Next Article in Journal
Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient
Previous Article in Journal
Dinuclear Nickel(I) and Palladium(I) Complexes for Highly Active Transformations of Organic Compounds
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Molecules 2018, 23(1), 144; doi:10.3390/molecules23010144

Immobilization of Enzymes on a Phospholipid Bionically Modified Polysulfone Gradient-Pore Membrane for the Enhanced Performance of Enzymatic Membrane Bioreactors

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
Authors to whom correspondence should be addressed.
Received: 8 December 2017 / Revised: 5 January 2018 / Accepted: 6 January 2018 / Published: 11 January 2018
View Full-Text   |   Download PDF [2559 KB, uploaded 11 January 2018]   |  


Enzymatic membrane bioreactors (EMBRs), with synergistic catalysis-separation performance, have increasingly been used for practical applications. Generally, the membrane properties, particularly the pore structures and interface interactions, have a significant impact on the catalytic efficiency of the EMBR. Therefore, a biomimetic interface based on a phospholipid assembled onto a polysulfone hollow-fiber membrane with perfect radial gradient pores (RGM-PSF) has been prepared in this work to construct a highly efficient and stable EMBR. On account of the special pore structure of the RGM-PSF with the apertures decreasing gradually from the inner side to the outer side, the enzyme molecules could be evenly distributed on the three-dimensional skeleton of the membrane. In addition, the supported phospholipid layer in the membrane, prepared by physical adsorption, was used for the immobilization of the enzymes, which provides sufficient linkage to prevent the enzymes from leaching but also accommodates as many enzyme molecules as possible to retain high bioactivity. The properties of the EMBR were studied by using lipase from Candida rugosa for the hydrolysis of glycerol triacetate as a model. Energy-dispersive X-ray and circular dichroism spectroscopy were employed to observe the effect of lecithin on the membrane and structure changes in the enzyme, respectively. The operational conditions were investigated to optimize the performance of the EMBR by testing substrate concentrations from 0.05 to 0.25 M, membrane fluxes from 25.5 to 350.0 L·m−2·h−1, and temperatures from 15 to 55 °C. As a result, the obtained EMBR showed a desirable performance with 42% improved enzymatic activity and 78% improved catalytic efficiency relative to the unmodified membrane. View Full-Text
Keywords: enzymes; phospholipids; biomimetic interfaces; gradient-pore membrane; membrane bioreactors enzymes; phospholipids; biomimetic interfaces; gradient-pore membrane; membrane bioreactors

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Guo, Y.; Zhu, X.; Fang, F.; Hong, X.; Wu, H.; Chen, D.; Huang, X. Immobilization of Enzymes on a Phospholipid Bionically Modified Polysulfone Gradient-Pore Membrane for the Enhanced Performance of Enzymatic Membrane Bioreactors. Molecules 2018, 23, 144.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top