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Abstract: Feature selection is an important topic in bioinformatics. Defining informative features from
complex high dimensional biological data is critical in disease study, drug development, etc. Support
vector machine-recursive feature elimination (SVM-RFE) is an efficient feature selection technique
that has shown its power in many applications. It ranks the features according to the recursive feature
deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines
the classification accuracy rate and the average overlapping ratio of the samples to determine
the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure
the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA)
algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration.
The experiments on the eight public biological datasets show that the discriminative ability of the
feature subset could be measured more accurately by combining the classification accuracy rate with
the average overlapping degree of the samples compared with using the classification accuracy rate
alone, and shielding the samples in the overlapping area made the calculation of the feature weights
more stable and accurate. The methods proposed in this study can also be used with other RFE
techniques to define potential biomarkers from big biological data.
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1. Introduction

Feature selection is one of the main data analysis techniques in data mining, which has shown its
power in many applications, such as insulator detection [1], medicine study [2], and environmental
science [3]. Especially for big data analysis, how to define meaningful information is a key issue.

Along with the quick development of the high throughput techniques, genomics, metabolomics,
and proteomics have been widely applied in disease study, drug research, etc. One characteristic
of omics data is summarized in the expression ”high dimensions, small samples”, since omics data
usually have a large number of features but few samples. As genomics data, metabolomics data
and proteomics data usually contain many features, it has been critical to accurately measure the
feature importance and select the most discriminative feature subset. Puthiyedth et al. [4] presented
a combinatorial optimization approach for integrated feature selection and applied it to analyzing the
data about prostate cancer. They have identified potential novel prostate cancer associated pathways
and genes. Christin et al. [5] studied six feature selection methods, analyzed their performance for
liquid chromatography-mass spectrometry based proteomics and metabolomics biomarker discovery.
Zou et al. [6,7] presented the sequence based feature selection technique and dimensionality reduction
strategy to realize the prediction of protein. Lin et al. [8] studied the feature selection method based on the
overlapping area and defined the discriminative features of liver disease from the metabolomics dataset.
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Support vector machine (SVM) [9] is a popular and efficient classification technique and has
been widely applied in many fields such as biological data processing [10]. SVM-recursive feature
elimination (SVM-RFE) [11] is a feature selection algorithm based on SVM. While the SVM learning
model is built, the weights of the features are also computed. SVM-RFE iteratively removes the features
with the lowest weights. The removing sequence of the features represents the feature importance
ranking [11,12]. SVM-RFE has been adopted in many applications, such as signal processing [13],
genomics [11,12], proteomics [14] and metabolomics [15,16], due to its superiority. Also, many studies
have been done on it to get a more powerful performance. Tang et al. [17] proposed a two-stage
SVM-RFE. In the first stage, multiple SVM-RFEs with different parameters were applied to remove
the noise and non-informative data; in the second stage, the final feature subset was selected by a fine
SVM-RFE. Li et al. [18] combined SVM-RFE with the T-statistic to define the genes associated with CRC
development or metastasis. mRMR-SVM [19] tries to select an important and non-redundant feature
subset by means of SVM-RFE and mRMR. R-SVM [20] is also a recursive feature selection method
based on SVM, which combines SVM weights and class means to evaluate feature discriminative
abilities. There are also some studies on determining how many features with the low weights are
removed in each iteration of SVM-RFE [21,22].

Basically, SVM-RFE ranks the features according to the feature deletion order during the iterations.
The top ranked features which are removed in the last iteration of SVM-RFE are the most important,
while the bottom ranked ones are the least informative and removed in the first iteration. For a specific
application, it is not enough to obtain a feature importance ranking; it needs to determine how many
top ranked features (such as genes and metabolites) should be selected. Thus, based on the selected
features, we can study the disease phenotype and disease mechanism. In some studies, the top ranked
features were selected according to a predetermined number [23,24]. In other studies, the top features
that can induce a classifier with a “best” classification accuracy rate were selected [11,16].

