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Abstract: Chitosan macro-particles prepared by the neutralization method were applied to
Sortase A (SrtA) immobilization using glutaraldehyde as a crosslinking agent. The particles
were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron
microscopy (SEM). Response surface methodology (RSM) was employed to optimize the
immobilization process. An average specific activity of 3142 U (mg protein)−1 was obtained under
optimized immobilization conditions (chitosan concentration 3%, SrtA concentration 0.5 mg·mL−1,
glutaraldehyde concentration 0.5%, crosslinking and immobilization at 20 ◦C, crosslinking for 3 h,
and an immobilization time of 8 h). The transpeptidase activity of immobilized SrtA was proved by
a peptide-to-peptide ligation with a conversion yield approximately at 80%, and the immobilized
catalyst was successfully reused for five cycles without obvious activity loss. Moreover, the scale-up
capability of using immobilized SrtA to catalyze a head-to-tail peptide cyclization was investigated
in a batch reaction and the conversion yield was more than 95% when using 20 mg of peptide as
a substrate.
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1. Introduction

Sortase A (SrtA, EC 3.4.22.70) is a transpeptidase derived from Staphylococcus aureus. It can
recognize the Leu-Pro-X-Thr-Gly (LPXTG, X standing for any amino acid except cysteine) pentapeptide
sequence at the C-terminus of protein and cleave the amide bond between threonine and glycine
residues to form an acyl-enzyme complex, which subsequently reacts with nucleophiles containing
oligo-glycine to generate a ligation product [1–3]. In recent years, SrtA has been widely utilized in
the modification of biomolecules, including protein–protein fusion [4–8], in vitro and in vivo protein
functionalization [9,10], peptide and protein cyclization [11–13], and cell and biomaterial surface
functionalization [14–18] among others [19–22]. SrtA-mediated ligation was applied to prepare an
antibody-drug conjugate for a therapeutic purpose as well [23,24]. Therefore, SrtA is a highly valuable
biocatalyst for biomolecule engineering.

Currently, enzyme SrtA is readily accessed by using recombinant expression technology in
Escherichia coli [25]. Enzyme evolution technology has generated enhanced SrtA with improved
catalytic activity and specificity [26,27]. However, several bottlenecks have hindered its future
industrial application. Although it has been reported that the expression yield of SrtA in E. coli
was optimized to a level of approximately 232 mg·L−1 [28], it was reported that the enzyme and
substrates are used at a near-equimolar concentration in some cases. Thus, the disposable use of free
SrtA as a biocatalyst is a waste of a resource, especially in a large-scale reaction.
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The use of immobilized enzymes in industrial processes, in comparison with the use of soluble
enzymes, could reduce process costs by reducing the quantity of enzyme required, as well as
simplifying the downstream purification of the products, since the immobilized biocatalyst can
be recovered and reused easily as long as the enzyme remains active for several reaction cycles.
In addition, a proper immobilization method may improve enzyme stability and also some other
parameters, such as activity and selectivity [29–31].

To address these issues, several strategies have recently been developed to immobilize SrtA onto
a solid support for the site-specific modification of proteins. Beck-Sickinger et al. firstly explored the
immobilization of SrtA onto PEGA resin (polyethylene glycol polyacrylamide copolymer resin) by
combining the expressed protein ligation and click chemistry. This approach generated relatively low
enzymatic activity after immobilization, as the conversion yield is only 10% in peptide-to-peptide
ligation [32]. Recently, Pentelute’s group immobilized evolved SrtA onto Ni-NTA agarose particles
via the His-tag, which was successfully applied in flow-based enzymatic ligation [33]. We have
developed a one-step purification and immobilization strategy for the purification and immobilization
of His-tag SrtA onto an Ni-modified magnetic particle by using the fermentation supernatant directly.
The immobilized SrtA was proved to retain full enzymatic activity in chemoselective ligation with
excellent reusability without obvious activity loss [34]. However, these approaches relied on using
expensive nickel-modified particles, which is not suitable for industrial application in practice.
Ploegh and coworkers investigated chemically immobilizing SrtA onto cyanogen bromide-activated
Sepharose beads and applied it in flow- and batch-based protein C- or N-terminus labeling [35].
However, this randomly oriented immobilization resulted in decreased enzyme activity probably
because the immobilization process is not optimized. In addition, the enzymatic profiles of the
immobilized SrtA were not studied. Most recently, Francis’s group site-specifically modified the
N-terminus of evolved SrtA with lithocholic acid and demonstrated an affinity-based approach to
capture and recycle SrtA with a β CD-modified sepharose resin. The disadvantage is that preparing a
lithocholic acid–SrtA conjugate is complicated, which requires three more steps in a moderate yield [36].
Thus, to explore immobilized SrtA for future industrial application, searching for an economical and
a biocompatible carrier for SrtA as well as a simple immobilization procedure is highly desired.

