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Abstract: Transition-metal-catalyzed amide-bond formation from alcohols and amines is
an atom-economic and eco-friendly route. Herein, we identified a highly active in situ N-heterocyclic
carbene (NHC)/ruthenium (Ru) catalytic system for this amide synthesis. Various substrates,
including sterically hindered ones, could be directly transformed into the corresponding amides
with the catalyst loading as low as 0.25 mol.%. In this system, we replaced the p-cymene ligand of
the Ru source with a relatively labile cyclooctadiene (cod) ligand so as to more efficiently obtain
the corresponding poly-carbene Ru species. Expectedly, the weaker cod ligand could be more
easily substituted with multiple mono-NHC ligands. Further high-resolution mass spectrometry
(HRMS) analyses revealed that two tetra-carbene complexes were probably generated from the in
situ catalytic system.

Keywords: ruthenium (Ru); N-heterocyclic carbenes (NHCs); homogeneous catalysis; in situ; amide
bonds; synthesis

1. Introduction

Amides are a series of fundamental functional structures in nature and biological systems, as well
as crucial building blocks for organic synthesis [1–6]. As of late, numerous synthetic methods were
reported for the construction of amide bonds. However, they generally suffer from the usage of
various stoichiometric additives and the production of unfavorable equimolar byproducts [7–14].
Therefore, green and eco-friendly strategies are highly required for amide synthesis [15]. Recently,
a methodology employing transition-metal-based catalytic systems for direct amide synthesis from
alcohols and amines was proven to be far more atom-economic and environmentally friendly as the
only byproduct is hydrogen [16–22]. Throughout this research, ruthenium (Ru) was most extensively
studied [23]. Initially, the Murahashi [24] and Milstein [25] groups pioneered Ru-catalyzed amide
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synthesis in intramolecular and intermolecular manners, respectively. Notably, the Milstein catalyst,
a Ru complex bearing a PNN-type pincer ligand, was highly active for this reaction. With a catalyst
loading of 0.1 mol.%, various amides could be synthesized from alcohols and amines [25]. Later,
great progress was achieved by the Milstein [26–28], Madsen [29–31], Williams [32,33], Hong [34–43],
Crabtree [44,45], Albrecht [46], Guan [47,48], Glorius [49], Möller [50,51], Bera [52], Huynh [53],
Viswanathamurthi [54–56], Mashima [57], Verpoort [58,59], and Kundu [60] groups. In particular,
Ru combined with N-heterocyclic carbenes (NHCs) attracted more and more interest due to the
flexible tunability of the electronic and steric properties of NHCs, which may easily access the optimal
structures of the corresponding NHC/Ru complexes [61–63]. Accordingly, a multitude of efficient
NHC/Ru catalytic systems were discovered for this reaction. Furthermore, considering the merits of
the in situ catalytic systems, such as easy operation and convenient investigation of electronically and
sterically distinct NHCs, a number of versatile and potent in situ NHC/Ru catalytic systems recently
emerged. However, satisfactory yields could only be attained by these reported systems if relatively
high Ru loadings of 2.0–5.0 mol.% were employed [29,34,36,37,49]. Therefore, the development of
more efficient in situ NHC/Ru catalytic systems which can accomplish the formation of amide linkage
are urgently required.

In our previous work, the development of various in situ generated (p-cymene)/Ru catalytic
systems, which contain benzimidazole-based NHC precursors bearing different electronic and steric
properties, was accomplished [58]. Further experiments revealed that two mono-NHC/Ru complexes
were observed as major species and two poly-carbene complexes were detected as only minor species
(as depicted in Figure 1a) [59]. Herein, we envisioned that replacing the p-cymene ligand of the Ru
center with a relatively labile cyclooctadiene (cod) ligand could possibly give rise to poly-carbene
complexes as a major species (as shown in Figure 1b). Expectedly, the weaker cod ligand could be
more easily substituted with multiple mono-NHC ligands. Based on this, an efficient in situ NHC/Ru
catalytic system was developed through extensive screening of various conditions. Notably, this system
demonstrated excellent catalytic activity for amide synthesis with the applied catalyst loading as low
as 0.25 mol.%. Various amides, including sterically congested ones, were directly synthesized from
alcohols and amines in moderate to excellent yields. Furthermore, high-resolution mass spectrometry
(HRMS) analyses suggested several Ru species bearing multiple NHC ligands as major species, which
was in accordance with our prospection.
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Figure 1. The design strategy of this work.