It is not practical to specify the number of features to be selected in advance in some applications.
However, it is well known that the feature subset selected should have a powerful discriminative
ability. If a feature subset has a powerful discriminative ability, then the classifier based on it usually
has a high prediction accuracy rate, and the different sample groups on the selected subspace should
show different distributions with little overlapping areas. Hence, this study proposes a method,
SVM-RFE-OA, which determines the number of features to be selected from the feature rank of
SVM-RFE by combining the classification accuracy rate and the average overlapping ratio of the
samples together. In addition, to weigh the features more accurately, this study also proposes
a modified SVM-RFE-OA (M-SVM-RFE-OA) algorithm, which temporally screens out the samples
lying in a heavily overlapping area in each iteration. The experiments on the eight public biological
datasets show the validation of the two techniques proposed.

2. Methods

2.1. Overlapping Degree

Let X = {x1, x2, . . . xn} be the dataset containing n samples, C be the class label set, Label(xi) ∈ C
be the class label of sample xi ∈ X. For a sample xi ∈ X, the number of its neighbor samples that do
not belong to the same class as xi reflects whether it lies in an overlapping area [25,26]. If most of its
neighbors do not belong to the same class as xi, then xi heavily mixes with the heterogeneous samples
and locates in an overlapping area. Here we define r(xi) to represent the overlapping degree of sample
xi based on the ratio of the heterogeneous samples in its neighborhood as follows:

r(xi) =
Di f f label(xi)

k
−OR(xi) (1)

where Difflabel(xi) = {x | x ∈ kNN(xi) && Label(x) 6= Label(xi)}, kNN(xi) is the set of the k nearest samples
of xi [25,26], OR(xi) = {x | x ∈ X, Label(x) 6= Label(xi)}/n. Difflabel(xi)/k is the heterogeneous sample
ratio in the neighborhoods of xi, and OR(xi) is the heterogeneous sample ratio in the training data.



Molecules 2018, 23, 52 3 of 10

r(xi) > 0 means that, in the neighbor area of sample xi, the ratio of the samples belonging to the
different class as xi is larger than the ratio of the samples belonging to the different class as xi in the
whole training data, there are too many heterogeneous samples in the neighbor area of sample xi.

To measure the overlapping degrees of the samples without bias, r(xi) is normalized as follows:

Nr(xi) =
r(xi)

OR(xi)
(2)

Therefore, Nr(x) represents the degree that sample x mixes with heterogeneous samples, and the
average Nr(x) of all samples in the dataset reflects the mixing degree of the different class samples on
the current subspace. If different classes show different distributions on the current feature subspace,
then there is a clear separation among different classes, and the average Nr(x) of all samples is small.
If different classes show almost the same distribution, they mix together on the subspace, and the
average Nr(x) of all samples is large. Hence, the average Nr(x) can express how much discriminative
information the current feature subset contains.

2.2. Feature Selection Based on SVM-RFE, the Overlapping Degree, and the Accuracy Rate

SVM-RFE [11,12] is a backward feature deletion method. At first, the current feature subset F
contains all the input features. In each loop, an SVM learning model is built based on the current
feature subset F, the weight (|w|) of each feature in F is calculated according to the support vectors
on the hyper-plane of the SVM classifier. The features are then ranked based on |w|, and the bottom
ranked features are removed from F. This procedure is repeated until F is empty. The feature removing
sequence represents the feature importance rank [11,12]. The later the features are removed from F,
the more important the features are. The top ranked features are those that are removed from F in the
last iteration of SVM-RFE.

Thus, we can obtain a feature rank via SVM-RFE. However, for a certain data analysis, how many
top ranked features should be selected from the feature rank of SVM-RFE is still to be considered.
In some cases, the number of features to be selected is decided according to prior knowledge or
is simply decided subjectively [23]. In other cases, the “optimal” feature subset is kept during the
iteration as the final selected feature subset [11,16]. That is, in each iteration, the accuracy rate of
the SVM learning model and the feature weights are calculated, and the features having the smallest
weights are removed from F. When the procedure terminates, the feature subset corresponding to the
maximal accuracy rate is kept as the final selected feature subset [11,16].