Chitosan is an abundant deacetylated product of natural polymer chitin. Because of
its desirable characteristics, such as a high affinity to proteins, the availability of reactive
functional groups to couple with enzymes, hydrophilicity, mechanical stability and rigidity, ease
of preparation, and cost-effectiveness, chitosan is widely used as a support material for many
enzyme immobilizations [37–40]. Moreover, chitosan is a nontoxic, biocompatible, and biodegradable
material, which can be used safely in food, pharmaceutic, and agricultural applications [41–44].
In this work, we explored chitosan as a carrier for SrtA immobilization. Specifically, the covalent
immobilization of SrtA onto chitosan particles was achieved using glutaraldehyde as a crosslinking
reagent [45] via a shiff-base bond. As reducing the shiff-base bond to a secondary amine had no
significant improvement on enzyme stability and other characteristics, no reducing reagent was
applied in the SrtA immobilization procedure, which also avoided potentially deleterious effects on
the enzymes’ structures, the disulphide bond, and the peptide bond [46]. Addtionally, the process
was optimized by response surface methodology (RSM) [47]. The immobilized SrtA was further
characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy
(SEM). The physical-chemical properties of the immobilized SrtA as well as the application of the
immobilized SrtA in peptide-to-peptide ligation were studied. Finally, the scale-up capability of the
immobilized SrtA to catalyze a head-to-tail peptide cyclization reaction was investigated in a batch
reaction using up to 20 mg of peptide as a substrate.
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2. Results and Discussion

2.1. Characterization of SrtA Immobilized Chitosan Particles

FTIR was used to characterize chitosan particles, chitosan particles crosslinked with
glutaraldehyde, and chitosan particles with immobilized SrtA. The FTIR spectra are presented in
Figure 1. The broad band between 3100 and 3700 cm−1 is the O-H stretching vibration, mainly from
water, which overlaps with the amine stretching vibrations (N-H) in the same region. The bands
between 2800 and 3000 cm−1 were attributed to the C-H stretching vibration. The absorption bands
between 1000 and 1100 cm−1 were related to C-O and C-N stretching vibrations and C-C-N bending
vibrations. Peaks at 1380 cm−1 correspond to a –C-O-H stretching vibration of a primary –OH group
in the chitosan structure. For bare chitosan particles (Figure 1A), the IR spectra show characteristics of
the N-H bending vibration of primary amines present on the chitosan structure with absorptions at
1590 cm−1 and 1635 cm−1. After activation by glutaraldehyde as shown in Figure 1B, the IR spectra
showed a weak shoulder adsorption at 1668 cm−1 and a strong peak at 1640 cm−1, indicating the
presence of the second free aldehyde group from glutaraldehyde and the formation of imine bonds
(C=N), respectively [48]. It is worth noting that after the glutaraldehyde-activated chitosan beads
were treated with enzyme SrtA and subsequently quenched with alanine, the aldehyde shoulder peak
disappeared, which demonstrated that SrtA was successfully immobilized onto chitosan beads.
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Figure 1. FTIR spectra of (A) pure chitosan particles; (B) chitosan particles treated with glutaraldehyde;
and (C) chitosan particles with immobilized SrtA.

