNA interaction network in 23 cancers
and then identified the miRNA-EF associations based on hypergeometric tests. Qiu et al. [24] revealed
several important features of miRNA and EF by analyzing miRNA-EF interaction network and
proposed a model based on Fisher tests to infer potential miRNA-EF interactions. Li et al. [25]
presented a computational framework based on an EF structure and disease similarity method to
predict the interaction. Although the above methods have achieve great successes, some of them use
low quality datasets which may result in poor performance. For example, some approaches measure
miRNA similarity and EF similarity by using network-based data only, which may result in a bias for
ignoring the biological characteristics of miRNA and EF. Most cannot effectively integrate different
biological data resources. Further, some methods are unsuitable for predicting interaction of new
miRNA without any known related EFs or new EF without any known related miRNAs.

In this paper, we assume that functionally similar miRNAs tend to be related with similar
EFs. Based on this assumption, a computational framework is developed to predict the interactions
between miRNAs and EFs. Unlike traditional methods, we use different data sources to measure
miRNA-miRNA similarity and EF-EF similarity. The former is calculated by using the miRNA
sequences and miRNA-EF interaction information, and the EF-EF similarity is computed by
the anatomical therapeutic chemical, chemical structure and miRNA-EF interaction information.
In particular, the similarity network fusion is applied to integrate these two similarities. Further, the
multiple-label learning and bi-random walk are employed to identify the association between miRNA
and EF. The experimental results show that our method is effective in inferring miRNA-environmental
factor interactions.

2. Datasets and Methods

2.1. Datasets

We downloaded the known miRNA-EF interaction data from the miREnvironment database
(http://www.cuilab.cn/miren) [18], which includes 3857 entries from 24 species. Only the human-
related data were used for the following experiments. We manually checked the data and removed
the interactions which do not correspond to human diseases. After pruning the invalid information,
224 miRNAs, 124 EFs and 729 miRNA-EF interactions were extracted as the gold dataset. A matrix I
is constructed to represent miRNA-EF interaction. The value 1 is assigned to I (i, j) if the interaction
between miRNA i and EF j can be found, otherwise 0.

miRNA sequence information is obtained from miRbase (version 22) [15], which contains more
than 2400 human sequences. After mapping miRNA of the gold dataset to miRbase, 224 miRNA
sequences were finally obtained.

http://www.cuilab.cn/miren
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We download the chemical structure and anatomical therapeutic chemical of drugs from KEGG
database (in 2016) [26]. There are 81 drugs with chemical structure and 57 drugs with anatomical
therapeutic chemical, respectively.

2.2. Measuring miRNA-miRNA Similarity and EF-EF Similarity

2.2.1. miRNA-miRNA Similarity

Based on assumption that miRNAs with similar function are tend to relate with similar EFs, the
interaction profile similarity is utilized to measure the similarity of pairwise miRNAs [27]. The miRNA
interaction profile similarity is defined as:

Wp
m
(
mi, mj

)
= e(−γm‖IP(mi)−IP(mj)‖2) (1)

γm =
1

1
n ∑n

i=1 IP(mi)
(2)

where mi and mj represent miRNAs i and j. n represents the number of miRNAs. IP(mi) represents
the interactions between miRNA i and all EFs in the known miRNA-EF interaction data, i. e.
the i-th row of matrix I. The parameter γm is set to control the kernel bandwidth. The sequence
information has been widely used to find miRNA-disease association and feature patterns of miRNA
regulation inference [28]. The Emboss-needle tool is utilized to compute sequence similarity of pairwise
miRNAs [29].

2.2.2. EF-EF Similarity

The chemical structure is an important piece of information for drug design and has been applied
to measure drug similarity [20,30]. SIMCOMP [31] is used to calculate the similarity of pairwise
drugs based on common substructures. In addition, the Anatomical Therapeutic Chemical (ATC) code
obtained from the ATC Classification System [26] assists in calculating the pairwise similarity of drugs.

Based on the assumption that EFs with similar function are tend to relate with similar miRNA,
the interaction profile similarity is employed to measure the similarity between EFs [27]. The EF
interaction profile similarity is defined as:

Wp
e
(
ei, ej

)
= e(−γe‖IP(ei)−IP(ej)‖2) (3)

γe =
1

1
m ∑m

i=1 IP(ei)
(4)

where ei and ej represent EFs i and j. m denotes the number of EFs. IP(ei) represents the interaction
between EF i and all miRNAs in the known miRNA-EF interaction data, i. e. the i-th column of matrix
I. The parameter γe is to control the kernel bandwidth.