In biological data analysis, defining the most informative features (such as genes and metabolites)
from the large complex data is of great importance to disease diagnosis and drug study. SVM-RFE is
very efficient in analysis of large complex data. However, it is quite difficult to predetermine how many
top ranked features should be selected from the feature rank of SVM-RFE. The classification accuracy
rate of d-fold cross validation on the training dataset can be applied to determine which feature subset
is selected during the backward feature deletion, i.e., the number of the selected features is determined
by the classification accuracy rate on the training dataset. However, classification accuracy reflects
the discriminative ability of the feature subset based on the classifier, and the distribution of the
samples can also reflect the discriminative ability of the feature subset. If different class samples mix
together on the current subspace, the overlapping degree of the samples is large, and the subspace
has little discriminative information. Both the classification accuracy and the overlapping degree of
the samples can tell us how much discriminative information the feature subset has. They evaluate
the feature subset from two different aspects, respectively. The discriminative ability of the feature
subset could be evaluated more comprehensively by combining these two terms. Hence, we propose
SVM-RFE-OA (see Algorithm 1 SVM-RFE-OA), which measures the feature subset during the iterations
of SVM-RFE by integrating the average overlapping degree of samples and the classification accuracy
rate, and selects a feature subset that has a large accuracy rate and a small overlapping degree. In each
iteration, SVM-RFE-OA calculates the average accuracy rate (T_c_acc) of d-fold cross validation and
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the average Nr(x) (T_c_oa) of all the samples in the training data, and the feature subset having the
largest “T_c_acc − T_c_oa” is kept as the final selected feature subset.

Algorithm 1 SVM-RFE-OA

Input: training dataset X, t.
Output: selected feature subset FS.
Begin

c_acc = 0;
c_oa = ∞;
F = {all input features};
While (|F| > 0) Do

Construct an SVM based on X and F;
T_c_acc = d-fold cross validation accuracy rate of SVM;
T_c_oa = average Nr(x) of the samples in X based on F;
Rank the features in F by |w| in descending order;
If T_c_acc − T_c_oa > c_acc − c_oa Then

c_acc = T_c_acc;
c_oa = T_c_oa;
FS = F;

Endif;
F = F− {t × |F| bottom ranked features in F};

Endwhile;
Return FS;

End.

t (0 < t < 100%) is the filter factor. In each iteration of SVM-RFE, t × |F| bottom ranked features
are removed from the current feature subset F.

2.3. Modified-SVM-RFE-OA

In the calculation of feature weights, only the samples on the hyper-plane of the SVM learning
model are considered [11,12]. The hyper-plane is constructed based on the training samples and the
current subspace. The quality of the training data can affect the hyper-plane construction and the
computation of feature weights. If different group samples mix heavily on the subspace, overfitting
may occur, which can induce the bias of the calculation of feature weights. Therefore, to get a more
accurate calculation of the feature weights, we propose a modified algorithm based on SVM-RFE-OA
(M-SVM-RFE-OA), which temporally screens out the samples lying in a heavy overlapping area in
each iteration (see Algorithm 2 M-SVM-RFE-OA). That is, (1) in each iteration, Nr(x) of each sample
in the training data is calculated based on the current subspace F; (2) the samples with Nr(x) > 0 are
temporarily set aside and are not used in SVM training in this iteration. At most, one-third of the
samples in each class in the training data are screened out to make sure that there are enough samples
kept for the training. Since the samples in the heavy overlapping area are shielded in the training
procedure, there is little chance that overfitting occurs, and the bias becomes small.
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Algorithm 2 M-SVM-RFE-OA

Input: training dataset X, t.
Output: selected feature subset FS.
Begin

c_acc = 0;
c_oa = ∞;
F = {all input features};
While (|F| > 0) Do

Calculate Nr(x) for each x ∈ X based on F;
Xt = X;
For each c ∈ C Do

Xc = {x | x ∈ X, Label(x) = c and Nr(x) > 0};
θ = |{x | x ∈ X, Label(x) = c}|;
If |Xc| > θ/3 Then