The surface morphology of the three types of particles was observed by scanning electron
microscopy (SEM) (Figure 2). As shown in Figure 2A, bare chitosan particles presented an uneven
surface with many randomly distributed large pores. After the chitosan particles were activated by
glutaraldehyde and subsequently coupled with SrtA, the surface structure became relatively smoother
and tighter and showed a rough fibrous network (Figure 2B,C). These morphology changes should be
the results of grafting glutaraldehyde chains and the attachment of SrtA [49].
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Figure 2. SEM images of (A) pure chitosan particles; (B) glutaraldehyde activated particles;
and (C) Sortase A (SrtA) immobilized particles.
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2.2. Process Optimization of Immobilization of SrtA onto Chitosan Particles

2.2.1. Identification of the Significant Variables Using the Plackett–Burman (PB) Design

To screen for the most significant factors that influence SrtA immobilization, seven factors that
might affect SrtA immobilization on chitosan particles were examined by PB design using a set of
12 runs. The PB design is based on the first-order model given below:

Y = β0 + ΣβiXi

where Y is the response (specific activity of immobilized SrtA), β0 is the model coefficient, βi is the
linear coefficient, and Xi is the set of variables investigated. The main effect of variables, F, and p-values
generated by Design Expert@ 8.0.6 are presented in Table 1.

Table 1. Regression analysis for the selected Plackett–Burman (PB) model.

Effect Value F Value Prob > F Value

A −16.29 0.18 0.6949 -
B −345.78 80.14 0.0009 -
C −75.89 3.86 0.1209 -
D 92.75 5.77 0.0743 -
E −211.76 30.06 0.0054 -
F 110.39 8.17 0.0460 -
G 164.69 18.18 0.0130 -

Model - 20.91 0.0053 -
R2 - - - 0.97

Adj R2 - - - 0.93
Pred R2 - - - 0.76

A: concentration of chitosan; B: concentration of glutaraldehyde; C: crosslinking temperature; D: crosslinking time;
E: concentration of SrtA; F: immobilization temperature; G: immobilization time.

A main effect figure with a positive sign indicates that the high value of the corresponding
variable is near optimum and a negative sign indicates that the low value of this variable is close to
optimum [47]. The F value (20.91) of the model was found to be significant. A p-value <0.05 indicated
that model terms are significant. As shown in Table 1, two negative effects and one positive effect,
including concentration of glutaraldehyde, concentration of SrtA, and immobilization time, were the
three most significant factors affecting SrtA immobilization. A declaration on the other variables was
done according to whether the corresponding effect was positive or negative. Thus, the concentration of
chitosan (3%), crosslinking temperature (20 ◦C), immobilization temperature (20 ◦C), and crosslinking
time (3 h) were chosen for the next experiment.

2.2.2. Optimization of Operational Parameters by the Box–Behnken Experimental Design (BBD)

The most significant operational parameters, including concentration of glutaraldehyde,
concentration of SrtA, and immobilization time, that were obtained from the PB design for SrtA
immobilization on chitosan were further optimized by the BBD of RSM. The coded and uncoded levels
of the three independent variables are listed in Table 2. Table 3 shows the experimental design and
the response data obtained from the 17 trial runs. The final equation in terms of coded factors for the
specific activity of immobilized SrtA was as follows:

Y = 3140.58 + 261.49A + 11.41B − 283.36C + 75.13AB − 119.07AC + 430.99BC − 1407.44A2 − 239.31B2 − 335.08C2

where Y is the response of specific activity and A, B, and C, are the coded values of the test variables
(concentration of glutaraldehyde, concentration of SrtA, and immobilization time), respectively.
The regression analysis and ANOVA are shown in Table 4. The F value (27.75) implied the model to be
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significant and values of Prob > F (0.0001) less than 0.05 were considered significant. The “Lack of Fit
F-value” of 1.25 implies the Lack of Fit is not significant relative to pure error.