2.3. Similarity Network Fusion

The similarity network fusion (SNF) is an approach for multiple omics fusion, which has been
widely used for cancer data analysis [32,33]. It is able to capture the global and local features of
different data. The SNF for miRNA is defined as follows:

Fm =
Fs

m + Fp
m

2
(5)

Fp
m(t) = Lp

m × Gs
m(t− 1)×

(
Lp

m

)T
(6)

Fs
m(t) = Ls

m × Gp
m(t− 1)× (Ls

m)
T (7)
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Ls
m(i, j) =

{ Ws
m(i,j)

∑k∈Ni
Ws

m(i,k) , j ∈ Ni

0, otherwise
(8)

Lp
m(i, j) =


Wp

m(i,j)
∑k∈Ni

Wp
m(i,k)

, j ∈ Ni

0, otherwise
(9)

Gs
m(i, j) =

{ Ws
m(i,j)

2 ∑k 6=i Ws
m(i,k) , i 6= j

1
2 , i = j

(10)

Gp
m(i, j) =


Wp

m(i,j)
2 ∑k 6=i Wp

m(i,k)
, i 6= j

1
2 , i = j

(11)

where Ws
m and Wp

m denote the miRNA sequence similarity matrix and miRNA interaction profile
similarity matrix, respectively. Gs

m, Ls
m, Gp

m and Lp
m denote the global matrix of miRNA sequence

similarity, local matrix of miRNA sequence similarity, global matrix of miRNA interaction profile
similarity, local matrix of miRNA interaction profile similarity, respectively. The Ni represents the
K-nearest neighbors of miRNA i. Fs

m and Fp
m denote the fusional matrix of miRNA sequence similarity

and the fusional matrix of miRNA interaction profile similarity, respectively. Fm denotes the final
fusional matrix of miRNA. The final fusional matrix of EF Fe can be obtained in term of similar manner.

2.4. Inferring miRNA-EF Interaction by Using bi-Random Walk and Multi-Label Learning (MEI-BRWMLL)

Considering the features of bi-random walk and multi-label learning, we utilize a bi-random walk
to infer interactions of known miRNA/EF and multi-label learning is used to infer interactions of new
miRNA/EF. The reason for selecting these two methods is that the bi-random walk achieves good
results in potential interaction prediction between known entities while multi-label learning is robust
in predicting interactions between new entities.

2.4.1. Bi-Random Walk for Predicting Potential Interactions of Known miRNAs and EFs

Based on assumption that similar miRNAs tend to relate with similar EF, the bi-random walk is
employed to predict potential miRNA-EF interaction.

Firstly, the miRNA similarity matrix and EF similarity matrix are normalized by using Laplace
regularization, respectively. It is defined as:

Nm = Dm− 1
2 × Fm × Dm− 1

2 (12)

Ne = De− 1
2 × Fe × De− 1

2 (13)

where Nm and Ne represent normalized matrix of fusional miRNA similarity and EF similarity,
respectively. Dm and De represent the diagonal matrix of Fm and Fe, respectively. In addition,
the miRNA-EF interaction matrix I is normalized as follows:

N I(i, j) =
I(i, j)

∑i ∑j I(i, j)
(14)

Then, we use bi-random walk to predict potential miRNA-EF interaction by walking on miRNA
similarity network and EF similarity network. The iterative process of bi-random walk is defined
as follows:

Left walk in miRNA similarity network:

RL(t) = α× Nm × RL(t− 1) + (1− α)× N I (15)
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Right walk in EF similarity network:

RR(t) = α× RR(t− 1)× Ne + (1− α)× N I (16)

The final predicted score is defined as follows:

R(t) =
RL(t) + RR(t)

2
(17)

where RL(t) and RR(t) denote the predicted score matrix of walk on miRNA similarity network and
EF similarity network at step t, respectively. R(t) denotes the final score matrix at step t. In addition,
the miRNA similarity network and EF similarity network contain different topological and structural
features, and the optimal iteration steps of the random walk on the two networks should be different.
Therefore, we set two parameters l, r to control the maximal random walk steps on two networks,
respectively. The iterative of bi-random walk will stop when the number of iteration t exceeds the
maximum of parameters l and r. The parameters can accelerate the iteration termination. In here, the l
and r are set as 4 and 2, respectively.