Rank the samples in Xc based on Nr(x) in descending order;
Xt = Xt − {θ/3 top ranked samples in Xc};

Else
Xt = Xt − Xc;

End if;
End for;
Construct an SVM based on Xt and F;
T_c_acc = accuracy rate of SVM;
T_c_oa = average Nr(x) of the samples in Xt based on F;
If T_c_acc − T_c_oa > c_acc − c_oa Then

c_acc = T_c_acc;
c_oa = T_c_oa;
FS = F;

End if;
Rank the features in F by |w| in descending order;
F = F − {t × |F| bottom ranked features in F};

End while;
Return FS;

End

3. Results and Discussion

To show the performance of the two techniques proposed, SVM-RFE-OA and M-SVM-RFE-OA
were compared with SVM-RFE where the selected feature subset was determined by the classification
accuracy rate. Eight public biological datasets were used in the comparison of the three algorithms,
where Breast2, Colon, Lymphoma, Prostate, Brain_data, Srbct are from http://ligarto.org/rdiaz/
Papers/rfVS/randomForestVarSel.html, and the last two datasets are from www.gems-system.org.
Breast2 [27,28] contains 77 samples, including 33 samples that developed distant metastases within
5 years and 44 samples that remained disease-free for over 5 years. The Colon [27,29] dataset
includes 40 tumors samples and 22 normal colon tissues samples with 2000 genes by Affymetrix
technology. The DLBCL_GEMS [30] dataset includes 58 diffuse large B-cell lymphomas (DLBCL)
samples and 19 follicular lymphomas samples. The Lymphoma [27,31] dataset contains the most
prevalent adult lymphoid malignancies. The total sample size is 62, including 42 samples of
diffuse large B-cell lymphoma, 9 follicular lymphoma samples, and 11 chronic lymphocytic leukemia
samples. Prostate [27,32] contains 52 prostate tumors samples and 50 non-tumor prostate samples.
Brain_data [27,33] contains 42 samples, which include 5 different tumors of the central nervous
system, 10 medulloblastomas samples, 10 malignant gliomas samples, 10 atypical teratoid/rhabdoid
tumors (AT/RTs) samples, 8 primitive neuro-ectodermal tumors (PNETs) samples, and 4 human

http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html
http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html
www.gems-system.org
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cerebella samples. The Leukemia2_GEMS [30] dataset contains 24 acute lymphoblastic leukemia
(ALL) samples, 28 acute myeloid leukemia (AML) samples, and 20 mixed-lineage leukemia (MLL)
samples. The Srbct [27,34] dataset, named the small, round blue cell tumors of childhood, includes
23 neuroblastoma (NB) samples, 20 rhabdomyosarcoma (RMS) samples, 12 non-Hodgkin lymphoma
(NHL) samples, and 8 the Ewing family of tumors (EWS) samples. Table 1 provides detailed
information of the eight datasets. Four of them are binary problems.

SVM-RFE, SVM-RFE-OA, and M-SVM-RFE-OA were implemented in C++. SVM was obtained
from http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Linear kernel was adopted in the SVM, and t
was set to 5%. In SVM-RFE-OA and M-SVM-RFE-OA, k was set to 9. Five-fold cross validation was
run 50 times for each method. The average classification accuracy rates and the average standard
deviations are given in Table 2. For the four binary datasets, sensitivities and specificities are given in
Tables 3 and 4, respectively. In the tables, the bold numbers represent the largest value in a dataset
among the three methods.

Table 1. Data description.

Datasets No. of Samples No. of Features No. of Classes

Breast2 [27,28] 77 4869 2
Colon [27,29] 62 2000 2

DLBCL_GEMS [30] 77 5469 2
Lymphoma [27,31] 62 4026 3

Prostate [27,32] 102 6033 2
Brain_data [27,33] 42 5597 5

Leukemia2_GEMS [30] 72 11225 3
Srbct [27,34] 63 2308 4

Table 2. Comparison in accuracy (%).