The interactive effects of the above three factors on the specific activity are represented in
Figure 3. The three-dimensional (3D) plot (Figure 3A) between concentration of glutaraldehyde
(A) and concentration of the enzyme (B) is dome-shaped, indicating maximum specific activity near
the mid values of both the components. The analysis of the interaction between concentration of
glutaraldehyde (A) and immobilization time (C) (Figure 3B) shows maximum specific activity at a
concentration of glutaraldehyde in the middle range of ‘−1’ and ‘+1’ level and an immobilization
time slightly close to ‘−1’ level. It is also observed in Figure 3C that there is no significant change
in the specific activity of immobilized SrtA with a concentration of enzyme (B) ranging from 0.2 to
0.6 mg·mL−1 and an immobilization time (C) ranging from 4 to 9 h. Furthermore, a high level of both
of the two components will result in a decline in specific activity.

Table 2. Experimental levels of variables in the Box–Behnken experimental design.

A (%) B (mg·mL−1) C (h)

Low level (−1) 0.2 0.2 4
Central level (0) 0.5 0.5 8
High level (+1) 0.8 0.8 12

A: Glutaraldehyde concentration; B: SrtA concentration; C: Immobilization time.

Based on the regression model and predictions by a software design expert, a maximum specific
activity value of 3290.44 U·mg−1 of immobilized SrtA can be achieved in the conditions of 0.53%
glutaraldehyde, 0.25 mg·mL−1 SrtA, and 4.04 h of immobilization time. To verify this model, SrtA
immobilization was performed under these predicted optimal conditions and a specific activity of 3242.40
U·mg−1 of immobilized SrtA was obtained with an activity retention (AR) at 10.43% (Table 3, entry 9).
However, it is worth noting that the total enzymatic activity of immobilized SrtA in these conditions
was relatively low (276.50 U), which may result in a low conversion yield in a practical application
of SrtA-mediated ligation. It is interesting to observe that another five center points of immobilization
exhibited significant total enzymatic activity (588.28 U, 550.10 U, 637.48 U, 592.40 U, and 572.47 U), while the
specific activity only decreases marginally (Table 3, entry 2, 7, 10, 16, and 17). Therefore, to maintain
maximum total enzymatic activity and specific activity, the optimum immobilization conditions were
chosen as: 3% chitosan, 0.5% glutaraldehyde, 0.5 mg·mL−1 SrtA, crosslinking and immobilization at 20 ◦C,
crosslinking for 3 h, and immobilization for 8 h. As for the relatively low specific activity retention, it may
be attributed to the enzyme conformation integrity alteration and a less-favorable mass diffusion after
immobilization. Addtionally, this phenomenon is often observed in enzyme immobilization using chitosan
particles as a solid support [37,42]. The underlying mechanisms are complicated and elusive and further
investigations are needed.

Table 3. Box–Behnken design of experiments for 17 trial runs.

Entry A
(%)

B
(mg·mL−1)

C
(h)

Total Enzyme
Activity

Binding
Protein (mg)

Loading
Efficiency (%)

Specific Activity
(U·mg−1)

Activity Retention
(AR) (%)

1 −1 0 +1 97.55 0.098 39.2 998.65 3.21
2 0 0 0 588.28 0.199 79.6 2952.47 9.50
3 −1 0 −1 79.05 0.067 26.8 1172.03 3.77
4 −1 +1 0 167.93 0.151 37.8 1115.51 3.59
5 0 −1 +1 165.85 0.100 100 1658.50 5.33
6 +1 0 +1 346.48 0.250 100 1385.93 4.46
7 0 0 0 550.10 0.185 74 2971.93 9.56
8 0 +1 +1 849.78 0.309 77.3 2751.93 8.85
9 0 −1 −1 276.50 0.085 85 3242.40 10.43

10 0 0 0 637.48 0.185 74 3438.04 11.06
11 −1 −1 0 53.75 0.037 37 1451.57 4.67
12 0 +1 −1 665.40 0.255 63.8 2611.89 8.40
13 +1 0 −1 450.12 0.221 88.4 2035.59 6.55
14 +1 +1 0 599.80 0.356 89 1686.33 5.42
15 +1 −1 0 170.65 0.099 99 1721.87 5.54
16 0 0 0 592.40 0.182 72.8 3251.30 10.46
17 0 0 0 572.47 0.185 74 3098.15 9.96
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Table 4. ANOVA of response surface methodology (RSM) variables for specific activity of
immobilized SrtA.