2. Results and Discussion

The reaction of benzyl alcohol (1a) and benzylamine (2a) was selected as a model reaction for the
optimization of the reaction conditions. Based on our previous work [59], 0.5 mol.% of [RuCl2(cod)]n,
2.00 mol.% of an NHC precursor, 3.50 mol.% of NaH, 0.5 h of catalyst generation time, and 16 h
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of reaction time were originally applied (as listed in Table 1). In the beginning, NHC precursors
L1–L6 with different backbone and wingtip substituents were prepared (entries 1–6, Table 1). The first
and foremost, 62% of amide 3a and 15% of imine 4a, were obtained with 18% of 1a remaining if L1
was used (entry 1). Electron-deficient precursor L2 gave rise to lower amide content in the product
distribution, demonstrating its disadvantage for amide formation (entry 2 vs. entry 1). In the case
of an electron-rich NHC precursor (L3), a similar result was obtained compared with L1 (entry 3 vs.
entry 1). Moreover, the substituents on the N-terminus of the NHC precursors were adjusted (entries 1,
4–6). With retaining Me as the substituent for one N-terminus, different groups including Et, nPr,
and iPr were introduced for the other terminus. The result was indicative that Et was the optimized
group for this reaction (entry 4 vs. entries 1, 5, and 6). After establishing the ideal NHC precursor (L4),
we continued the optimization by screening other reaction conditions. It was found that the catalyst
generation time was crucial for the catalysis (entries 4, 7–11); 57% of the amide product could be
detected if every substance was added simultaneously (entry 5). As we elongated the period for the in
situ catalyst generation from 0 h to 2.0 h, the yields of 3a gradually increased (entries 4, 7–10). A further
increment of the time led to a similar yield (entry 11 vs. entry 10). Therefore, the ideal duration for the
catalyst generation was finalized as 2 h. Next, the ratio of [Ru]: L4:NaH was varied (entries 12–17). It is
worth emphasizing that the amount of both L4 and NaH changed so as to ascertain three additional
equivalents of NaH to activate [RuCl2(cod)]n for all cases. Without L4, no amide was formed (entry
12). As the ratio increased from 1:0:3 to 1:5:8, gradually higher yields of 3a were observed (entries 10,
12–16). However, a higher ratio prompted a reduced yield of 3a (entry 17 vs. entry 16). Thus, the ratio
of 1:5:8 was recognized as the best one (entry 16), and further increasing the reaction time from 16 h to
36 h produced 3a in 93% yield (entry 18).

In order to identify a more active catalytic system, a reduced Ru loading of 0.25 mol.% was
attempted (as listed in Table 2). At the outset, 65% of 3a was afforded if the loading of the
above-optimized catalytic system was directly reduced to 0.25 mol.% (entry 1). In addition, different
bases including potassium bis(trimethylsilyl)amide (KHMDS), KOtBu, and Cs2CO3 were exploited
instead of NaH (entries 2–4). Interestingly, compared with NaH, the milder Cs2CO3 led to an increased
yield of 3a (entry 4 vs. entry 1). It was also noticed that the volume of toluene was crucial for the
reaction (entries 4–8). Either a more concentrated or diluted solution triggered a lower amide/imine
selectivity (entry 5–8 vs. entry 4). Furthermore, the adjustment of the base amounts influenced the
reaction (entries 4, 9–12), and 1.75 mol.% of Cs2CO3 was found to be optimal for the selective amide
formation (entry 10). Therefore, the optimized reaction conditions were identified as 1 (5.00 mmol),
2 (5.50 mmol), [RuCl2(cod)]n (0.0125 mmol), L4 (0.0625 mmol), Cs2CO3 (0.075 mmol), toluene (1.50 mL),
reflux, and 36 h unless otherwise noted.

With the optimized reaction conditions at hand, the substrate scope and limitations of this strategy
were further investigated (as depicted in Figure 2). For the sterically non-hindered substrates (1a–1e),
the corresponding amides could be obtained in good to excellent yields. If a secondary amine (1f) was
employed, tertiary amide 3f was also given in 80% yield with 0.5 mol.% of [Ru]. Expectedly, lactam
3g was efficiently afforded from amino alcohol 1f in an intramolecular pattern. On the other hand,
the reactions of benzyl alcohol with substituted benzylamines were evaluated. It seemed that these
substituents had no obvious influence on the reactivity, and amides 3h–3k were synthesized in 75–85%
yields. In the case of coupling benzylamine with various benzyl alcohols, a substituent at either the
para or meta position resulted in good yields of amides 3l–3n. However, an ortho group gave amide
3o in a moderate yield. Apparently, aromatic amines were less reactive, and aniline (2p) produced
amide 3p in only 25% yield. To our delight, this newly developed catalytic system was not as sensitive
to steric bulks as our previous systems [58,59]. With an Ru loading of 0.5 mol.%, several sterically
hindered substrates could be efficiently transformed into amides 3q–3t.



Molecules 2018, 23, 2413 4 of 10

Table 1. Optimization of reaction conditions with a catalyst loading of 0.5 mol.% a.
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10 L4 2.00 3.50 2.0 83 4 5
11 L4 2.00 3.50 2.5 82 4 6
12 L4 0.00 1.50 2.0 0 19 76
13 L4 0.50 2.00 2.0 37 10 51
14 L4 1.00 2.50 2.0 60 11 28
15 L4 1.50 3.00 2.0 75 7 16
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18 c L4 2.50 4.00 2.0 93 5 0

a 1a (2.50 mmol), 2a (2.75 mmol), [RuCl2(cod)]n (0.50 mol.%), L (x mol.%), NaH (y mol.%), toluene (1.25 mL), 120 ◦C,
n h of catalyst generation time, and 16 h of reaction time; b NMR yields (average of two consistent runs) using
1,3,5-trimethoxybenzene as an internal standard; c 36 h of reaction time.