Datasets SVM-RFE SVM-RFE-OA M-SVM-RFE-OA

Breast2 61.96 ± 4.57 61.13 ± 4.17 65.19 ± 3.77
Colon 80.39 ± 3.99 83.92 ± 2.97 88.61 ± 1.44

DLBCL_GEMS 89.09 ± 4.35 94.29 ± 2.25 93.69 ± 2.97
Lymphoma 94.14 ± 2.63 95.07 ± 2.25 95.63 ± 2.38

Prostate 89.46 ± 2.14 91.84 ± 1.82 92.24 ± 1.56
Brain_data 71.78 ± 5.09 80.63 ± 4.58 81.98 ± 3.21

Leukemia2_GEMS 89.83 ± 2.80 94.39 ± 2.28 94.69 ± 2.03
Srbct 95.21 ± 2.79 98.43 ± 1.45 98.59 ± 1.44

Bold: the largest value in a dataset among the three methods.

Table 3. Comparison in sensitivity (%).

Datasets SVM-RFE SVM-RFE-OA M-SVM-RFE-OA

Breast2 66.95 ± 4.99 66.45 ± 4.94 68.27 ± 5.07
Colon 86.35 ± 3.40 88.65 ± 2.27 90.15 ± 1.63

DLBCL_GEMS 81.16 ± 8.97 88.32 ± 5.55 88.32 ± 6.49
Prostate 89.38 ± 2.67 91.19 ± 2.17 90.23 ± 2.01

Bold: the largest value in a dataset among the three methods.

Table 4. Comparison in specificity (%).

Datasets SVM-RFE SVM-RFE-OA M-SVM-RFE-OA

Breast2 55.27 ± 7.23 53.94 ± 7.55 61.03 ± 6.27
Colon 69.45 ± 9.72 75.27 ± 6.76 85.82 ± 2.70

DLBCL_GEMS 91.72 ± 4.14 96.24 ± 2.43 95.45 ± 2.78
Prostate 89.52 ± 3.65 92.48 ± 2.84 94.32 ± 2.19

Bold: the largest value in a dataset among the three methods.

http://www.csie.ntu. edu.tw/~cjlin/libsvm/
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First, we compared SVM-RFE-OA with SVM-RFE to examine the performance of SVM-RFE-OA.
Table 2 shows that SVM-RFE-OA outperforms SVM-RFE for seven of the eight biological datasets
in classification accuracy rate. The accuracy rate of SVM-RFE-OA is higher than that of SVM-RFE
by 8.95% for Brain_data. Only for Breast2 is the average accuracy rate of SVM-RFE-OA lower than
that of SVM-RFE (by 0.83%). The sensitivities and specificities (see Tables 3 and 4) for the four binary
problems also show the superiority of SVM-RFE-OA over SVM-RFE. The sensitivities of SVM-RFE-OA
are higher than those of SVM-RFE for three of the four binary datasets, and its specificities are higher
than those of SVM-RFE for three of the four datasets, too. Hence, the discriminative ability of the
feature subset could be measured more accurately by combining the classification accuracy rate
with the average overlapping degree of samples than by using the classification accuracy rate alone.
The classification accuracy reflects feature distinguishing ability via the classification model, while the
average overlapping degree of the samples represents the discriminative information that the feature
subset contains by means of the sample distribution. Combining the two criteria induces a more
comprehensive measurement of the feature subset. This technique can be used in other RFE analyses
to determine the final selected feature subset.