F Value Prob > F Value

Model 27.75 0.0001 - Significant
A 11.84 0.0108 - -
B 0.023 0.8848 - -
C 13.90 0.0074 - -

AB 0.49 0.5071 - -
AC 1.23 0.3045 - -
BC 16.08 0.0051 - -
A2 180.52 <0.0001 - -
B2 5.22 0.0563 - -
C2 10.23 0.0151 - -
R2 - - 0.9727 -

Adj R2 - - 0.9377 -
Pred R2 - - 0.7673 -

Lack of fit 1.25 0.4040 Not significant
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2.3. pH and Thermo-Stability of Immobilized SrtA

The pH and thermo-stability are important properties of an immobilized enzyme for industrial
application. The pH stability of free and immobilized SrtA was investigated by incubating the
two types of SrtA in buffers at 25 ◦C for 30 min with different pH values. As shown in Figure 4A,
immobilized SrtA exhibited similar pH stability to free enzyme at a pH range of 7 to 10. For example,
under an optimal pH of 8, the immobilized SrtA retained the full enzyme activity without activity
loss. It was found that both of them reserved more than 80% of enzyme activities at pH 7, 9, and 10,
indicating the excellent pH stability of immobilized SrtA. However, immobilized SrtA is less stable
than free SrtA under an acidic condition, such as a pH at 5 and 6. It is speculated that this is because
the physical-chemical properties of the chitosan particles were altered, which affects the pH stability of
immobilized SrtA.
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The thermo-stability of immobilized SrtA was examined by incubating it at 30, 40, 45, and 50 ◦C
for 30 min in buffers at a pH of 8.0. As illustrated in Figure 4B, the immobilized SrtA retained full
enzyme activity at 30 degrees. When the immobilized SrtA was incubated at 40 degrees, it still retained
90% of its enzyme activity. However, when the temperature was increased to 45 and 50 degrees,
the enzyme activities of the immobilized SrtA dropped to 54.7% and 23.1%, respectively. For the free
SrtA, its enzyme activities were also reduced to 63.6% and 38.5% at 45 and 50 degrees, respectively.
This result indicated that the attachment of SrtA onto the chitosan surface had no improvement effect
for its thermal stability. This phenomenon may be caused by the change of enzyme conformation
because of strong random multipoint covalent interaction between the enzyme and the chitosan carrier,
which reduced the enzyme’s operational stability [50,51].
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2.4. Immobilized SrtA-Mediated Peptide-to-Peptide Ligation

To examine the transpeptidation activity of immobilized SrtA, donor peptide 1 and acceptor
2 were used as a model reaction (Figure 5). The reaction mixture was incubated with ten chitosan
particles in 200 µL at 37 ◦C and monitored by HPLC and MALDI-TOF MS. As shown in the HPLC
profile (Figure 5B), a new peak was generated at a retention time of 12.35 min in 1 h, which was
confirmed to be the ligation product 3 (MScal: 975.0, MSobv: 997.4 [M + Na]+) by MALDI-TOF MS
(SI, Figure S1). The conversion yield was 80% based on the peak area. The reusability of immobilized
SrtA was assessed as well. Thus, after the reaction was finished, SrtA-immobilized chitosan particles
were recovered followed by washing with buffer B. Following the same protocol, the SrtA immobilized
chitosan particles were recovered and reused for another four cycles. As presented in Figure 5C,
the ligation efficiency was very stable in these five cycles, indicating that the immobilized SrtA
displayed excellent stability and recyclability in this application.