Concerning the in situ catalytic systems, it is crucial to explore the possible structures of the
generated Ru species. As a result, HRMS analyses were performed to clarify this matter (as shown in
Figure 3). In accordance with our speculation, no mono-carbene complexes were detected. Instead, two
poly-carbene Ru species were observed from the spectrum. [Ru]-1 (corresponding to an isotopic peak
at m/z = 812.24209), consistent with an Ru species comprising four-fold NHC ligands, was observed
as a major species. Furthermore, another tetra-carbene Ru species, assigned as [Ru]-2 with the isotopic
peak at m/z = 793.26709, was also found as a minor species. Presumably, during exposure to air and/or
the HRMS measurements, the Ru centers in [Ru]-1 and [Ru]-2 were oxidized to +3 and +4, respectively.
Unfortunately, attempts to isolate these tetra-carbene complexes were unsuccessful, probably due to
the complexity of the in situ catalyst generation. Therefore, it was still unclear whether the high activity
of the current catalytic system was attributed to the observed tetra-carbene Ru species or other species.
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Figure 3. The high-resolution mass spectrometry (HRMS) analyses for the identification of the possible
Ru species.

3. Experimental

3.1. General Considerations

All reactions were carried out using standard Schlenk techniques or in an argon-filled glove box
unless otherwise mentioned. All the substrates and solvents were obtained from commercial suppliers
and used as received without further purification. 1H-NMR spectra were recorded on a Bruker Avance
500 spectrometer (Billerica, MA, USA) in CDCl3 or DMSO-d6 with TMS as the internal reference, and
13C-NMR spectra were recorded in CDCl3 or DMSO-d6 on a Bruker Avance 500 (126 MHz) spectrometer.
The following abbreviations were used to designate multiplicities: s = singlet, brs = broad singlet,
d = doublet, t = triplet, dd = doublet of doublets, dq = doublet of quartets, td = triplet of doublets,
ddd = doublet of doublets of doublets, and m = multiplet. Melting points were taken on a Buchi
M-560 melting point apparatus (Flawil, Switzerland) and were uncorrected. HRMS analyses were
done with a Bruker Daltonics microTOF-QII instrument (Billerica, MA, USA). NHC precursors L1–L6
were prepared according to a previous publication [58,59], and all the amide products were identified
by spectral comparison with the literature data [58,59]. 1H-NMR, 13C-NMR data and original spectra
of amides 3a–3t could be found in the Supplementary Materials.

3.2. General Procedure for the Amide Synthesis

Inside an argon-filled glove box, [Ru(cod)Cl2]n (3.5 mg, 0.0125 mmol), L4 (18.0 mg, 0.0625 mmol),
Cs2CO3 (28.6 mg, 0.0875 mmol), and dry toluene (1.50 mL) were added to an oven-dried 25-mL
Schlenk flask. The tube was taken out of the glove box and heated to reflux under argon for 2 h.
Then, an alcohol (5.00 mmol) and an amine (5.50 mmol) were added, and the mixture was stirred at a
refluxing temperature for 36 h. The procedures for calculating the NMR yields were as follows: when
the reaction was complete, 1,3,5-trimethoxybenzene (0.5 mmol, 84.0 mg) and CHCl3 (1.0 mL) were
added to the reaction mixture. Afterward, to an NMR tube was added 0.1 mL of the above solution and
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0.4 mL of CDCl3. The NMR yields were obtained based on the exact amount of 1,3,5-trimethoxybenzene.
In order to obtain the isolated yields of the amides, the reaction mixture was cooled down to room
temperature, and the solvent was removed under reduced pressure. Finally, the residue was purified
by silica-gel flash column chromatography to afford the amides.

4. Conclusions

In summary, based on the assumption that the relatively labile cod ligand could be replaced by
multiple NHC ligands to obtain versatile and active catalytic systems, we prepared several NHC
precursors with distinct electronic and steric properties, then combined them with [RuCl2(cod)]n and
a mild Cs2CO3 to obtain a series of in situ NHC/Ru catalytic systems. Through extensive screening of
these systems and other conditions, the L4-based NHC/Ru catalytic system exhibited optimal activity
for the dehydrogenative amidation of alcohols and amines. Various amides, especially sterically
hindered ones, could be afforded in an efficient manner. Notably, the applied catalyst loading was as
low as 0.25 mol.%. Further experiments revealed that the higher amount of L4 compared to Ru probably
facilitated the formation of two tetra-carbene species ([Ru]-1 and [Ru]-2), which were observed from
HRMS analyses. However, since the in situ catalytic system was relatively complicated, it is still
uncertain whether these tetra-carbene Ru species or other species were key catalytic intermediates for
this reaction.

Supplementary Materials: Supplementary materials, which contain 1H-NMR and 13C-NMR data, as well as
spectra of amides 3a–3t, are available online.
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