2.4.2. Multi-Label Learning for Predicting Interactions of New miRNAs and EFs

We employ multi-label learning to infer the interactions of new miRNA/EF, which predicts
the label of unseen instances based on a maximum a posteriori rule [34,35]. For convenience, we
define some notations. miRNAs and EFs are assigned two domains DM = {m1,m2, . . . mx} and
DE = {e1,e2, . . . ey}, respectively. x and y represent the numbers of miRNAs and EFs, respectively.
The interactions between miRNAs and EFs are represented by matrix Ix×y. Pij denotes the interaction
probability of miRNA mi and EF ej. Pij is set to 1 if I(i,j) = 1; otherwise, 0. For a new miRNA mc,
the probability P(mc,ej) between mc and EF ej demonstrates the confidence that miRNA mc is linked
to EF ej. Based on the similarity of miRNA-miRNA, we select the k nearest neighbors of miRNA mc.
Then, the probability P(mc,ej) is calculated as follows:

P
(
mc, ej

)
=

P
(

Lj
1

)
P
(

Ej
s

∣∣∣Lj
1

)
P
(

Lj
1

)
P
(

Ej
s

∣∣∣Lj
1

)
+ P

(
Lj

0

)
P
(

Ej
s

∣∣∣Lj
0

) (18)

P
(

Lj
1

)
=

1 + ∑x
i=1 I(i, j)

2 + x
(19)

P
(

Lj
0

)
= 1− P

(
Lj

1

)
(20)

P
(

Ej
s

∣∣∣Lj
1

)
=

1 + e(s)
k + 1 + ∑k

i=0 e(i)
(21)

P
(

Ej
s

∣∣∣Lj
0

)
=

1 + e′(s)
k + 1 + ∑k

i=0 e′(i)
(22)

where k represents the number of nearest neighbors. e(s) represents the number of miRNA related to EF
ej whose KNNs contain exactly s miRNAs related EF ej. e’(s) counts the number of miRNA unrelated
to EF ej whose KNNs contain exactly s miRNAs related EF ej.

The flowchart for miRNA-EF interaction prediction is shown in Figure 1. Firstly, the similarities
of miRNA and EF are calculated based on different similarity measures, respectively. Secondly,
the similarity matrices of miRNA and EF are constructed in terms of similarity scores calculated
previously. Further, the similarity network fusion is employed to integrating different similarity
matrices of miRNA and EF, respectively. Finally, the bi-random walk and multi-label learning are used
to infer potential miRNA-EF interactions.
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Figure 1. The flowchart of miRNA-EF interaction prediction. (A) Computing similarities of
miRNA-miRNA and EF-EF, respectively. (B) Establishing similarity matrices of miRNA and EF,
respectively. (C) Integrating similarity matrices of miRNA-miRNA and EF-EF by using similarity
network fusion method, respectively. (D) Predicting miRNA-EF interactions by using multi-label
learning and bi-random walk. (E) The final predicted results.

3. Experiments

3.1. Analyzing the miRNA-EF Interaction Network

There are 729 interactions between 224 miRNAs and 124 EFs in the whole miRNA-EF interaction
network. The degree of EFs is shown in Figure 2. It is observed that the degree of most EFs is equal to
1. It means that most of EFs only have one related miRNA and a great amount of interactions are still
unknown. The EF with the max degree is gemcitabine which has 56 related miRNAs.
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Figure 2. The degree of EFs.

In order to analyze the cluster feature of miRNA-EF interaction network, the ClusterViz [36]
program is used to obtain clusters from the network. In Figure 3, three modules are obtained from
the miRNA-EF interaction network. This demonstrates that EFs can regulate a group of functionally
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similar miRNAs rather than a single miRNA. Take the module (C) for example, it demonstrates that
four EFs (DDT, E2, BPA and ionizing radiation) have associations with the let-7 family.
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Figure 3. Three modules are obtained from miRNA-EF interaction network by utilizing ClusterViz.
(A) The EFs (anabolic stimulus and exercise) are related with hsa-mir-133a-2, hsa-mir-206 and
hsa-mir-1-1. (B) The EFs (5-Azacytidine and 4-phenylbutyrate) are associated with hsa-mir-431 and
hsa-mir-432. (C) The EFs (DDT, E2, BPA and ionizing radiation) have associations with the let-7 family.