2.5. Immobilized SrtA-Mediated Peptide Cyclization and Its Scale-Up Capability

Sortase A-mediated ligation has been approved to be an efficient biocatalyst for the synthesis
of cyclic peptide [13,52,53]. In these cases, the purification of the products from the reaction
mixture is challenging. Additionally, recovering and recycling the biocatalyst is also very difficult.
Therefore, to demonstrate the ability of immobilized SrtA in this application, an SrtA-mediated peptide
head-to-tail cyclization reaction was performed by using antibacterial peptide P-113 as substrate [54].
The scale-up capability of using immobilized SrtA was also investigated in a batch reaction. As shown
in Figure 6 and Table 5, when forty SrtA-immobilized particles were used in a 2 mL reaction volume
with a peptide concentration of 0.2 mM, nearly a 100% conversion yield was observed in 30 min (Table 5,
entry 1). When the reaction volume was scaled-up to 10 mL, approximately total conversion (99%)
was achieved as determined by HPLC analysis (Table 5, entry 2). Moreover, when the reaction volume
was enlarged to 20 mL and the amount of SrtA-immobilized chitosan beads was reduced by half,
the reaction proceeded smoothly as well and the reaction completed in 1 h to give a conversion yield of
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97% (Table 5, entry 3). Finally, when increasing the reaction volume to 40 mL, which contained
approximately of 20 mg peptide 4, the reaction was completed in 2 h and generated the cyclic
peptide 5 in a yield as high as 95% (Table 5, entry 4). The conversion yield of the same cyclization
reaction catalyzed by free SrtA was 93%. These results proved that the chitosan-immobilized SrtA
retained excellent enzymatic activity and that the cyclization efficiency was comparable to that of
free SrtA. In addition, the immobilized SrtA-mediated peptide head-to-tail cyclization could scale
up to 40 mL without an obvious reduction in conversion yield, which may have great potential for
industrial application.
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Table 5. Chitosan-immobilized SrtA-mediated P-113 cyclization.

Entry Volume (0.48 mg/mL−1) Reaction Time (h) Number of Beads Yield (%)

1 2 mL 0.5 40 100
2 10 mL 0.5 200 98.5
3 20 mL 1 200 97.3
4 40 mL 2 400 95.4

3. Experimental Section

3.1. Materials and Methods

3.1.1. Materials

Pre-constructed BL21 (DE3) harboring pET28a-459SrtA (P94S/D160N/D165A/K196T, 4M) was
used in this work [26]. Chitosan (90–95% deacetylated) was purchased from sangon Biotech Co., Ltd.
(Shanghai, China). Glutaraldehyde was obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). All other regents were of analytical or HPLC grade.

3.1.2. Expression and Purification of SrtA

An overnight seed culture of the strain mentioned above was inoculated into fresh TB
(Terrific Broth) medium, incubated at 250 rpm and 37 ◦C until the OD600 reached 0.6. Protein expression
was induced with 1 mM isopropyl-β-D-thiogalactoside (IPTG) at 30 ◦C for 4 h. Cells were harvested
by centrifugation and resuspended in Buffer A (10 mM Tris-HCl, 0.5 M NaCl, pH 8.0). Then, cell
disruption was performed on a vibrogen-cell mill (JXFSTPRP, Jingxin Industrial Development Co., Ltd.,
Shanghai, China) to obtain crude enzyme extract and the cell debris was removed by centrifugation at
9000 rpm at 4 ◦C for 10 min. With further purification through Ni-chelating affinity chromatography
and salts removed by filtration, pure recombinant His-tagged SrtA was finally obtained. It was
freeze-dried and stored at −20 ◦C for further use.

3.1.3. Preparation of Chitosan Particles

Chitosan particles were prepared by the neutralization method [55]. A certain amount of chitosan
powder was mixed with distilled water containing 0.3 M lactic acid, stirred, and heated until the
chitosan powder was completely dissolved. Then, the solution was subjected to ultra-sonication to
remove air bubbles. Chitosan particles were obtained by adding the resulting solution dropwise to a
solution of 2 M NaOH with constant stirring and hardening for 1 h. The spherical particles formed
with a diameter of 2–3 mm were thoroughly washed with distilled water until a neutral pH was
reached and then stored at 4 ◦C for further use.