Secondly, we compared M-SVM-RFE-OA with SVM-RFE-OA, thereby examining the performance
of temporally screening out the poor samples lying in an overlapping area. Both M-SVM-RFE-OA and
SVM-RFE-OA combine the classification accuracy rate and the average overlapping degree to calculate
the discriminative ability of the feature subset and determine the number of top ranked features to be
selected. To measure the feature importance more accurately, M-SVM-RFE-OA temporarily shields
the samples in the overlapping area in each iteration. The comparison between M-SVM-RFE-OA and
SVM-RFE-OA shows that temporarily screening out the samples mixed with heterogeneous samples
in each iteration benefits the calculation of feature weights. Table 2 clearly shows that M-SVM-RFE-OA
outperforms SVM-RFE-OA for seven of the eight datasets in terms of the accuracy rate. Tables 3 and 4
also represent the superiority of M-SVM-RFE-OA over SVM-RFE-OA in sensitivity and specificity.
Therefore, we have that the quality of the training data influences the construction of the SVM model
and the calculation of feature weights. M-SVM-RFE-OA produces a more accurate calculation of the
feature weights by temporally screening out the samples with high overlapping ratios in each iteration,
finally obtaining a more powerful feature subset.

The comparisons between SVM-RFE and SVM-RFE-OA and between SVM-RFE-OA and
M-SVM-RFE-OA validate the two techniques proposed in this study. Finally, it can be seen that
M-SVM-RFE-OA outperforms SVM-RFE for all eight datasets in terms of accuracy rate and outperforms
SVM-RFE for all the four binary datasets in terms of sensitivity and specificity. Especially for Brain_data,
the accuracy rate of M-SVM-RFE-OA is higher than that of SVM-RFE by 10.2%.

Meanwhile, SVM-RFE-OA and M-SVM-RFE-OA are more stable than SVM-RFE. The standard
deviations of M-SVM-RFE-OA on accuracy rate, sensitivity, and specificity are lower than those of
SVM-RFE in most cases. Hence, from two different aspects, the classification accuracy rate and the
average overlapping degree of samples, which reflects the sample distribution on the feature subspace
(top ranked feature subset), we can obtain a more comprehensive measurement of the feature subset.
Further, temporally shielding the samples with high overlapping ratios in each iteration could make
the computation of feature importance more accurate.

Table 5 gives the average number of features selected in five-fold cross validation run 50 times
for each method. It can be seen that the average number of features selected by SVM-RFE is less than
those selected by SVM-RFE-OA and M-SVM-RFE-OA. However, the classification accuracy rates of
SVM-RFE-OA and M-SVM-RFE-OA are higher than those of SVM-RFE, and the standard deviations
of SVM-RFE-OA and M-SVM-RFE-OA are lower than those of SVM-RFE (see Table 2). For the
Lymphoma dataset, the average number of selected features by SVM-RFE is 3.48, while SVM-RFE-OA
and M-SVM-RFE-OA increase the classification accuracy rate 0.93% and 1.49% by 1.59 and 1.62 more
features, respectively. Although the average numbers of features selected by SVM-RFE-OA and
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M-SVM-RFE-OA are larger than those by SVM-RFE, the two new methods are much more efficient
and stable than SVM-RFE.

Table 5. The average number of features selected.

Datasets SVM-RFE SVM-RFE-OA M-SVM-RFE-OA

Breast2 17.54 52.34 44.89
Colon 12.41 29.46 52.36

DLBCL_GEMS 7.62 39.54 34.50
Lymphoma 3.48 5.07 5.10

Prostate 12.73 60.16 57.50
Brain_data 12.94 48.15 121.68

Leukemia2_GEMS 9.61 78.49 73.99
Srbct 7.22 31.04 30.18

4. Conclusions

In systems biology, it is very significant to select the most meaningful features from large
complex genomics, metabolomics, and proteomics data, which could help in classifying different
disease samples, studying disease mechanisms, and developing new drugs. This paper proposes
two techniques of selecting discriminative feature subsets based on SVM-RFE. One is measuring the
feature subset by combining the classification accuracy rate with the average overlapping degree of
samples, and the other is temporally screening out the samples in a heavily overlapping area in each
loop of the SVM-RFE. Experiments on eight public biological datasets show the validation of these
techniques and prove that filtering out the samples that lie in the heavily overlapping area could make
the measurement of feature weights more accurate.
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