3.2. Experiment

To demonstrate the effectiveness of our method, a comparison between our method and
three state-of-the-art methods (miREFScan [20], miREFRWR [22] and KBMF [6]) is conducted.
The parameters of these methods are specified as the default value. The 10-fold cross validation
is utilized to evaluate the performance of different methods. The known miRNA-EF interactions are
divided into 10 subsets. One subset is used as test set and the remaining nine subsets are treated as
training set. Then, the true positive rates (TPR) and false positive rates (FPR) are calculated by using
different classification thresholds. The receiver operating characteristics (ROC) curve is drawn based
on the value of TPR and FPR and the area under the ROC curve (AUC) is calculated to measure the
performance. The higher of AUC value, the better performance is. The experimental result is shown in
Figure 4. It can be found that our method achieves an AUC of 0.8208 which is better than other two
methods (miREFRWR: 0.7905, miREFScan: 0.7963 and KBMF: 0.677).
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3.3. Case Study

3,3′-Diindolylmethane (DIM) is a kind of compound widely found in Brassica vegetables [37].
An increasing number of studies have shown that DIM has a close relationship with many cancers.
For example, it has been proved that the expression of HDAC1 can be inhibited by DIM in colon cancer
tissue [38]. Table 1 shows the top 15 potential miRNAs related with DIM which are identified by using
MEI-BRWMLL nine miRNAs are confirmed to connect to DIM by the recent literature. It has been proved
that the expression of hsa-mir-146a (ranked at first) is induced by DIM in pancreatic cancer cells [39].
In addition, the DIM has been certified to up-regulate miRNA-16 (ranked second) in CD4+ T cells [40].
The literature shows DIM has relationship with hsa-mir-181d, hsa-mir-125b and hsa-mir-34a (ranked at 6th,
8th and 12th), respectively [41,42]. DIM can inhibit the expression of these three miRNAs in SEB-mediated
liver injury. The hsa-mir-200b (ranked at 9th) is upregulated by DIM in SKBR3 breast cancer cells [43].
It has been proved that the expression of hsa-mir-221 (ranked at 11th) can be downregulated in pancreatic
cancer [44]. The DIM can inhibit the expression of EZH2 by up-regulating hsa-let-7e (ranked at 13th) in
castration-resistant prostate cancer [45]. The literature [43] shows that the expression of hsa-mir-200c is
up-regulated by DIM and herceptin in breast cancer. In addition, it can be found that several miRNAs are
identified to be related with DIM. However, the functions of these miRNAs are still unknown. This requires
biologists to validate them by using biological experiments.

Table 1. The top 15 potential miRNAs related to 3,3′-diindolylmethane predicted by MEI-BRWMLL.

Rank miRNA Evidence

1 hsa-mir-146 a PMID: 20124483
2 hsa-mir-16 PMID: 24899890
3 hsa-mir-24 Unknown
4 hsa-mir-155 Unknown
5 hsa-mir-223 Unknown
6 hsa-mir-181 d PMID: 25706292
7 hsa-mir-181 b Unknown
8 hsa-mir-125 b PMID: 25706292
9 hsa-mir-200 b PMID: 23372748
10 hsa-mir-126 Unknown
11 hsa-mir-221 PMID: 24224124
12 hsa-mir-34 a PMID: 25706292
13 hsa-let-7 e PMID: 22442719
14 hsa-mir-200 c PMID:23372748
15 hsa-mir-222 Unknown
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4. Conclusions

Understanding the complex pathogenesis of diseases is still a significant challenge in disease
research [46,47]. Increasing studies have demonstrated that diseases have close relationship with GFs
and EFs [48,49]. miRNAs are a group of important GFs which have been proved to play critical roles
in many diseases [50,51]. Therefore, identifying miRNA-EF interactions is helpful for elucidating the
pathogenesis of diseases. In this paper, a computational framework to predict interactions between
miRNAs and EFs is proposed. Multiple biological data are used to measure the pairwise similarity of
miRNA-miRNA and EF-EF, respectively. Then, the similarities of miRNA-miRNA and EF-EF are fused
by using SNF, respectively. Further, the bi-random walk and multiple label learning are utilized to infer
miRNA-EF interactions. The experimental results show that this method is effective for miRNA-EF
interaction identification.
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