3.1.4. Immobilization of SrtA

Before SrtA immobilization, ten chitosan particles were activated with 0.5 mL of diluted
glutaraldehyde solution. After activation, excess glutaraldehyde was removed by washing extensively
with buffer B (50 mM Tris, pH 8.0). Then, the activated particles were incubated with 0.5 mL of
varied concentrations of SrtA; the supernatant after immobilization was removed for unbounded
protein determination, and the particles were thoroughly washed with buffer B. After immobilization,
the unreacted aldehyde group was blocked by excessive alanine at 20 ◦C for 2 h and the
SrtA-immobilized chitosan particles were washed five times with buffer B to remove excess alanine.
Figure 7 below summarized the preparation process of chitosan immobilized SrtA.
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3.1.5. Chitosan Particles Characterization

Fourier transform infrared spectroscopy (FTIR) of three kinds of chitosan particles were
acquired by averaging 28 scans in the range of 4000–400 cm−1 with 4 cm−1 resolution
(NEXUS, Thermo Nicolet Corporation, Waltham, MA, USA). Samples were lyophilized in advance;
measurement of the sample before glutaraldehyde activation was performed using an attenuated
total reflectance (ATR) sampling accessory because of the difficulty to pulverize, while the other
two samples were measured by pressing to form transparent KBr pellets.

The detailed surface morphology of normal chitosan particles, glutaraldehyde-treated particles,
and SrtA-immobilized particles was observed by scanning electron microscopy (SEM). Samples were
freeze-dried previously and SEM imaging of these samples was carried out using Quanta-200
(FEI Corporation, Eindhoven, The Netherlands).

3.2. Experimental Design and Data Analysis

3.2.1. Plackett–Burman Experimental Design

Plackett–Burman design (PBD) was applied to identify the operating variables that
have a significant effect on SrtA immobilization. Seven parameters that may affect SrtA
immobilization, including chitosan concentration (3–4%, w/v), glutaraldehyde concentration
(0.5–2.5%, v/v), crosslinking temperature (20–30 ◦C), crosslinking time (0.5–3 h), SrtA concentration
(0.457–1.371 mg·mL−1), immobilization temperature (4–20 ◦C), and immobilization time (2–12 h) were
chosen at a high (+) and a low (−) level for screening. Responses were measured as specific activity of
SrtA. The regression coefficient, effect values, F value, and p-values were determined using Design
Export software@ 8.0.6.

3.2.2. Response Surface Methodology (RSM)

The significant factors screened by PB design were studied in detail using a three-factor and
three-level Box–Behnken design of the response surface methodology. Specific activity was recorded
as the response and analyzed via Design Export software@ 8.0.6.

3.3. Activity Assays of SrtA

The activities of free and immobilized SrtA were measured using Dabcyl-QALPETGEE-Edans as
substrate. When this peptide is cleaved between Thr and Gly by SrtA, the increment of fluorescence
can be detected at an excitation wavelength of 350 nm and an emission wavelength of 495 nm.
Fluorescence was monitored with a microplate reader (Synergy™ H4, Bio-Tek, Winooski, VT, USA).
Generally, 40 µL of substrate (1 mg·mL−1), reaction Buffer C (50 mM Tris, 150 mM NaCl, 5 mM CaCl2,
pH 7.5), and free enzyme or immobilized enzyme were mixed together to obtain a final volume of 0.5
mL, then the reaction system was incubated at 37 ◦C for 1 h to detect the fluorescence value. One unit
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of SrtA activity was defined as the amount of enzyme that catalyzes the formation of one fluorescence
increment per minute. Specific parameters were calculated according to the following equations:

Total activity (U) =
I60 − I0

60
(1)

Specific activity
(

U·mg−1
)
=

I60 − I0

60×m
(2)

where I60 is the fluorescence intensity after the reaction, I0 is the fluorescence intensity of a blank
control, and m (mg) is the protein content of SrtA.

Activity retention (AR, %) =
specific activity of immobilized SrtA

specific activity of free SrtA
× 100 (3)

3.4. Determination of Protein Concentration

The protein content before or after immobilization was assayed by the Bradford method.
Bovine serum albumin (BSA, Beyotime Biotechnology Co., Ltd., Shanghai, China) was used as the
standard.

Loading efficiency (%) =
Ci − Cr

Ci
× 100 (4)

where Ci is the initial protein concentration of SrtA and Cr is the protein concentration of SrtA
after immobilization.

3.5. Stability of Free and Immobilized SrtA

3.5.1. pH Stability

The pH stability of free and immobilized SrtA was investigated by incubation at 25 ◦C in a pH
ranging from 5 to 10 for 30 min. Enzyme activity was determined as described above. The maximum
activity was defined as 100%.

3.5.2. Thermal Stability

The thermal stability of free and immobilized SrtA was investigated by incubation in buffer B at
temperatures of 30, 40, 45, and 50 ◦C for 30 min. Enzyme activity was determined as described above.
The maximum activity was defined as 100%.

3.6. Application of Immobilized SrtA in Peptide-to-Peptide Ligation and Peptide Cyclization

3.6.1. Immobilized SrtA-Mediated Peptide-to-Peptide Ligation

Peptide 1 (Bz-LPETGGGS, 0.5 mM), peptide 2 (GGGGLA, 2.5 mM), and ten SrtA-immobilized
chitosan particles were mixed in buffer D (300 mM Tris, 150 mM NaCl, 10 mM CaCl2, 2 mM
mercaptoethanol, pH 7.5) at 37 ◦C for 1 h in 200 µL volume. Quantification of ligation product
was determined by RP-HPLC using a C18 column with a linear gradient of 10–90% acetonitrile
(0.1% TFA) over 20 min at a flow rate of 1 mL·min−1. The conversion yield was calculated based on
the peptide peak area. Ligation product 3 was identified by MALDI-TOF-MS.

For the recycling and reuse of the immobilized SrtA: chitosan-immobilized SrtA was separated
by filtration followed by washing with 2 mL of buffer B for five times. Then, it was used for the new
batch reactions.

3.6.2. Immobilized SrtA-Mediated Peptide Cyclization

Peptide 4 (NH2-GGGAKRHHGYKRKFHLPETGGS-NH2, 0.2 mM) and a certain amount of
SrtA-immobilized chitosan particles were mixed in buffer D (0.3 M Tris, 0.15 M NaCl, 10 mM CaCl2,
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2 mM mercaptoethanol, pH 7.5) at 37 ◦C in a defined volume. The cyclization process was monitored
by RP-HPLC using a C18 column with a linear gradient of 10–28% acetonitrile (0.1% TFA) over 30 min
at a flow rate of 1 mL·min−1. The resulting peak was confirmed by MALDI-TOF-MS.

4. Conclusions

In this study, we have prepared chitosan macro-particles by the neutralization method and
they were applied to Sortase A immobilization using glutaraldehyde as a crosslinking agent.
The immobilization process was optimized by response surface methodology and an average specific
activity of 3142 U (mg protein)−1 was obtained under optimized immobilization conditions (SrtA
concentration 0.5 mg·mL−1, glutaraldehyde concentration 0.5%, and immobilization time 8 h).
The immobilized SrtA was successfully applied in a peptide-to-peptide ligation and reused for
five cycles without obvious activity loss. Moreover, we demonstrated that immobilized SrtA was
able to catalyze a head-to-tail peptide cyclization with excellent conversion efficiency and that the
reaction could scale-up to 40 mL without an obvious reduction in conversion yield. The low-cost,
biocompatible, and simple preparation protocol will make chitosan-immobilized SrtA have great
potential for industrial applications.

Supplementary Materials: Supplementary materials are available online. Figure S1 (MALDI-TOF mass spectrum
of peptide 1, 2 and 3) and Figure S2 (MALDI-TOF MS of peptide 4 and 5).
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